An almost nowhere Fréchet smooth norm on superreflexive spaces

by

EVA MATOŠKOVÁ (Praha and Linz)

Abstract. Every separable infinite-dimensional superreflexive Banach space admits an equivalent norm which is Fréchet differentiable only on an Aronszajn null set.

Introduction. Every convex continuous function on a separable Banach space X is Gateaux differentiable on a dense $G_δ$-set by a theorem of Mazur. If the dual of X is separable it is even Fréchet differentiable on a dense $G_δ$-set.

If we confine ourselves to the weaker notion of Gateaux differentiability, then locally Lipschitz functions, and in particular convex continuous functions, are also differentiable on a set which is large in the sense of measure.

The strongest present result in this direction is due to Mankiewicz [Man] and Aronszajn [A]. They defined in every separable Banach space a family \mathcal{A} of sets which mimics the family of Lebesgue null sets in finite dimensions. The definitions of the family \mathcal{A} (now usually called the Aronszajn null sets, see Section 2) used by Mankiewicz and by Aronszajn are formally different; it was recently shown by Csoóry that they both coincide with the so-called Gaussian null sets [C]. Mankiewicz and Aronszajn proved that every locally Lipschitz function is Gateaux differentiable almost everywhere, that is, except on a set belonging to \mathcal{A}. For Fréchet differentiability this fails except for finite dimensions, where the classical theorem of Rademacher is available. If X is a separable and infinite-dimensional Banach space then by a result of Preiss and Tiser [PT] there is a Lipschitz function f on X such that the set of points where f is Fréchet differentiable is Aronszajn null.

In [MM] it was shown that it is of no help to consider only convex continuous functions. There exists an equivalent norm p on the separable Hilbert space ℓ_2 such that the set of points where p is Fréchet differentiable

\begin{flushright}
Received March 23, 1998
Revised version June 25, 1998
\end{flushright}
is Aronszajn null. Here we prove the result of [MM] in any separable infinite-dimensional superreflexive Banach space. To construct a "bad" norm on a superreflexive Banach space we combine the simplified proof of [MM] given by Preiss with the existence of very "nice" renormings of superreflexive spaces.

In [PZ] Preiss and Zajíček ask if the set of points where a convex continuous function on a Banach space with a separable dual is not Fréchet differentiable can be covered by countably many closed convex sets with empty interior and countably many \(\delta \)-convex surfaces. This was disproved by Konyagin [K]. Notice that our example also provides a counterexample to this question. By [M1] and [M2] in superreflexive Banach spaces every closed convex set with empty interior is Haar null (this is another replacement of Lebesgue null sets in infinite dimensions) and \(\delta \)-convex surfaces are easily seen to be Haar null. A countable union of Haar null sets is Haar null, and the union of a Haar null set and of an Aronszajn null set cannot be the entire space.

If \(X \) is a Banach space, \(x \in X \) and \(r > 0 \), we denote by \(B(x, r) \) the closed ball with center \(x \) and radius \(r \); \(B_X \) is the closed unit ball of \(X \). The modulus of convexity of a Banach space \(X \) is denoted by \(\delta_X \). The Banach space \(\mathbb{K}^\mathbb{N} \) is considered with the \(\ell_2 \)-norm if not stated otherwise; we denote by \(\lambda_n \) the \(n \)-dimensional Lebesgue measure. If \(A \) is a subset of a Banach space \(X \), we define \(\text{cone} A = \bigcup_{t > 0} tA \).

2. Sets small in measure. The following notion of a null set was introduced by Aronszajn [A]; for equivalent definitions see [C].

Definition 2.1. Let \(X \) be a separable Banach space and let \(A \) be a Borel subset of \(X \). The set \(A \) is called **Aronszajn null** if for every sequence \((x_i)_{i=1}^\infty \) in \(X \) whose closed linear span is \(X \) there exist Borel sets \(A_i \subset X \) such that \(A = \bigcup_{i=1}^\infty A_i \) and the intersection of \(A_i \) with any line in direction \(x_i \) has one-dimensional Lebesgue measure zero, for each \(i \in \mathbb{N} \).

Suppose \(n \in \mathbb{N} \) and \(A \) is a Borel subset of a Banach space \(X \) such that \(A \) is disconnected with any \(n \)-dimensional affine subspace of \(X \) is of \(n \)-dimensional Lebesgue measure zero. It is an easy consequence of Rubini's theorem that \(A \) is Aronszajn null. If \(A \) is a cone-like set, that is, \(cA \subset A \) for any \(c > 0 \), then in the above situation it is enough to consider all \(n \)-dimensional subspaces rather than all \(n \)-dimensional affine subspaces.

Lemma 2.2. Let \(X \) be a separable Banach space and \(A \) a Borel subset of \(X \) so that \(cA \subset A \) for any \(c > 0 \). Suppose \(n \in \mathbb{N} \) is such that \(A \) intersected with the unit ball of any \(n \)-dimensional subspace of \(X \) is of \(n \)-dimensional Lebesgue measure zero. Then \(A \) is Aronszajn null.

Proof. If \(n = 1 \) then \(A \subset \{0\} \). Suppose that \(n > 1 \) and that there is an \((n-1) \)-dimensional affine subspace \(Y \subset X \) with \(0 \not\in Y \) and with \(A \cap Y \) having positive \((n-1) \)-dimensional Lebesgue measure. Since cone \((A \cap Y) \subset A \cap \text{span}Y \), the \(n \)-dimensional Lebesgue measure of \(A \cap \text{span}Y \) is positive, which is a contradiction. By Fubini's theorem the \(n \)-dimensional Lebesgue measure of \(A \cap Z \) is zero for any \(n \)-dimensional affine \(Z \subset X \), and \(A \) is Aronszajn null.

We will need the following simple lemma to construct a "bad" norm on a general separable superreflexive Banach space from a bad norm on its quotient with a basis.

Lemma 2.3. Let \(X, Y \) be separable infinite-dimensional Banach spaces, and \(T : X \to Y \) a continuous linear surjective mapping. Let \(A \subset Y \) be Aronszajn null. Then \(T^{-1}(A) \) is Aronszajn null.

Proof. Suppose \(E \subset X \) is a countable set with \(\text{span} E = \{0\} \). Let \((y_n)_{n=1}^\infty \) be an enumeration of \(T(E) \setminus \{0\} \). Then \(\text{span} (y_n)_{n=1}^\infty = Y \). Let \(A_n \subset Y \) be Borel so that \(A_n \cap (y + \text{span} y_n) \) has one-dimensional measure zero for each \(y \in Y \) and \(\bigcup_{n} A_n = A \). Since \(T \) is continuous, each set \(T^{-1}(A_n) \) is Borel. Clearly, \(\bigcup_n T^{-1}(A_n) = T^{-1}(A) \). If \(n \in \mathbb{N} \) is arbitrary, \(x \in T^{-1}(y_n) \) and \(x \in X \) then \(T^{-1}(A_n) \) restricted to \(x + \text{span} x \) is an affine homeomorphism. Since \(T(T^{-1}(A_n) \cap (x + \text{span} x)) = A_n \cap (T(x) + \text{span} y_n) \), the set \(T^{-1}(A_n) \cap (x + \text{span} x) \) has one-dimensional measure zero.

Let \(X \) be a Banach space and \(n \in \mathbb{N} \). For each \(n \)-dimensional subspace \(Z \) of \(X \) fix an isomorphism \(T_Z : Z \to \mathbb{K}^n \) with \(\|T_Z\| = 1 \) and \(\|T_Z^{-1}\| \leq n \). In the sequel, \(\lambda_Z(A \cap Z) < \varepsilon \) for any \(n \)-dimensional subspace \(Z \subset X \) means that the \(n \)-dimensional measures \(\lambda_Z \) come from these isomorphisms.

Lemma 2.4. Let \(X \) be a Banach space with a uniformly convex norm so that \(\delta_X(\varepsilon) > c\varepsilon^p \) for some \(p \geq 2 \) and \(c > 0 \). Suppose \(Z \) is an \(n \)-dimensional subspace of \(X \) and \(v \in X^* \) is such that \(\sup_{x \in B_Z} \langle v, x \rangle \leq 1 + \varepsilon \) for some \(\varepsilon > 0 \). Then \(\lambda_Z(C) \leq \beta g((n-1)/\alpha) \) for \(C = B_Z \cap \{x \in X \mid \langle v, x \rangle > \|x\|\} \), where \(\beta \) is an absolute constant.

Proof. Denote by \(\|v\|_Z \) the norm of \(v \) when restricted to \(Z \) and by \(u \) the point of \(B_Z \) where it is attained. Observe that \(C = B_Z \cap \text{cone}(x \in B_Z \mid \langle v, x \rangle > 1) \). Since \(1/\|v\|_Z \geq 1/(1 + \varepsilon) \geq 1 - \varepsilon \), we have

\[
\{x \in B_Z : \langle v, x \rangle \geq 1\} \subset \{x \in B_Z : \langle v, x \rangle > 1 - \varepsilon\}.
\]

Since \(Z \) is uniformly rotund with \(\delta_Z(\varepsilon) > c\varepsilon^p \), the diameter of the latter set is at most \(\alpha g(1/p) \), where \(\alpha > 0 \) is a constant (see e.g. [D], p. 58). Hence \(C \subset \text{conv}(B(u, \alpha g(1/p)) \cup B(0, \alpha g(1/p))) \) and
There exist \(u_1, \ldots, u_N \in B_Z \) so that \(B_Z \subset \{ \sum_{i=1}^N a_i u_i : |a_i| \leq N \} \). For \(j = 1, 2, \ldots \) define
\[
I_j = \{ k \in \mathbb{N} : 1 + 2^{-j} \leq \max_{x \in B_Z} \langle u_k, x \rangle \leq 1 + 2^{-j+1} \},
\]
and \(S_j = \bigcup_{n \in I_j} \{ x \in X : u_n(x) > \| x \| \} \). If \(u_n(y) > \| y \| \) for some \(y \in B_Z \) and \(n \in \mathbb{N} \), then \(u_n(y/\| y \|) > 1 \) and \(\max_{x \in B_Z} \langle u_k, x \rangle > 1 \). Therefore \(B_Z \cap S = \bigcup_{j=1}^\infty (B_Z \cap S_j) \). By Lemma 2.4,
\[
\lambda_2(S \cap B_Z) \leq \sum_{j=1}^\infty 2(2^{1-j}(N-1)/r)^{1/q} |I_j|.
\]

To estimate \(|I_j| \), suppose that \(k \in I_j \) and \(x \in B_Z \) are such that \(\langle u_k, x \rangle \geq 1 + 2^{-j} \). Since \(x = \sum_{i=1}^N a_i u_i \) for some suitable \(|a_i| \leq N \) we can estimate
\[
1 + 2^{-j} \leq \langle x, u_k \rangle = 1 + r \sum_{i=1}^N a_i \langle f_{n_i}, u_i \rangle \\
\leq 1 + r N^2 \max_i \| f_{n_i} \|.
\]
This means that if \(k \in I_j \) there is some \(i = 1, \ldots, N \) for which
\[
\langle f_{n_i}, u_i \rangle \geq \frac{1}{2r N^2}.
\]
This cannot happen for too many \(k \)'s, since
\[
1 \geq \| u_k \| \geq \gamma \left(\sum_{n=1}^\infty \| f_{n_i} \| \right)^{1/q};
\]
each \(u_i \) can have at most \((2 r N^2)^q \) coordinates that are not smaller than \(1/(2 r N^2) \). Therefore \(|I_j| \leq \alpha_1 2r N^2 2^{j-1} \) for a suitable constant \(\alpha_1 > 0 \). Finally, by substituting into (1), we arrive at
\[
\lambda_2(S \cap B_Z) \leq \alpha_2 N^2 2^{j-1} \sum_{j=1}^\infty 2^{(q - (N-1)/r)}.
\]

If \(N \) is such that \(q - (N-1)/r < 0 \), then this is at most \(\varepsilon \) for \(r \) small enough. To obtain, for a given \(\varepsilon > 0 \), a symmetric set \(C = (u_k) \) it is enough to put \(C = C' \cup (-C') \), where \(C' \) is a set which works for \(\varepsilon /2 \).

3. Convex functions. Suppose that \(g_n \) are convex continuous functions, and the subdifferential of each of them has a large jump somewhere close to a given point \(x \) for which \(g_1(x) = g_2(x) = \ldots \). Then the pointwise supremum of \((g_n) \) (if it exists) is not Fréchet differentiable at \(x \).

Lemma 3.1. Let \(X \) be a Banach space, \(x \in X \), \(x^* \in X^* \). Let \(g, g_1, g_2, \ldots \) be convex continuous functions on \(X \) with \((g(x) = g_1(x) = g_2(x) = \ldots \),
can be Fréchet differentiable only at the points of \(D = \bigcap_{n=1}^{\infty} S_{1/n} \). The set
\(D \) is Aronszajn null by Lemma 2.2 and (B) of Proposition 2.5.

Acknowledgments. I am grateful to David Preiss for simplifying the ideas presented. I also wish to thank my colleagues in Linz.

References

Mathematical Institute
Institut für Mathematik
Johannes Kepler Universität
Altenbergerstr. A-4040 Linz, Austria
E-mail: eva@caicde.bayou.univ-linz.ac.at

Received April 17, 1998
Revised version June 18, 1998

98 E. Matoušková

\(g_n \leq g \), and \(x^* \in \partial g_n(x) \) for all \(n \in \mathbb{N} \). Suppose there are \(a > 0 \), \(y_n \in X \) and \(u_n = \partial g_n(y_n) \), with \(\lim y_n = x \) and \(\| x^* - y_n^* \| > a \). Then the convex continuous function \(\tilde{g} = \sup g_n \) is not Fréchet differentiable at \(x \).

Proof. We can suppose that \(x = 0 \), \(x^* = 0 \), and \(g(x) = 0 \). Since the functions \(g_n \) are uniformly bounded on some neighborhood of \(x \), they are all Lipschitz with the same constant \(c > 0 \) on some neighborhood of \(x \). Suppose that all \(y_n \) are contained in this neighborhood. Then for \(v \in X \) we can estimate

\[
g_n(v) \geq g_n(y_n) + (y_n^*, v - y_n) \geq (y_n^*, v) - 2c\| y_n \|.
\]

Choose \(u_n \in X \) with \(\| u_n \| = 1 \) and \((y_n^*, u_n) \geq \| y_n^* \| - 1/n \) and put \(h_n = \sqrt{\| y_n \|} \). Then \(\lim h_n = 0 \) and

\[
\limsup_{n \to \infty} \frac{\tilde{g}(h_n) - \tilde{g}(0)}{h_n} \leq \limsup_{n \to \infty} \frac{1}{\sqrt{\| y_n \|}} ((y_n^*, \sqrt{\| y_n \|} u_n) - 2c\| y_n \|) = \limsup_{n \to \infty} (y_n^*, u_n) - 2c\| y_n \| \geq a,
\]

and \(\tilde{g} \) is not Fréchet differentiable at \(x \).

If \(f \) is a function on a Banach space \(X \) we denote by \(D_f \) the set of points in \(X \) where \(f \) is Fréchet differentiable.

Theorem 3.2. Let \(X \) be an infinite-dimensional separable superreflexive Banach space. Then there exists an equivalent norm \(p \) on \(X \) such that the set of points where \(p \) is Fréchet differentiable is Aronszajn null.

Proof. We can suppose that \(X \) is separable, that is, it admits a quotient space \(Y \) with a basis, denote the quotient mapping by \(T \). The Banach space \(Y \) is also superreflexive; if we assume the statement of the theorem being true for spaces with basis, there is an equivalent norm \(\tilde{p} \) on \(Y \) so that \(D_{\tilde{p}} \) is Aronszajn null. For \(x \in X \) define \(p(x) = \| x \| + \tilde{p}(T(x)) \). Then \(p \) is an equivalent norm on \(X \) and \(D_p \subset T^{-1}(D_{\tilde{p}}) \). The set \(T^{-1}(D_{\tilde{p}}) \) is Aronszajn null by Lemma 2.3.

Now suppose \(X \) has a basis. Since \(X \) is superreflexive, it admits a norm which is both power type rotund and uniformly smooth (see e.g. [BL]). Then the dual norm is uniformly convex. Let \(N \in \mathbb{N} \) be as in Proposition 2.5. Fix some \(\varepsilon > 0 \) and choose \(v_n, n \in \mathbb{N} \), and \(S_\varepsilon = S \) as in Proposition 2.5. Define \(g_n(x) = \max\{v_n(x), \| x \|\} \leq 2\| x \| \). Then \(g_n = v_n \) on \(C_n = \{ x \in X : v_n(x) > \| x \| \} \), hence \(v_n \in \partial g_n(x) \) for \(x \in C_n \). For \(x \in X \setminus C_n \) we have \(g_n(x) = \| x \| \) and for any \(x^* \in \partial \| x \| \subset \partial g_n(x) \), \(\| x^* \| \leq 1 < 1 + \delta \leq \| v_n \| \). Put \(f_\varepsilon = \sup g_n \). Then \(f_\varepsilon \) is an equivalent norm. Since \(S_\varepsilon = \bigcup_{n \in \mathbb{N}} C_n \) is dense in \(X \), by Lemma 3.1 the function \(f_\varepsilon \) can be Fréchet differentiable only at the points of \(S_\varepsilon \). Put \(p = \sum_{n=1}^{\infty} 2^{-n} f_1/n \). Then \(p \) is an equivalent norm on \(X \) which