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Potential theory
for the a-stable Schridinger operator
on bounded Lipschitz domains

by

KRZYSZTOF BOGDAN and TOMASE BYCZKOWSKI (Wroctaw)

Abstract. The purpose of the paper is to extend results of the potential theory of
the classical Schrodinger operator to the o-stable case. To obtain this we analyze a weak
version of the Schrddinger operator based on the fractional Laplacian and we prove the
Conditional Gauge Theorem.

1. Introduction. The purpose of the paper is to develop the potential
the%y of the Schrodinger operator 5* based on the fractional Laplacian
A2

The operator S was investigated (along with the so-called relativistic
Schrédinger operator) in connection with the problem of relativistic stability
of matter (see e.g. [Li], [W], [Fe] and [CMS] and the references given there).
At that time the potential theory for the operator A%/2 on bounded do-
mains was not fully developed; in particular, precise estimates for the Green
function and the Boundary Harnack Principle were not available even for
smooth domains. In this paper we treat advanced aspects of the potential
theory of S taking into account recent progress in this field.

The paper is organized as follows. In Section 2 we collect basic facts con-
cerning symmetric o-stable Lévy processes, a-harmonic functions, Green
function, Kato class J% and conditional o-stable Lévy motion. These facts
are either standard or their proofs are direct adaptations of well-known re-
sults on Brownian motion. A good source of classical results is [ChZ}; for
results on symmetric q-stable processes, see [BG], [B1] and [K]; for infor-
mation on the Riesz kernels and fractional Laplacian we refer to [La] and
[S]. We assume that reader is familiar with the foundations of Markov pro-
cesses in the setting e.g. of [BG], Ch. I. In Section 3 we define the weak
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fractional Laplacian A%/ and prove an analogue of Weyl’s lemma. Then we
introduce the weak Schrédinger operator S® based on A2 and reveal its
basic properties.

Section 4 contains the proof of the Conditional Gauge Theorem (CGT),
which is the main result of the paper. Although in the proof of CGT we
generally follow the approach of [CFZ], there are substantial difficulties to
overcome, due to discontinuities of the paths of our process.

In Section 5 we define g-harmonic functions » on D and show that they
coincide with solutions of the equation S%u = 0 in D. We point out that most
of important results for the classical Schrodinger operator and g-harmonic
functions [ChZ] carry over to the present context but we give alternative
methods of proof.

Section 6 contains results concerning potential theory for the operator
5% such as the Harnack Inequality, Boundary Harnack Principle and Martin
representation for nonnegative g-harmonic functions. The main technical
tool exploited throughout the paper is the Boundary Harnack Principle for
A%? proved in [B1] and [BB], and its consequences such as the Martin
representation [B2| and 3G Theorem (described below). We rely on these
results; otherwise the paper is essentially self-contained.

After the first version of the manuscript had been submitted to the
Editors, the authors learned about the recent paper [CS]. Some results of
[C8] are related to ours; however, they are obtained by completely different
methods and restricted to C*! domains.

2. Preliminaries

2.1. Notation and terminology. We basically adopt the notation of [B1].

Let us only remark that all functions considered in this paper are defined
on the whole of R, as a consequence of nonlocality of the theory of c-
harmonic functions. We always require Borel measurability on R%. Thus, for
a subset D C R?, we denote by L°°(D) the class of all Borel measurable
functions on R that are bounded on D. The similar convention. applies to
the definition of LP(D), for 1 < p < 0o. Analogously C'(D) denotes the class
of Borel functions on R® that are continuous on an open subset D C R%,
Co(D) is a subclass of C(D) consisting of the fanctions that are continuous
everywhere and vanish on D®. C(D) is the class of functions with compact
support contained in D. We denote by C* {D) the class of functions that are
k times continuously differentiable on D, and C¥(D) = C*¥(D) N C, (D). For
v € C*(R%) we put |||k = SUP|| <k SUPgere |[DVip(m)].

We will also consider less standard classes of functions; suitable defini-
tions are postponed to subsequent sections.

Many results of the paper are restricted to bounded Lipschitz domains
D; we refer the reader to {B1] for their definition and basic properties.
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We adopt the convention that constants may change their value but not
the dependence from one use to the next. The notation C(a,b,...) means
that C' is a constant depending only on a,b, ... Unless specified otherwise
all constants depend on D, o and ¢ (a funetion in the Kato class J%).
Constants are always positive and finite.

2.2. Symmetric a-stable processes and o-harmonic functions. For the
rest of the paper, let & € (0,2) and d > «, eg d > 2. We denote by
(X, P*) the standard rotation invariant (“symmetric”) a-stable Lévy pro-
cess in R? (i.e. homogeneous, with independent increments}, with index of
stability o, and with characteristic function of the form E%eiuX: = g=#iul™
u € RE, ¢ > 0. As usual, F* denotes the expectation with respect to
the distribution P® of the process starting from =z € R%. We always as-
sume that sample paths of X, are right-continuous and have left-hand lim-
its a.s. The process (X;) is Markov with transition probabilities given by
P{z,A) = P*(X, € A) = ps(A — z), where y; is the one-dimensional
distribution of X; with respect to P°. We have Pi(z,4) = |, p(t;z,v) dv,
where p(t; z,y) = p(z ~ y) are the transition densities of X;. The function
p(z) = pi(—=2) is continuous in (¢,z), ¢ > 0, and has the following useful
scaling property: py(z) = t~%%py(z/t/*). The process (X;, P*) is strong
Markov with respect to the so-called “standard filiration” {F; : ¢ > 0},
and quasi left-continuous on [}, oo]. The shift operator is denoted by 6;. The
operator #; is also extended to Markov times v and is then denoted by 6,.
The process X; has the potential kernel

Ka(z) = A(d, )|,

where A(d, v} = I'((d — 7)/2)/(2Yx%2|I'(v/2)|) (cf. [Lal; see also [S]).

For A ¢ RY, we put 74 = inf{t > 0: X; & A}, the first exit time from
A. z € B is called regular for a (Borel) set A .if P*{rz = 0} = 1; A itself is
called regular if all z & A® are regular for 4.

Let u be a Borel measurable function on R¢. We say that v is a-haermonic
in an open set D C R® if

(1) w(z) = B*u(X,;), z€U,

for every bounded open set U with closure U contained in D. It is called
regular a-harmondc in D if (1) holds for U = D. If D is unbounded then
by the usual convention, E® u(X,,) = E®[tp < oc; u(X,,,)]. Under (1) it
is always assumed that the expectation in (1) is absolutely convergent.

By the strong Markov property of X, a regular a-harmonic function is
necessarily a-harmonic. The converse is not generally true [B2].

When B = B(0,7) € R¢, r > 0, and |z| < r, the P® distribution of X,
has the density function P.(z,-) (the Poisson kernel), explicitly given by
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the formula

r? — |z|?

a2
|y|2—_—7:2'":| |:27 — y‘Wd fOI‘ Iyl > T',

(2) R@w%dﬁ[

with C¢ = I'(d/2)m~4? 1sin(re/2), and equal to O elsewhere [BGR].

2.8. Killed symmetric a-stable Lévy motion. Let D be a bounded domain.
We often assume that D is regular. We denote by {PP) the semigroup
generated by the process (X;) killed on exiting D. The semigroup (F°) is
determined by transition densities p{j (z,y) which are symmetric, that is,
pP(z,y) = pP (y, ), and continuous in (¢, z,y) for t > 0 and z,y € D. Thus,
for any nonnegative Borel f on R? we have PP f(z) = E®[t < 1p; f(X})] =
$p F)nd (z,y) dy.

We call LP(D) (1 < p < o0} or, for regular D, Co(D), an appropriate
space for the semigroup (PP);50. The semigroup acts on each appropriate
space as a strongly continuous semigroup of contractions.

The Green operator for D is denoted by G'p. We set

o0

Gp(z,y) = | pP(z,y) dt
0

and call Gp(z,y) the Green function for D. We obtain

™D

Gpfla) = B[ | f(Xe) ] = § Gole,v) £(y) dy
0

D

for nonnegative Borel functions f on R?. When D is fixed we write G(z,y)
instead of Gp(z,y). If D is regular then Gp(z,y) has the following proper-
ties: Gp(z,y) = Gp(y,z); Gp(z,v) is positive for ,y € D and continuous
at #,y € RY, z s y; Gp(z,y) = 0 if = or y belongs to D¢, For 2,y € R¢ we
have (unless ¢ =y € D°)

(3) GD(Q’;, y) = Ka (:o,y) - EEKQ(XTD:U),

where Ko (z,y) = Ko(z — v).

Let us recall that the domain D € R? is called Green-bounded if
Supgepe F¥7p < 00. Since E*1p = Gp1{x), the above property is equivalent
to the condition ||Gplf|les < o0. But 0 < Gp(z,y) < K4(z,y), so we obtain
Supgep Gol(z) < supyep § ) Ko, y) dy < oo for a bounded Borel set D.
Since for z € D° we have E®tp = 0, bounded Borel sets are Green-bounded.
That sets D of finite Lebesgue measure are also Green-bounded follows from
a direct modification of the proof of Theorem 1.17 from [ChZ}: we then have
SUp, cpe B*rp < Cm(D)*/4,
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2.4. Kato class J%. We say that a Borel function g belongs to the Kato
clags J° if ¢ sabisfies either of the two equivalent conditions (see [Z]):

() lm e | lq(y)Kalo—v)dy =0,
TR oyl <r
i
(5) lim sup gPqu] (z)ds = 0.

We write ¢ € 72, if 1pq € J* for every bounded Borel subset B C RY. If
q € J¢ then supyeps {1 [2(W)|dy < co; in particular, 5%, € L, . If
f e L®(R?) then f, fg € J<.

Let D be a Green-bounded domain in R? and g € 7. For any b > 0
there exists a > 0 depending only on ¢ and b such that

Gplg <aGpl +b.

Consequently, for a fixed ¢ € J%, we have [|Gpgllec — 0 if ||Gp1lec — 0.
Also Gpg € L= (R*) N C(D), and lim,_.. Gpg(z) = 0 if 2 is regular for D.
Hence Gpgq &€ Co(D) provided D is regular.

2.5, Feynman-Kac semigroups. For g € J% we define an additive func-
tional A(t) = Sto q(X,s)ds, t = 0. The corresponding multiplicative func-
tional ey(t) is defined by e,(t) = exp(A(t)), £ > 0. For all s,t > 0 we have
eq(s+t) = eg(s){eq{t) o 8,}. If now 7 is a Markov time such that for every
t > 0 we have 7 < ¢-+708; on {t < 7} then for g > 0 we obtain the following
important fact, referred to in the sequel as Khasminski’s lemma:

(6) If sup E"A(r)=e<1 then sup E%¢(r)< (1—¢)™ .

zeR? zeRE
We also have limyo sup,cps B7e)q)(t) = 1 and sup,cpe E%e)q)(t) < eCotCat
for some Cy,Cy > 0 and all £ > G

Now, we denote by (Ti) = (T}”) the Feynman-Kac semigroup killed on
exiting D. Thus, for nonnegative Borel f we have

T, f{z) = E*[t < 7p; eq(t) F(X4)].

(T}) is a strongly continuous semigroup of bounded operators on each ap-
propriate space for the semigroup (PP), and |||, < [Tifleo < e¥+* for
each 1 < p < co. Every T; is also a bounded operator from IL® into L°°,
and is determined by a symmetric transition density function us which is in
Co(D x D) for regular D. For each f € LP (1 < p € 00} we thus have

Tof(z) = {uelw,v) Fly) dy.
D

Moreover, if D is regular, then T} maps L* into Cy(D) for ¢ > 0.
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The potential operator V for (T}) is introduced as follows:

TD

Vi) = | Tifta) dt = B¢ | eq(f ()],
0 ]

where f is nonnegative and Borel measurable on D. We call V' the g-Green
operator. If {3 ||T;||c dt < oo, with the operator norm taken in L°°(D),
then V is bounded on L7, 1 < p < oco. In particular, V1 € L*(D) and for
regular D the operator V has a symmetric kernel V(z,v) called the g-Green
function which is given by the formula

o0
(7 Viz,y) = S ug(z, y) dt.

0
Thus, V f(z) = {, V(z,v) f(y) dy.

We let F(D,gq) denote the space of all Borel functions f such that for
some constants Ci, Cp we have |f(z)] < Cy + Cqlg(z)| for all z € D. If
f € F(D,q) then Vf € Cy(D) whenever V1 € L*(D} and D is regular.

The following identities exemplify relations between the operators V and
G p. We assume here that ¢ € 7% and V1 € L*°(D). For « € D we obtain

(8) Vf(z) =Gpf(z) + V(4Gpf) (=)
whenever V' (|¢|Gp|f])(z) < co. ¥ Gp(|e|V|f|){z) < oo then
(9) Vi(z)=Gof(z) + Go(¢V ) (=)

2.6. Stopped Feynman—-Kac funetional. Gauge Theorem. Let D be a do-
main in R? and let g € 7% We will usually assume that D is bounded or of
finite Lebesgue measure. Then 7p < oo a.s. by 2.3. Since also sg lg(Xs)| ds
< oo a.s. for each t > 0, the random variable e, (mp) is well defined. The
function

u(z) = E%eq4(7p)

is called the gauge (function) for (D, q); when it is bounded in D, hence
in R, we say that (D, q) is gaugeable. For a fixed ¢ € J* but a variable
domain D) we use the alternative notation up for the gauge for (D,q). If
Gpyq is bounded below then by Jensen’s inequality we obtain

(10) mi&fd up(z) > 0.

This is the case when D is Green-bounded and ¢ € J°.

If (10) holds and (D, q) is gaugeable, then (F,q) is gaugeable for any
domain E C D. In fact [|upile < [[un e up|leo-

The theorem below provides the fundamental property of the gauge and

clarifies gaugeability conditions. For the proof, we refer to [ChZ] (§5.6 and
Theorer 4.19).
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GAUGE THEOREM. Let D be g domain with m{D) < oo and let g € T,

If u(zp) < oo for some &g € D then u is bounded in RE. Moreover, the
Jollowing conditions are equivaleni:

(i) (D,q) is gaugeable;

(i) The semigroup Ty satisfies { |Ti||co dt < oo
(iii) V1 e Lo (R?);
(iv) Vigl € L>(R%).

In the sequel, for brevity, we often write V1 € L*°(R%) to indicate that
(D, g} is gaugeable.

2.7. Conditional c-steble Lévy motion. We now introduce the notion
of conditional e-stable Lévy motion. Although it is analogous to the con-
ditional Brownian motion, some of its basic features are different, due to
existence of jumps of the underlying process.

Let D be a domain in R?, d > e, and let h > 0 be a function which is
c-harmonic and positive on D. We define

PP (b2, y) = h(z) " 0P (8, 9)h(y), t>0, 2,y €D,

where pP (z,y) is the transition density of P,°. It is not difficult to check
that pf is the density for a transition sub-probability. According to the gen-
eral theory of Markov processes {(BG], pP defines a Markov process on the
state space Dy = D U {8}, where 8 is the extra point (“cemetery”) needed
to define the transition probabilities. This process is called h-conditioned
symmetric a-stable Lévy motion or briefly: a-stable h-Lévy motion. Its life-
time is defined as T3 = 7p: The process remains at @ in [rp,00). The
h-conditioned process is still denoted by X, but we use P, and Ef, for the
corresponding probabilities and expectations. Thus, for any bounded Borel
measurable function f on D we obtain

B2 f(Xy) = h(z) ™" | pP (6 2,1)R() f () dy
D
= h{z) " B[t < Tp; f{X:)R(X:)]
We list some elementary properties of e-stable h-Lévy motion. Let ¢ > 0
and let & > 0 be a function measurable with respect to 7;. ¥or £ € D we
have

(11) EZ[t < mp; 8] = hiz) "E°[t < 7p; $h(Xy)].

We recall that for a given Markov time 7 we denote by F. the family of
all sets A € F with An{r <t} € F for every t > 0. In our further
considerations we will also use the o-field F,_ which is generated by Foy
and the sets A¢ N {7 > t}, where 4; € Fz. We have {T' < 7} € F_ for any
Markov time T
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If T is a Markov time and & > 0 is a function measurable with respect
to Fr we obtain
(12) EZ[T < 7p; ] = h(z) L E*[T < 7p; $h(X7))-

The next relation exhibits the strong Markov property of a-stable A-Lévy
motion. Namely, for any Markov time T, A € Fr and any function & > 0
measurable with respect F.,, we have

(13) EZAN{T < 7p}; o by] = BY[AN{T < rp}; BF7 4]

Let D be a bounded Lipschitz domain in R?. For fixed 2y € D, we denote
by K the corresponding Martin kernel

o Gly)
K(.’L", g) - Dgﬁ& G(ﬂ':[],y),

where G = Gp. Then K is a unique function satisfying the following condi-
tions:

reR? ¢edD,

(i) for any fixed £ € 8D, K{-, €) is a strictly positive a-harmonic func-
tion in D, vanishing on D¢
(i) for any fixed x € D, K(x,) is a continuous function on D
(iii) for any £ € 8D, 7 € 8D, n # £ we bave lim,_., K(z,£) = 0;
(iv) K(zo,&)=1for all £ € 6D.

The properties of K are nontrivial consequences of BHP (see [B2]). The
corresponding results for more general domains are given in [MS].

For £ € 0D the a-stable h-Lévy motion determined by A() = K (,£) is
called a-stable {-Lévy motion. The associated probability and expectation
will be denoted by PF and Ef. We have Eftp < oo and P§{limsyr, Xy
=¢}=1forevery £ €D and x € D.

In the classical case of Brownian motion the &-Brownian motion plays
a dominant role, because of the fact that on exiting D the process hits the
boundary. For cur a-stable process, the situation is dramatically different:
on leaving D the process jumps into the interior of D¢, with probability
one, whenever D is a bounded domain with the ezterior cone property (see
Lemma 6 in [B1]). In consequence, another version of conditional process
becomes even more important. This is the a-stable h-Lévy motion condi-
tioned by A(-) = G(-,y) with y € D and called a-stable y-Lévy motion. The
y-process is defined on 7\ {y} and turns out to be the main tool in the
potential theory of the a-stable Schrédinger operator. Let ¢ denote To\{y}s
where D is (more generally) a bounded regular domain in R%. For every
y € D and z € D\ {y} we have F¥( < co and Py {limypqe Xy =y} == 1,

By the above statements we can redefine a-stable £-Lévy and y-Lévy
motions as follows. a-stable {-Lévy motion is defined on the state space
DU{£}, and takes the value § at and after its lifetime 7p. Similarly, e-stable
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y-Lévy motion is defined on the state space D and takes the value y at and
after its lifetime (.

The following result is very important in the sequel (see [IW] and [B1],
Lemmas 6 and 17 for justification). Let D be a bounded domain with the
exterior cone property. Then the distribution of the pair (X.,_, X, ) with
respect to P® (xz € D) is concentrated on I x D€ with the density function
g% (v,y) given by the following explicit formula:

Ald, —a)

(14) 9 (v,y) = ‘U_y‘d_‘_aG(z,u), {v,y) € D x D°.
Integrating (14) over D we obtain
(15) () = | Ald, ~0)Glz,v) ) e pe

— |+
5 lv—ylHte

which gives the density function of the a-harmonic measure wp{dy) =
P*{X,, € dy} of the set D.

By (14) and routine arguments, for & > { measurable with respect to
Frp—, and any Borel f > 0, we obtain the following important formula:

(16) E7[f( X)) = E°[f(Xrp)B%, 8], zeD.
By (16) we easily obtain, for z € D,

(17)  Eoleg(rp) f(Xr)] = | | Elleg(ron )] f(0)g™ (v, ) dy dv.
D De

3. a-stable Schridinger operator. The purpose of this section is to
introduce the notion of the a-stable Schrédinger operator and establish its
basic properties. To achieve this, we first analyze the operator A*? (see
also [S]). Qur approach is based on distribution theory, and we begin with
introducing an appropriate L space.

DEFINITION 3.1. We denote by £! = £}(dz/(1 + |z[)4T®) the space of
all Borel functions f on R? satisfying

S |£ ()]

Wd$<00.

]Rd
DEFINITION 3.2. Let f € £1. For e > 0 and z € R* we define

A?—/’Zf(m) o A(d, '—Cﬁ) iy — $|d+a

ly—e|>z

and put A%/2f(z) = lim. o A /2 f(z) whenever the limit exists.
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LEMMA 3.3. Assume that

flz
. Ey~£|>s Il-:g’—(:)fl%% dady<oe o néd |f(x)g(z)| dv < oo.
Then
(2) | f@)a2 g(e)do = | 9(2) A5 f(2) da.

Rd o

Proof. The first part of (1) justifies the following application of Fubini’s
theorem:

A(d,-a) | fizy E»_—gf;clil—)mdydx
[Rd |ly—z|>e

| 9 iy

= A(d,—a) | g} [y — z]dFo

Re fy—ax|>e
‘We obtain the conclusion by subtracting the expression
f(z)g(=z) _ Fw)aly)
A(d, -"“05) K S W dzdx = A(d, *CM) S S W‘x_ dz dy
Re jz[>e B |2{>e

REMARK 3.4. Suppose that f € £! and g € C.(R?). Then f and g satisfy
the condition (1) of Lemma 3.3 for all € > 0.

LEMMA 8.5. Let D be an open subset of R:. Then A*/2p(z) exists for
every ¢ € C2(D) and is a continuous function of x € R4, If D 4s bounded
then for all 1 € B¢ and € < 1,

182/ 0(0)| < 0D, 0) ik

The proof is based on Taylor’s expansion of ¢ and the symmetry of the
kernel |y|~%~* and is omitted.

Lemma 3.5 allows us to introduce the following
DEFINITION 3.6. We define the distribution k* by the formula,
(3) (e = A%2p(0), e CR(RY) (or p & CARA)),
By this definition
(4) K & () = A%/ 2p(a),

where as usual ([R])

v € CZ(RY),

k% % p(z) = (b%,72p) with 7@(y) = p(z —y).

We now introduce the weak fractional Laplacian A®/2,
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DEFINITION 3.7. For f € L' we define the distribution A®/2f by the
formula
(A%2f,0) = (£,4%g), ¢ € C2(R),

By Lemma 3.5, (1+]z|)4t*A%/2y,, (z) converges to 0 uniformly whenever
@n € C°(R?) converges to 0 in the usual topology of the test functions. By
bounded convergence we get

(£,8°P0) = | f(2)A*?pn(2) dw — 0,
ke

75—+ 00,

so that the functional A/? f is continuous, i.e. it is a distribution.

Assume that f € C*(D) N £, where as before D is an open subset of
RY. We claim that A®/2 f(z) exists and is a continuous function of z € D.
Indeed, fix € > 0 and defire D, = {z € D : dist(z, D®) > £}. Assume that
D is bounded and write f = fi + fo, where f1 € C%(D) and fo = 0 on
D,. We observe that A®/2f,(z) = a/2 fa(z) for € Ds.. Application of
Lemma 3.5 for f; proves the claim. '

LEMMA 3.8. Let D be an open subset of RY and let f ¢ C%(D) N L.
Then A% f = A*/2f as distributions in D.

Proof. By Lemma 3.3 we have (7, #/20) = (A% F, o) for » € C=(D)
and £ > 0. By the above remarks on the existence of A%/?f(z) and by

Lerama 3.5 we see that A2 f(z) — A%/2f(z) boundedly on compact sub-
sets of D as € | 0. By bounded convergence we get

(f: AQ/Z(P) = (Aa/zf: (10)’ pE CCGO(D)v
which finishes the proof.

The following theorem and Theorem 3.12 below, describing the a-harmo-
nic functions as those annihilated by A®/2, are the main results of this
section. Although at least a version of Theorem 3.9 seems to be well known
[BC), we were unable to point out an actual reference and we give the proof
in detail.

THEOREM 8.9. Let D be an open subset of RY. A function f on R* is
a-harmonic in D if and only if it is continuous in D and A%/ f =0 in D.

Proof. If f is a-harmonic in D then the Dynkin [D] characteristic op-
erator I{ clearly vanishes, i.e. for z € D,
. wa(X'rB(m,r)) — f(z)
Usle) = 1’}}'% E®Tg(a,r)

=0.

Of course, f € C°°(D). By the scaling property of the process we have
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Efrg1p,m = 'I"aEDTB(g’l) for all z € R* and r > 0. We easily obtain
fly) — f(=)

—uldle — g2 — r2)a/2
o = e =P =7?)

N R OES (C)

- EOTB(O,I) 0 |a: - yl‘i"'“

Cd
0=U = lim =&
f(-’L’) :ﬁl EDTB(O,I) S

|z—y[>r

for z € D, so that A%/2f(z) = 0.

To prove the other implication, we fix an open set D; # 0 relatively
compact in D. Without any loss of generality we assume that D; has the
exterior cone property. We define f(z) = E*f(X.; ),z € R, The function
f is regular a-harmonic in Dy, since B[ f(Xap, )] < 00 for & € R Indeed,
let Dy be another open set relatively compact in D such that Dy C Ds.
There exist functions fi, f2 on D such that f = fi -+ fa, f1 is continuous
and bounded on Df and f» =0 in Dy. We have

F(z)= B°f1(Xy ) + B fo(Xrp,)  forz € R

The first expectation is clearly absolutely convergent, hence regular a-harm-
onic in Dy. It is also continuous in D; or, in other words, Dy is regular for
the corresponding Dirichlet preblem. The last assertion follows from the
exterior cone property (see [B1], Lemma 10, or [PS], Theorem 4.2.2).

By [B1] (Lemmas 6 and 7, and Remark 4), the P* distribution of X,
has the density function g(y) satisfying the inequality

()

T < N
9"y < e dist(y, D1 )ara’

xe Dy, ye Dj,

where s is a continuous function in D; such that s(z) — 0 whenever
dist(z,dD1) — 0. Given that A%/?f(z) exists at two different points z,
we have {pa (|F(#)]/(1 + [y}*F*) dy < co. In consequence the second expec-
tation above is absolutely convergent (so it is regular a-harmonic in D)
and |B® f2(Xr, )| < cps(z) for z € D;. We see that f is continuous in Dy
and regular a-harmonic in Dy. Also, f = f on DS,

Let o = f — f. We now verify that A = 0, so that f = f is regular
a-harmonic in D;. We have A"‘/Eh(w) = 0 for z € D;. The function k is
continuous and compactly supperted. If it has a (strictly) positive maximurm
at 2y € Dy, then A%/2h(z0) < —A(d, —a)h(z) SD% ly—2q|*~% dy < 0, which
gives a contradiction. Similarly, h must be nonnegative.

COROLLARY 3.10. If f € C*(D) N L and A%/2f = 0 in D then f s
a-harmonic in D.

icm

a-gtable Schridinger operator 65

Let us recall that P.(z,y) denotes the Poisson kernel (2.2). It has a
gingularity at |y| = r. To remove this Inconvenience, we fix a nonnegative
function ¢ € C°((1/2,1)) such that SLEQS(T) dr = 1 and we define

1 T e
YY) = s P(r)Pr(0,y) dr = Clly| ¢ S 2 _ p2\0/2 dr
" wiaayz ¥ =72)

for y € R4, It is not difficult to check the following

LemMa 3.11. The function 1 is in C°°(R?). Moreover, for all y € R?
and cvery multiindex v we have
C(d, o, )

DY (y)| < T+ gy odT

We define 9. (z) = e~ %j(z/e), where z € R? and & > 0.

THEOREM 3.12. Let D be an open subset of R%. Suppose that f € £t
and A2 § vanishes in D. Then there egists a function u a-harmonic in D
such that f = u almost everywhere.

Proof. The proof is a modification of classical arguments (see e.g. [Fo])-

STEP 1. Assume that additionally f € C*(D). Applying Corollary 3.10
we obtain the conclusion. By an application of Fubini’s theorem and by the
scaling property £ %P, (0,2/¢) = P..(0,z) of the Poisson kernel we obtain

flz) = f *1pc(z) forall z € Dje.

StEP 2. In the general case we fix a nonnegative function g € C°(R%)
which is symmetric (i.e. g(—z) = g(x)), supported in B(0,1) adnd sucp that
§pe 9(v) dy = 1. We define gs(z) = 5-4g(z/8), § > 0, € R*. Obviously,
gs * f € C(R?). Also, gs * f € £*. For a test function ¢ by symmetry of
g and Fubini's theorem we get
(5) (g6 * £, A%/%p) = (f,g5  A%2yp).

By (4) and the usual properties of convelution we also obtain
(6) g5k A% 20 = gg 4 k% ko = k% x (g5 ¥ ) = A%%{gs x ).
By (5) and (6) we thus have, for ¢ € C&{Ds),
(A*2(gs % 1)) = (F,95 » A%/%0) = (4°/*f,95 % ¢) = 0.
By Step 1, gs * f is a-harmonic in D and for z € Dsae,
(7) gs * F(2) = (g5 * ) » e(a) = (g5 » ¢} * f(2)-
The left-hand side of (7) converges to f in the sense of distributions as & | D.
We also have, for § < 1,

gs % Pely) < ClEYL+ W)™, yeR:
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The convergence of the right-hand side of (7) to 9 * f as 6 | 0 is therefore
pointwise and locally bounded (hence distributional). Thus, f = 4. * f as
distributions in Ds.. From Lemma 3.11 we infer that 1, * f € C?(Dj,), thus
f € C*(D) as a distribution, which completes the proof of the theorem.

The following observation will be crucial in the sequel.

PROPOSITION 3.13. Let D be @ bounded open subset of RY and let ¢
LY(D). Then
AY2Gpap = —ap  in D.

Proof. Recall (see (2.3)) that Gp(z,y) = Ka(z,y) — E* Ko(Xr,;,y) for
z,y € D. For ¢ € J2, and & € D we thus have

Gpy(z) = | Go(z,v)i(y) dy
D

= { Kale,0)0(v) dy - B[ | Ka(Xep,y)b () dy].
D D

The application of Fubini’s theorem is justified since all the integrals are ab-
solutely convergent by the defining condition (2.4) on ¢ € Ji%, and bound-

edness of D. The second term above is regular a-harmonic in D so A%/2
annihilates it in D. Thus, for ¢ € C2°(D) we obtain

(32, ) = (B2 Kot ) = (Ku, A%1%)
= {{ Kalz, 100 () A% 2p(2) dy dz = (9, Ko/ 2p).

By [La], Ch. I, we obtain K,A%2p = —¢, which completes the proof for
1 € J2.. For general ¢ € L'(D) we easily get ||Gp|v|ll1 € |Gpollel i1
By an approximation argument our result carries over to such general 4.

We now define the weok Schrédinger operator S°.

DEFINITION 3.14. Let D be an open set in R?. For u € £ such that
ug € L{, (D) we define the distribution 5% in D by the formula

8%y = — (A% 1 g)u
and call S% the (weak) Schrédinger operator in D.

In the following theorem we prove an important uniqueness result for 3¢
(compare Theorem 3.21 in [ChZ]). :

THEOREM 3.15. Let D be a bounded and regular domain in RE and let

g € T3, Assume that V1 € L>=(R?), ¢ € Co(D), and §%¢ vanishes in D.
Then ¢ = 0 in RE, '
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Proof. Put f = ¢—Gp(ge). Since g € J2,, we have g¢ € J=. Therefore
Gplgp) € Co(D). We obtain

Ao/ = A1%g — B°*Gp(g4) = (A7 4 g)p = —5¢ = 0

in D. By Theorem 3.12 and continuity of f it follows that f is o-harmonic
in D. By the maximum principle (see the proof of Theorem 3.9), f = 0
in. Ré. Thus ¢ = Gp(gd). We now apply (2.8) with f replaced by g¢.
First observe that Gp(|¢g|) € L*™(R?) implies |¢|Gp(|gp|) € F(D,q), so
V(lgiGplladl)) < oo in D. We then obtain V{(¢d) = Gplgd) + V(gGn(a¢))
= ¢+ V(ge) in D. Since ¢ = 0 in D¢, we have ¢ = () in R9.

PROPOSITION 3.16. Let D be a bounded regular domain, ¢ € J,2, and let
V1 e L®(R4). Then

8) 5°Vf=f inD
for f e F(D,q). If S°f e F(D,q) and f € Co{D) then
9] VS§*f=f inD.

Proof If f € F(D,q) then V|f| € Co(D), whick yields Gp(lg|V|f[)
< oo in D. Hence, by {2.9) we obtain Vf = Gpf + Gp(¢V f). By Proposi-
tion 3.13, A*2Vf = —f — ¢V f, and so f = —A*/?V§ — gV § in D, which
is (8).

If §¢f € F(D,q) then VS*f € Cy(D) by regularity of D. Given that
f € Co(D) we have V5¢f — f € Cy(D). Applying (8) with f replaced by
8™ f, we get SV S f = 92f, hence S*(VS*f — f) = 0. By Theorem 3.15,
we obtain (9).

For a given f € F(D,¢) we consider the inhomogeneous equation

5% =f inD.
It follows from the preceding proposition that, under the above conditions
on D and g, its unique (weak) solution ¢ € Cp(D) is given by ¢ = V f.

We now discuss the connection of the operator 8% with the infinitesimal
generator of the Feynman-Kac semigroup (Ti):»0. We recall that (T;) acts
as a strongly continuous semigroup on each of the appropriate spaces X =
X(D) = LP(D) for a bounded open subset D of R (1 < p < co0), and
Co(D) whenever D is regular. The infinitesimal generator A is defined as an
operator on DP(A) C X by the formula

Af =li(/)ITf - f] for ] € D),
where the limit is taken in the norm of X and D(A) is the set of all functions

§ for which the limit exists. If (D, q) is gaugeable then V is a bounded
operator in each appropriate space. General semigroup theory then yields

(10) D(A) =VIXx], A=-VL
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PROPOSITION 3.17. Let D be a bounded regular domain. The domain
D(Ap) of the infinitesimal generator Ag for (Ty) acting on Co(D) consists
of all f € Co(D) such that S¢f € Co(D). If f € D(Ao) then

(11) Aof = ~5°F.

Proof. As a particular case of (10) we have D(4g) = V[Co(D)] provided
(D, q) is gaugeable. If f € Cyp(D) and S°f € Co(D) then §¢f € F(D,q).
Hence by (8), f = V§%f € V[Cy(D)]. Conversely, if f = Vg with g € Co(D),
then f € Cy(D) and by (8), §%f = §2Vg = g € Cy(D). Since by (10),
g=V~'f = —Apf, we obtain (11). If (D, ¢) is not gaugeable, we get (11)
by cousidering (77") = (e~ *T3) for suitable A > 0.

4, Conditional gauge and g¢-Green function. In this section we
prove the Conditional Gange Theorem (CGT) which is the main result of the
paper. We assume in the sequel, unless stated otherwise, that D is a bounded
Lipschitz domain in R? and d > o. We first state for our a-stable process an
important result on the Green function of D called the “3G Theorem”. The
proof, which strongly relies on BHP (see [B1]), is omitted because it is a
direct adaptation of arguments developed for Brownian motion by Cranston,
Fabes and Zhao [CFZ].

3G THEOREM. Let D be a bounded Lipschitz domain in R?, d > o, and
let G be the Green function of D. There exists a constant C such that for
all z,y,z € D we have

G(z,y)G(y, 2)
B e S
G(x, 2:) — C(Ka(gd":y)“%Koc(y:z)):
and
d—ao
S0 (oLl )
G(z,z) ~  \|z—ylly— = ’
unless z =y = z. In fact, the constant C above depends on D only through
its Lipschitz character and diameter ([CFZ]).

As a limiting case, by the definition of the Martin kernel K (see 2.7) we
obtain, with the same constant C,

CoroLLARY 4.1. For all z,y € D and £ € 8D we also have

Gz, y) K (y,§)
SN IIDADS) o ‘
K(z,£) < C{Ko(z,y) + Ka(y,£))
In the sequel we assume that ¢ € J5.. The following lemma is a “con-
ditional” version of Khasminski’s lemma (see (2.6)). The proof relies on the
3G Theorem as in [CFZ] and is omitted.
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LemMa 4.2. For every € > 0 there exists n = n(e, D, q) such that for
every open set U C D with m(U) < n we have, for ally ¢ D,

TU\{y}

swp By | (Xl <e,
¢

w€D, uzty

and if 0 < &< 1 then

0% Bl Brealongy) S sw Beg(ngy) < (1-2)7

We first prove some lemmas. The first is a more precise version of
Lemma 4.4 of [CFZ].

LeMMA 4.3. Let D and U be bounded regular domains, U C D, and let

yel. SetDo—D\UandCWTD\{y} Let w € D, u # v, andeDD
Then

(1) PHrngy =¢ = ELCT)

GD(U y)’

Proof. For y € D we obtain Gp(u,y) 'E¥ry < 7p; Gp{Xry,¥)] =
Pi{rogyy << because {y} is a polar set. By definition of Green function

we have Gp(z,y) = Kuo(2,y) — E*Ks(X,p,y). This and the strong Markov
property yield

P;{TDOZC}ZO'

By < mp; Gp(Xrg,v)]
= E*[ry < 7p; Ka(Xr,,y)] — B[y < o3 BX 70 [Ko(Xoy,, )]
= E'lry < Tp; Ko Xy, y) — Kol Xrp, y)]
= B¥[Ka(Xry,¥) — Ka(Xrp,9)] = Gp(u,9) ~ Gulu,y).

This shows the first part of (1).

For the second part, observe that if & € Dg then E*Gp(X., ,y) =
Gp(z,v), since Gp(-,y} is regular a-harmonic in Dy. Thus

Fy{rn, <} =Gp(2,y) " E®[7p, < 7p; Gp(Xrpy, )]
=Gplz, y)_lEmGD(XTDO Y) = GD(w: y)'laD (-’3: y) = 1.

This completes the proof of (1).

As a corollary we obtain (cf. Lemma 4.4 in [CFZ])

COROLLARY 4.4. Assume that y € D with d(y,D%) > 35. Put U
B(y,38). Then

(2) inf PY{ry =7p} >0, inf
ueB(y,9) T ueB(yd\{y}

i

P;{TU\{y} = C} > 0.
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Proof. We first prove the second part of (2). In view of Lemma 4.3 we
have the identity
Guluy) ., Guluy)
” = = >
e == Gty * Kalwy
=1— A(d, o) u— y{*“E* Ko (X, y)-

Observe that |u —y| < 4 for u € B(y,d) and also | Xy, —y| > 36, which
yields B*K,(Xr,,y) < A(d,@)(36)*"%. This completes the proof of the
second part of (2).
We now prove the first part. Set R = diam{D). Then by (2.2),
PU’{TU = TD} = P“{X—,—U [ Dc}
= Pu_y{X"'B(o,BS) € Dc - ?J} 2 Pu_y{XTB(n,aa) € B(OﬁR)C}

—cs | (@®2~m—yﬁ)”2 dz
“in\ PG -y

0 d-14 Cd(&s)aﬂw
d a/2 4 4 > Y d
> Ca(80) wa i e*(e+ ) = (7/6)%aR™"’

because ¢ > R > 6§ in the integrand. We denote by wy the surface measure
of the unit sphere in 9.

By the above corollary and Lemma 4.2 we easily obtain the following
result {cf. Lemma 4.3 in [CFZ}).

LEMMA 4.5. Under the notation of Corollary 4.4 there exist constants O

and Cy such that for every u,v € B(y,8), v # y, with § > 0 small enough
we have

C1 < E%[1y = Tp; ()] £ C2y  C1 £ B [tyngy) = G €9(¢)] < Ca.
Before stating the next lemma, we introduce some notation. For y € R4,
[yl = 1, let

Ald, o) du
Il(y) = S Al ld—ee’ IZ(y) = S
B(0,1) [ — g1+ o] B(0,1

Ald, o) du
y =yl

To simplify formulas, we write e.g. I1(y) = L(y) for y € A if there exist
constants C1, Cy not depending on y such that C1Ii(y) < L(y) < Coli(y)
for all y € A.

The next lemma contains an essential argument to be used in the proof of
CGT. The following short proof has been communicated to us by K. Samotij.

LeMMA 4.6. For ally € R? such that |y] > 1 we have
Liy) = I2(y)-
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Proof. Clearly, we have I (y) > L(y). To show a reverse inequality,
define A(y) = B(y/ly|,1/2) n B(0,1), B(y) = B(0,1) \ A(y) and M(y)
= SUPyep(y) W — v 7%, m(y) = infuemey) [y — 2|79, Tt is not difficult to
see that M(y) < Cm(y). Consequently,

dti

du
J <M(y) | e
— oy d+ d—a d—o
B(y) fu = y|elul Jul<1 i
g wq du
<C—my)<C .
"0 =m0 ) e

However, for v € A(y) we have |u| > 1/2, so

du du
—_— < 2d—a =
A§y) {’Ll. _ y|d+a|u|d—a S |'LL _ y|d+a

This clearly ends the proof.

Alw)

In the sequel we always assume that (D,q) is gaugeable. We recall the
notion of the ¢-Green function V' and the transition density u; for the killed
Feynman-Kac semigroup 7;. Both ¥V and u; are symmetric in {z,y) e DxD
and u; is continuous. The following lemma. yields that ¥ is also continuous
in @,y € D provided x 5 y. The proof is an adaptation of that of Lemma, 6.1
in [ChZ] and is omitted.

LeMMA 4.7. Let (D, q) be gaugeable. For every 0 < § < d+ o there exist
constants tg, ¢ and C depending on § such that

w(z,y) < { Oitiojs —ylfe foro<t<n,
exp(—et) for t > tq.

Taking 6 = « in the above lemma we obtain the continuity of V.

In the Brownian case the corresponding estimates (see Lemma 6.1 in
[ChZ]) are much stronger than those of the above lemma, due to the ex-
ponential character of the transition density u;, and yield a very important
inequality: V(z,y) < CKa(x,y), where Ky (2, y) is the classical (Newtonian)
kernel. The lack of such an estimate at this stage is a source of substantial
difficulty, which is resolved in Step 2 of the procf of Theorem 4.9 below.

The next lemma is a direct adaptation of Theorem 3,20 from [ChZ)].

LeMma 4.8. If (D,q) is gaugeable then for each o € D and almost all
veD,
(3) V(z,y) = G(z,y) + | V(z, w)q(w)G(u,y) du.
D
We now prove the Conditional Gauge Theorem asserting the bounded-
ness of the conditional gauge u(z,y). A final form of CGT will be given
in Theorem 4.10. As in the classical case, CGT plays a crucial role in the
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theory of the a-stable Schrédinger operator. We recall that the function w.

is defined as
‘LL(.’E,y) = E;Teq(TD\{y})r (m,y) €D x "D", T _TL U

THEOREM 4.9 (Conditional Gauge Theorem). Let D be a bounded Lip-
schitz domain in R%, d > «, and g € J2,. If (D, q) is gaugeable then u{z,y)
is symmetric and bounded tn D X D for z 5 y.

Proof We divide the proof into several steps. For ¢ > 0 we put Ds =
{z € D : d(z, D) > 36}. We choose and fix throughout the proof § and a
Lipschitz domain I'¢ such that D\ D5 G U CDandforallye D,

T T

uefj‘}LyEg[yQ(Xt)ldt] <1/2, sup, E“[(S)(Q(Xt)ldt] <1/2,

with 7 = Tys\ [y} OF T = TB(y,38)\{y}- BY (2.6) and Lemma 4.2 we have

(4) sup  Eye(r) <2, sup Eleg(r) <2
ueD, uzty uERE

STEP 1. In this step we show for z,y € Dy, © # vy, the following:
(5) w(z,y) < C, where C =C(D,a,q,9).

Fix x,y € Ds and define Dy = D\ B{y,8), U = B(y, 38) \ {y} and
T = TDpy dn = Snwl + Tp, © 9511—17
S =0, Sn=T,+mobyr, n=12,...

Put { = 7p\y}- We claim that

(6) Eje,({) = Z BT, < ¢, Sn=¢; eqlQ)]-
n=1

Indeed, since { < co a.s., we have either T, = { or §, = {, for some n.
If T, = ¢, then the corresponding term of the series representing Efe,{¢) is
of the form

E:[Snwl < {,Tn =G e4(Q)]
= EJlSn—1 < (i €g(Sn—1 {7y = (i €4(()} 0 05, ].

By the strong Markov property (2.13) of the conditional process we deduce
that the last term above is equal to

I X n—
By [Sa—1 < {; eq(Sn-1) By ° oy = G eq(€)]]-
However, Xg,_ ., € Dg if 8,1 < ¢, so by the second formula of (1) in

Lemma 4.3 we conclude that the above expression is zero. This justifies our

claim.
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Taking info account one term of the series (6) we get as above
Gla, ) ByIT, < (, 8n=¢; €4(Q)]

= Gl B [T < G eg(To) By ™ [r0 = G e5(C)]]

= B*[T. < 70; &y(T0)G (X, 1) By ™ [0 = ¢ eg(Q)]]

Since X, € By, d) whenever T,, < 7p, by Lemma 4.5 we obtain
E* [T < 73 €q(Tn)G (X, ) By ™ 70 = G eq(¢)]
~ B¥[Tn < 7p; &g(Tn)G (X, )]
= E%[Sn_1 < Tp; €4(Sn—1)EX5" 11D, < D5 €g{TDe ) G{(Xrp,, )]
= E®[Sn_1 < 7D; €g(Sn-1)E¥S"" ey (7D )G (Xrsy , 1)]]-
Using the formula (2.17) for Dy and Lemma 4.6, we have, for z € Dy,
Bleq(70)C (X )]

-~ A d: B
= S S u(z, U)G(w,y) h}E-Tldo':”)c‘ GDO(z, ’U) dw dv
Do DEND
~ A d7 —
S S Uz, v) Ko(w, y) Et(“wi)“ Gp,(z,v) dwdv
Do B{y,8)

EA

I}

| (2,4, —0)s~n (KE—U) Gp,(z,v) dv

Do

I

Dgo (2, v)A(d, —0)8 45, (y = hd ) Gp,(2,v) dv
Ald, ~a)

= 6a_d S S ﬁ(z,v)m

Do B{y,8)

Gp,(z,v)dwdv

< | | e o)Al
Do D§ v~

= §2~4E%e (1p,) 69 A BRe (rp) = §*¢

Gp,(z,v) dwdv

~

by gaugeability. Here i(z,v) == Bfe,(Tp,\(v}) is the conditional gauge of the
set Dy.

If They < 7p for n > 2 then Xv . € B(y,d), hence by (4) and
Lernma 4.5 we obtain
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Gz, V) B2 [Ty < {, Sn = ( €{Q)] < C6* 2E®[Sn1 < Tp; eq(Sn—1)]
= C6* B [Ty < 1D} €q(Tn-1)E*™n—1[ry < 7p; e4(10)]]
< 2C6* 4 E*[Ty—1 < 7p; eq(Tn_1)]
= 205“"dE”[Tn_1 < Tp; eq(T,,,_l)EXTn—l [ty = 7p; eq(Tv)]]
= 206% 4B [Ty_1 < 7D, Sn—1 = 7D; €(7D)].

For n = 1 we have G{z,y)E2[Tn < {, Sn = {; 6,(¢)] £ C6¢ by the first
inequality above. Thus

G(ny)ESGQ(C) = G(Q::y) ZE;[TTL <G Sn =4 eq(o]

n=1

< cFed (1 + ZE“’[T -1 < 7p,y Sa-1=7TD; eq(”FD)})

n=2
< G841 + BPey(mp)).

Recall that x,y satisfy the conditions d(z, D) > 38, d(y, D®) > 36 and
|z — y| < diam(D) < co. We obtain (cf. [ChZ], Lemma 6.7)

G(z,y) 2 C'|lz —y|* ¢ = C'(diam(D))*~¢
with C" = C'(D, a,¢,8). This clearly ends the proof of Step 1.
STEP 2. In this step we show that for all z,y € D, = # 4,

(7) VqG('a y) (‘.’E) = G(:ﬂ: y)u(m, y) - G(CL‘, y)
For this purpose we first verify that for z, y as above
(8) ViglG(-, y)(z) < o0

For fixed 2,y € D, = # y, we choose 0 < §; < § such that z,y € Ds,.
‘We use the notation U, Dg as in Step 1 with § there replaced by &1. Then
(4) holds for 7 = 7y. We have

ViglG( y)(z) = \ TWlg|G(-, v)(z) ds

I

Ot B Qe §

Em[s < TD; eq(s)l‘Q'(Xs)lG(Xa:y)] ds

= Gla,y) | Byls < G eqls)la(Xs)] ds
0
¢
=G(e,y)B; | | eals)la( X)) ds}.
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Defining

B(t) = { eg(s)la(X,)| ds
0

we get V‘Q[G(:y)(m) = G(mi y)EzB(C)
Next, as in Step 1, we obtain

o

EgB(()=> EP[T, <(, Su = B

nzsl

Since B(T, +( 0 br,) = B(T,) + eo(Th){B(() 0 O, }, by the strong Markov
property of the conditional process each term of the above series can be
transformed as follows, for n > 1:

(8 EJIT, <, 8 ={ B = By [T, < ¢ B(TR)PT{ry = (}]
+ E;[Tn <G eq(Tn)Eg‘" [tv = ¢; Bl
By Lemma 4.3 we have
P;{TU =C}=G’(z,y)"1GU(z,y) for z € D7 2 #y
Hence the first expression on the right-hand side of (9) is of the form
G(wky)_lEm[Tn < Tp; B(Tn)GU(XTn:y)]
Since Gy (Xrp,,y) = 0 whenever 7p, = 7p, we obtain
E* [Tn < Tp; B(Tn)GU(-XTnsy)]
= E*[Sp—1 < 7p; B(Sp-1)E* 1[Gy (X, )]
+ B®[Sn1 < TD; €q(Sn_s) EX 51 [B(rpy )G (Xrp, , )]

Now, for v € Dy we consider the expressions

(10) B (G (Xrpg ),
(11) B[ B(7p,)Gu{(Xrp,, y)l-
Using (2.17) we see that the second one is of the form
= Ald, —«
S S EY [ B(Tp\(v})|Gu (w, y)F’E"TW'); Gp, (u,v) dw dv
Do D§

while the first is similar but without the factor ESB(TDO\{U}) in the in-

tegrand. Again, E}f indicates that we condition with respect to the Green
function of Dy, instead of D.



6 K. Bogdan and T. Byczkowski

As in Step 1 and in view of Lemma 4.6 we estimate (11) as follows:
Eu[B(TDD)GU(XTDO\{u}’y)]
~ Ald, —a)
< | | BBlroselKalw,y);

o—wte Gpg (u, v) dw dv
Do B{y,8)

{

[ B [B(moy 0y JA(d, ~0)T%L: ('y - ) Gy () o

a1
Dy
~ | BBlron oM~ (L) Gy o) o
Dy

< C684E“B(rp,) < C82 2E*B(rp) < 6§ 9C",

because E*B(rp) = Vigl(u) < |Vlgl|ew < o0, by gaugeability of (D,q).
Analogously, we estimate (10) by C'6%~%. Thus, we have

E°[Ty, < 1p; B(TW)Gu(Xr,,y)]
< C8 AE?[Sn 1 < 7p; B(Spo1)] + COFE®[Spo1 < 7D €q(Sn-1)]-

The second expression on the right-hand side of (9) is bounded from
above by

B [T < ¢ eal T B [ | aq(tlacxol ]
0

= B[T0 < G eq(Tn) By ™ legg) (r0) — 1] < B5{Tn < G (Tn)]
= G(2,5) ™ B¥[Sn-1 < 73 eq(Sn-1)BX"=[eg (70, )G (X, )]
< O8F74G (2, y) T E®[Sn—1 < Tp; €q(Sn—1)]

(see Step 1). Observe that by Step 1 we have

oQ
ZE”[Sn_l < Tp; €q(Sn-1)] £ C(1+ E%ey(7p)) < €' < oo
n=1

Therefore, we obtain

sup  G(z,y)E;B(()
5,5€D5, , wsty

< Olﬁla_d(z.Ew[S w1 < TD; B(S'n—l)l - Emeg(TD) -+ 1)
n=1

Hence, it remains toestimate Y o | E%[S, 1 < 7p; B(Sn_1)}. Letn > 2.
If Ty < 7p then Xq,_, € B(y,d1) and, by (4), EX%~1B(ry) < 1, as in
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estimating the last term in (9). Thus, we have

E®[Sn_1 < Tp; B(Sn_1)]
< BTt < 705 B(Tymr)] + B°[Tam1 < 75 eg(Tnm1 ) BX ™1 [B(7y)]]
< E¥[Thoy < 1p; B(Thet)] + E* [Ty < 7p; eq(Tn-1)]-

Using Corollary 4.4 and Lemma 4.5 and adding one more nonnegative term
we further estimate the above by the following expressions:

CE*[Th-y < 7p; B(Te1) P¥ ™ot (g = 1p}]
+ CE®[Th—1 < 7p; eq(Tn—l)EXT““1 o = o3 B(ry)]i
+ CE*[Tho1 < 7p; €g(Tno1) EX %1 [ry = mp; eq(p)]}
= CE®[Th_1 < 7p, Sp_1 = Tp; B(Sn_1)]
+ CE®[Tn1 < 7p, Snw1=7D; €(Sa-1)].

Observe finally that the sum over n > 2 of the first terms on the right-hand
side is estimated from above by CE®B(rp), which is bounded, as already
explained, while the sum of the second terms is estimated by CE®e,(tp),
which is obviously also bounded. This completes the proof of (8).

It is not difficult to verify that Te|g|G(:,y)(x)} < oo, because ¢ € J2..
This justifies the identity

ToqG(y) (@) = Gz, y)Byls < {5 egls)a(Xe)].
This and (8) yield, by Fubini’s theorem,
VaG(y)(z) = | TagG(,y)(z)ds
¢
¢

= G(z,9) Bz [ | ea(s)a(X.) ds| = G(z, 1) BZleq(€) — 1]
0

= Gz, y)u(z, y} — G(z, ),

which gives (7) and completes this step.

Step 3. In this step we remove the condition d{z, D®) > 3§ imposed on
@ € D in (5).

To do this, assume that y € Ds but d(z, D) < 36. Let U? be as in
Step 1. Define U = U¢ \ {y}. Then

u’(wi 'y) = Er: [TU = C: eq(TU)] + E; [TU < C: €g (TU)'U'(-XTU s y)]
< Ef,em('ru)(l +  sup  ul(w,y)).

wells, wiEy

By Step 1 and properties of U% we obtain the conclusion.



78 K. Bogdan and T. Byczkowski

STEP 4. In this step we prove that u({z,y) is symmetric for #,y € D,

It is enough to show that VqG(:, y}(x) is symmetric in z,y € D. Indeed,
as G{z,y) is symmetric, the identity (7) yields the same property for u.
By (8) and the definition of V' we only have to verify that for each n the
following function is symmetric in z,y € D

B[ | A5y a(X,)C(Xer0) de)

where A(s) = {; ¢(X:) dt. We remark at this point that although the proof is
similar to that of the symmetry of the Feynman-Kac semigroup, the above
property is much more delicate and requires an independent justification.

We first state an auxiliary result: for each n > 0 and each collection of
positive numbers t,71,...,7p,8 With 71 < ... <rp <8,

(12)  B®[s < 7o ¢(Xry) - a(Xr,)a(Xo)p? (Xs. 0)]
= Ey[s +i-71 <7D Q(Xt)Q(Xs+t—rn) oe Q(Xs-}—t——rl)pﬁ(-xsm}«tmna w)l

Here pP(w,v) = pP{v,w), w,v € D, denotes the transition density of the
process X; killed on exiting D. The equality (12) follows easily by the suc-
cessive application of the Markov property and the symmetry of p?. We
omit the details.

We next observe that
(13)  E°[s < 7p; Als)"a(Xa)pP (Xo,9)]

= 5o <o o) draa )P ()
= nlB®[s < 1p; gq(Xn) g @(Xes). ..

T iﬂ 9(Xr,)q(Xs)pe (Xoyy) drn - -dm]
i E®[s < Tp; q(Xp;) .-

0ry Tr—-1

(X ) XPP (X, )] drr...dry.

We integrate both sides of (13} with respect to s from 0 to oo, Taking into
account (12) and introducing new variables: 7} =ry, rh =7y —7ry,., .7 =
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Tn—T1, 8 = 8+t —r; we obtain

TD

(19) B[ § Als)a(X )P (X,,y) ds]
0
=nl! S S S S S EY[s' < p; g Xe)g(Xer—pr ) - ..
00 T4 r:;—l i+t

0 X ey )9 X )pr (X, )] ds’ dr)y . drp dr)
oc oo o0 oo

= n! S S S S B¥[s' < mp; q(X)a(Xe—r ) - ..
074 v ThEt

o (X )Xo )G( Xy, 2) ds" drry, . .. drg.

Integrating (14) with respect to ¢ from 0 to oc we finally obtain

TD

B | | A(s)"q(X,)G (X, ) ds]

LN t ‘ ’

s’ s s FAR
=al{ [ [ | B[ <y | atxdta(tyn). ..
00s o, 0
o a(X o) (X)G (X, )| drt . drh ds’
oo s’ 8 &'
=n! S S el S EV]s' <r1p; A(s' —ri)a(Xer—rs ) ...
00w i,
o (X )q( X )G (X, )] dry .. dry de’
1 @ s s s
LT T | B <o A - e )
0 0rf ri_2
(X )0( Xy )G (X, m)] drfy g . drp ds’
oo
= .= S BY[s' < mp; A(s")"q( X, )G (X, z)] ds’
0
TD
= B[ | A(s)"a(Xs)G(Xy, ) as'].
0

Thig ends the proof of this step.
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STEP 5. In this step we apply the symmetry of u(z,y) in =,y € D to
finish the proof of the boundedness of u.

Observe that the symmetry of v along with Step 3 settles the case when
r € Ds and y € DS. It remains to consider the case when ¢ # ¥y, ©,y € D§.

To resolve this case, we proceed exactly as in Step 3 to obtain

u(w,y) = E;:[TU =3 eq('rU)} + E; [7r <G eq(TU)'“’(XTU syl
If 7y < € then d(X,, D¢} > 34, which reduces the proof to the case x € Ds,
y € Dg; see also (4). By Step 3 and symmetry of u we obtain the conclusion.
This completes the proof of the theorem.
Yo far, the conditional gauge u(z,y) = E¥e,(Tp\(y}) has only been de-
fined for (z,y) € Dx D, © # y, and proved to be bounded for {z,y) € DxD,
z # y. The next theorem contains a refinement of this result.

THEOREM 4.10. Under the assumptions of Theorem 4.9 the function u
has a jointly continuous symmetric extension to D x D denoted also by u.

We have 0 < C1 < u(z,y) < Cp < oo and u(z,3) = 1 for 5,y € D.
Furthermore,

(15) V{z,y) =Gz, v)uz,y) foru,y€D, z#y.
For x ¢ D, 7 € 8D, we have

Gz, w)K (w,n)
(16) u(z,n) =1+ JSD Rz u(z, w)g(w) duw.
For £ €8D, n € 8D, £ # 7, we obtain

K(w, ) K (w,n)
17 g,m) =14 | ———v— u(§, w)g(w) dw,
it e =1 ] =y e
where

Hen) = tim S0

Don—€ G(:E, :1:0) ’
Proof. Using the formulas (3) and (7) we obtain, for each z € D,

(18) Viz,y) = G(z,y)u(z,y) for almost all y € D.

To verify (18) we first check that V[g|K(-,7)(z) < oo for & € D and n € 0D.
Applying (18), Theorem 4.9 and Corollary 4.1 we obtain

K{z,n) VI K(,n)(z) = K(z,n) ™ | Viz,9) @) K(y,n) dy
D

Glz, y)K(y,n)

= iU(m,y)IQ(y)l—wwK(mm) dy

< swp u(z,y)C sup | |qv)|[Kalz,y) + Kaly, 2)] dy < 0.
z, €D, =y ®ze€D p ‘ :
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This enables us to apply Fubini’s theorem in calculating VK (-, n)(z):

VaK () = { Tk m)(x) ds = K (o, 1) B | ea(e)a(Xi) ds]
0 0

= K(z,n)Eyleq(tp) ~ 1] = K(z, n)u(z,n) — K(z,n).
This proves (16). Now, applying (18) we write the identity (7) as

Gz, w)G(w,y)
19 ) =14 ZEY

where z,y € D, = # y. Then, using symmetry of u and iterating (19) we
obtain

u(z, w)g(w) dw,

G('Ta w)Glw, y)

uay)=1 +§3 Glz,y) g{w) dw
Gz, w)G(w,y) G(w,v)G(v, )
’ 133153 G(z,y) G(w,z) u(w, v)q(w)q(v) dw dv.

In view of boundedness of u and the 3G Theorem, Fubini’s theorem shows
that the integrands are integrable uniformly in (z,y) over D and D x D,
respectively. Clearly, they are continuous in (z,y) for almost all w, (w,v),
respectively. This yields the continuity of u(z,y) and the equality in (15)
for (z,y) e Dx D, 2 #y.

In what follows we assume that D x D 3 (z,y) — (£,n1) € D x D so
that z # y. By a simple topological argument, to prove the existence of a
continuous extension of v it is enough to verify that lim u(z,y) exists. To
this end we again invoke the uniform integrability and convergence of the
integrand in (19). The proof proceeds by inspecting various cases.

CasE L: £,n € D, £ # 7. Clearly this case was settled above.
CASE 2: £ = n € D. By the 3G Theorem we obtain

Gz, w)G(w,y) |z -y
Glz.y) 7 le—w|t e —glime

hence the integrand in (19) tends to 0 almost everywhere, so u(z,y) ~— L.

CASE 3: £ € D, n € 8D. By the definition of the Martin kernel, Case 1,
(19) and (16) we obtain

G(¢, w)E (w,n)
u(x,y) — 1+ | ——7—r—"
(=) }3 K(&,n)

Case 4 £ € 8D, n € D. Since u(z,y) = u(y,®), this reduces to the
previous case.

u(§, w)g(w) dw = (¢, n)-
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CASE 5: £, € 8D, £ # n. We first note that H(£,7) exists by BHP. Let
r > 0 be sufficiently small (see [B1]). By BHP for y € DN B(n,r) and BHP
for z € D N B(&,r) there are constants ¢ and v such that

Glz,y) _ K@n) | Jy—n| Kzn)
Gz, z0)G(20,y) Glz,zo)| — r | Gz, zp)
<=0 m(gm -0,
so that
: G(z,y) _ o Kzm)
lim Gz, 20)Glzg, y) tm Glx,zo) H(m)-

Asusual, xp is the reference point in the definition of the Martin kernel. For
arbitrary w € D we obtain
G(CG:w)G(w:y) _ G(w,w) . G('w,y) . G(ﬁﬂwo)a(mo,y)
Gz, y) T Glz,za) Glzo,y) G(z,y)
— K{w, K (w, mH (&,n).
By (19) and Case 4 we conclude that w(z,y) — u(£,n), where u(€,n) is

defined by (17).

The existence of a continuous extension of u is justified. The lower bound-
edness of u follows from Jensen’s inequality. Namely, for 2,y € D, = # v,
by the 3G Theorem we have u({z,y) > exp(~C), where

C= sup |lg(w)|(Gle,w)G{w,y)/C(z,y)) dw < oo.

z,yeD, aFy D

The symmetry of (the extended) u is obvious. By continuity, (15) follows
from (18).

5. g-harmonic functions and their representation

DEFINITION 5.1. Let u be a Borel measurable function on R? and let
q € J2.. We say that u is g-harmonic in an open set D ¢ R? if

(1) w(z) = E%leg(rr)u(X+,)], ze€U,

for every bounded open set U with U € D. Tt is called regular g-harmonic in
D if (1) bolds for U = D, and singular g-harmonic in D if it is g-harmonic
in D and u(z) =0 for z € D*,

We understand that the expectation in (1) is absolutely convergent. If
D is unbounded then by the usual convention we have E%[e,(mp)u(X,,)]
= E*[tp < co; eg(Tp)u(X-,)]. The equality in (1) trivially holds for z € U*
and so it holds in the whole of R? provided it does in U. For ¢ = 0 we obtain
the previous definition of a-harmonicity. By the strong Markov property of
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X a regular g-harmonic function % is necessarily g-harmonic. The converse
is not generally true (see Section 6 below).

The main objective of this section is to identify g-harmonic functions as
solutions of the equation $%u = 0. A corresponding analysis of the classical
Schrodinger operator is given in [ChZ]; however, our methods are substan-
tially different and some of the results (e.g. Theorem 5.3) are more com-
plete.

Let D be a bounded Lipschitz domain and let g € J2, be such that
(D, q) is gaugeable. Let f be a Borel function on D¢. For z € RY we write

Flz)= E*f(X;,) and Fy(z) = E®[eg(mp) f(X:p).
LEMMA 5.2. Fy is well defined and finite for some and therefore ollz € D
if and only if so is F. In this case Fy is regular g-harmonic in D and locally

bounded on D. If also lim f(y) exists as D° 2 y — ¢ € 8D then F, is
continuous at €. If f is nonnegative then

(2 CiF(z) < Fy(z) < C2F(z), =z eRY,

where C1, Ca are the constants from Theorem 4.10. If also 0 # F # oo and
f=0o0n D°NB(,r) for some £ € 8D, r > 0, then lim Fy(x)/F(z) exists
as D 3 x — £. Moreover, Fy(z)/F(z) extends continuously to DN B(£, 7).

Proof. Observe that for f > 0 the inequalities in (2) for 2 € D are
immediate consequences of (2.17) and CGT. Qutside D we have Fy = F.
Since Cy < 1 < (y, the inequalities in (2) hold in the whole of R¢. The
Harnack inequality for nonnegative c-harmonic functions [[-a] and (2) justify
the first two statements of the lemma for nonnegative f. For arbitrary f,
we consider appropriate functions Fy, F defined by |f|.

We now prove the last two statements of the lemma. Fix zq € D. If
D 3 z 5 o then by (2.17),

d+a
[ §uo) g () doduty)

Fy(z)  pep G(z,z0) \ v —
Flz) Glz,v) 1+ |y ’
3 &m0 () wa

where du(y) = (f(y)/(1 + |y))¥T*)dy is a finite measure on D°. The in-
tegrands in the numerator and denominator are integrable with respect to
dvdu(y) uniformly in z (cf. [B2], the proof of Lemina 6). Letting D 3 z —
£ € 0D we get

Fy(@) _ $oelp w6 0)fW)K (@, §)lv —yl~dvdy

F(=) §pe{p FNE (@, Qv —yl~odvdy

By a simple topological argument it follows that the continuous extension
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of the quotient Fy(z)/F(z) to DN B(€,r) exists. In particular Fy(x) > 0as
z — £ because so does F' (see [Bl], Lernma 3).

Let now f be arbitrary such that F, is well defined and finite on D. Let
¢ & 8D and assume that lim f(y) = ¢ exists as D° 3 y — {. We claim
that ¥, is continuous at & If f = 0 on D N B{¢,r) for some r > 0, then

Fy(z) - 0 as = — £, by the previous part of the proof. Therefore to prove
our claim we may and do assume that f(z) = 0 for z € D®\ B(,r), and
g—e< f(z) < g+eifz e D°N B r) with small fixed e > 0 and r > 0.
By (2.17) and (2.14) for z € D we have

Fy(z) = S S Fulz, v)Ad, —a) Gz, v)lv — y| "% * dy dv.
DDe
Let DNB(£,r) 3z — €. As G(z,v) — 0, we obtain

i | f@ulz, v) Ald, —e)G (=, v)lv -y~ dy dv — 0.
D\B(g,2r) D
If g > 0 we have
. . A(d, —a)G(z,v)
lim sup F,(z) = limsup Fyu(z,v)——r—dydv
’ B(ES,ET') .DS" o -yl
< (g + €} sup{ulz,v) : z,v € DN B(&,r)} imsupwf (B(E, ).

Since w{B(£,r)) — 1 (cf. [B1], Lemma 10), and ¢ and » may be arbitrarily
small, by Theorem 4.10 we get lim sup Fy(z) < g. Similarly lim inf Fy(z) > g.
The cases g = 0 and g < 0 are left to the reader. This ends the proof.

By Lemma. 5.2 every g-harmonic function u is bounded by an oe-harmonic
function. In particular u € L' = £1{(dz /{1 + |z|)4+=).

The next theorem provides an important representation formula for g-
harmeonic functions.

THEOREM 5.3, Let D C R? be o bounded Lipschitz domain and let ¢ €
JZ,. Assume that (D,q) is gaugeable and let f be o regular g-harmonic
Junction in D. Then f is continuous in D and for every open set U C D
and oll z € R4,

(3) flz) = B f(Xr,) + Gu(gf)(z).

Proof. Let f(z) = E®[eg(rn)|f(X+p)|, z € R¥. By Lemma 5.2, f is
regular g-harmonic in D and locally bounded on D. Clearly |f| < f.
We first verify (3) for arbitrary open Lipschitz U precompact in D. We
put
TU

B(t) = Ly 39 Xe) f(Xry ) exp | 9(Xa) ds,
' t
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T

() = Lgsrary a(Xe)| F(Xory) exp § q(X,) ds.

Observe that the Markov property yields

T

B[ | (X0 B eq(r0) (X, )] ]
0

= 5 5 a(Xo)f (%) dt] = Guaf)(a),

TE“’ [B(t)] dt =
0

provided we are able to justify the application of Fubini’s thecrem. This,

however, follows by calculations as above, applied to ¥ and f instead of 515
and f:

| B (o] ar < CE=[ | 1o(X0)| 8] = CGulla)(e) < o
0 0

At the same time we obtain

Qc

| E*[@(2)] dt = B=[{eg(ry) — 1} (X))

0]
= B¥eq(ru)f{(Xry)] — B°f (X7p) = f(2) — B*f(Xry).

This shows (3) for U as above. In particular, f is continuous in D and, by
Proposition 3.13, A%/2f = —gf, that is, S°f = 0 in D.

Let F(z) = B*|f(X,,)|. By Lemma 5.2, |f(z)] < f(m) < CF(z) for
z € BY, and F is regular a-harmonic in D.

We now prove (3) for U = D. Let U,, = {z € D : dist{z, D) >
1/n}. For n sufficiently large, U7, is a Lipschitz domain and (3) holds with
U = U, Fix 2 € D. It is well known that (F(X,, ),Fr, ) is a P*-
martingale closed by F(X,,). In particular (f(Xr,)) are uniformly in-
tegrable. Since P*(X,, = X;,) — 1 as n — oo {[Bl], Lemma 17),
we find that E*f(X;, } — E°f(X.;) as n — oo. It is also well known
that Gy, (z,%) T Gp(x,y) as n — oo for all z,y¥ € D. By bounded con-
vergence, Gu,(af)(z) — Gplqf)(z). Indeed, it is enough to verify that
Gp(lg|F)(z) < oo. But by (2.15) and the 3G Theorem we obtain

| Gz, 2)la()| F(z) de
Ald, ~a)

D
= S dz S dyS Gz, 2)G(z,v)|q(z}| —“———“__’ dta |f(y)| dv
D Do D o=yl
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Ald, —a) G(z, z)G(z,v) i
= ls)clv DSC cly—-—~—|v T Gz, v)| f ()l 183 ~ o) lg(z)| d
<C S dv S fu—’_d—% Gz, v)|f ()| dy = CF(z) < co.
> oo vl

Thus we get (3) for U = D.

For arbitrary open U C D a similar argument works except that P* (X,
= X.,}— 1 as n — oo may fail for open Lipschitz U,, which are precompact
in D and approximate U/, However, by left quasi-continuity, X, — Xr;
almost surely as n — oco. If X, # X, for all n, then X,, € D almost
surely. By continuity of f on D we have f(Xr, ) — f(Xr,) as n — oo,
which yields E®f(Xr, ) — E®f(Xy,) as before. The arguments for the

Creen function do not change as Gy (|g|F)(z) < Gp(|q|F)(x) < .
The next lemma gives a characterization of regular a-harmonic functions.

LEMMA 5.4. Let D be a bounded domein in B® with the esterior cone
property and let g € J&.. Let f be g-harmonic in D. Then f is regular
q-harmonic in D if and only if | f| is bounded by a function which is regular
g-harmonic in D. If f > 0 then it is sufficient that | f| be bounded over D. If
D is additionally Lipschitz and (D, q) is gaugeable then the majorants above
may be required to be a-harmonic, instead of g-harmonic in D.

Proof If f is regular g-harmonic in D then for = € R¢ we obtain
[f(z)} < E=leq(tp)|f(X:,)l], the right-hand side being a nonnegative reg-
ular g-harmonic function in D. Let D, be a nondecreasing sequence of
open subsets of D with |JD, = D and D,, C D. Let z & R?, Then
Pe{X,, =X., } —1asn— oo ([Bl], Lemma 17). We have

f(z) = E®{eg(7p, ) f (Xrp, }; Xop, € D]
+ E"eq(tp, ) f(Xrp, )i Xop, € D\ Dyl
= B [eg(tD)f (X7p); Xop, € D°
+ B*[eq(tp, ) (Xep, )i Xrp, € D\ Dal.

As n — oo, the last term converges to 0 by the boundedness assumption
and uniform integrability. By bounded convergence,

f(m) = nl_i_l:%oEw{eq(TD)f(XTD); XTD,, € DC] = Ew[eq(TD)f(XTD )]

If f > 0 then we need only use the monotone convergence theorem.
By (2) we can equivalently assume that f is bounded by a (nonnegative)
regular a-harmonic function if D is a bounded gaugeable Lipschitz domain.

THEOREM 5.5. Let U be an open set in R® ond let g € J5.. If f is a
g-harmonie function in U then S*f = 0 in U. Conversely, assume thot U
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is bounded and (U,q) is gaugeable. If a function f satisfies S¢f =0 in U

then after o modification on o set of Lebesque measure zero, f is g-harmonic
n .

Proof By the first part of the proof of Theorem 5.3, 9% annihilates
¢-harmonic functions. To prove the converse, let Sf = 0 in I7. Let (U, q)
be gaugeable and let D be open, Lipschitz and relatively compact in U.
Clearly, (D, g) is gaugeable. Let h” = f — G'p(gf). By the conditions in
Definition 3.14, h” is well defined and Proposition 3.13 yields A%/2p0 =
—¢f +¢f = 0in D. By Theorem 3.12 we may and do modify A” on a set
of Lebesgue measure 0 to be a-harmonic in D.

Suppose that f is continuous in U. It follows that Gp(gf) € Co(D). Con-
sequently, h” is bounded in a neighborhood of D and A € £!. Lemma 5.2
with ¢ = 0 yields that h” is regular a-harmonic in D (see also the proof of
Theorem 3.9). Since Gp(qf)(X.,) = 0, we obtain

f(z) = E" f(X75) + Gp(ef)(z), = eR%

Let v(z) = E®eq(p)f(Xyp)], £ € R By Lemma 5.2, v is regular ¢
harmonic in D. We observe that w = f — v € Co(D) by Lemma 5.2 and
continuity of f in a neighborhood of D. We also have §%w = 0 in D.
Applying Theorem 3.15 we obtain w = 0.

We now remove the a priori assumption that f is continuous in U/ (cf.
[ChZ], Theorem 5.21). Let B be a (nonempty open) ball relatively compact
in D. By the first part of the proof we also have f = h¥ +Gg(gf) a.e. with
h® a-harmonic in B. By the strong Markov property we have Gp (gf)(z) =
Gplgf)(z) + E*Gp(af)(X.;). The equality holds in I*(R%) (in particular
a.e.) and the integrals are absolutely convergent for almost every = (see also
[ChZ]). We thus have a.e.

h®(z) - P (z) = Gp(af)(z) — Gr(af)(2) = B*(f — hP)(Xrp)
= E®f(X,,) — hP ().

But this implies that £*|f(X.,}| < oo for some and therefore all & € B and,
by continuity, A® (z) = E* f(X,,) for z € B. Thus h? is regular a-harmonic
in B and £(z) = B*f(X,,) +Cr(af)(@). Let u(s) = E*[eq(r5)f(Xop)]. By
Lemma 5.2,  is regular g-harmonic in B. Clearly f = u on B°. Theorem 5.3
applied to u ylelds f —u = G(g(f —u)). Let B be so small that ||Gx|g|]|cc
< 1. Then [lg(f — w}lls < ||Gslalllecllg(f — w}ll1, which gives g(f —u) = 0
a.e. It follows that f = u a.e. We conclude that f is locally essentially
bounded (Lemma 5.2) in U. Hence it is essentially continuous in ¥ and the
proof is complete.

THEOREM 5.6. Let D be a bounded open subset of R® with the exterior
cone property and g € J5.. Then there exists a nonnegative function u which
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is g-harmonic in D and satisfies the condition

0 < inf u(z) < sup u(z) < oo
wERS reld

if and only if (D, q) is gaugeable.

Proof If (D, q) is gaugeable, then the gauge function has the required
properties. Conversely, assume that such a function u exists. As in the proof
of Lemma 5.4, let D, be a nondecreasing sequence of open subsets of D
satisfying D = |/ D, and D,, € D. By Fatou’s lemma, for = € R? we have

u(x) = E%eg(tp)u(Xrp); Xrp,, € D]
+ E%[eq(mp, Ju(Xrp, )s Xop, €D \ Dy]
> E%[eq(tp)u(Xsp))-

It follows that the gauge E®ey(7p) is bounded from above in D. As D is
Green-bounded, the gauge function is also bounded from below.

6. Potential theory for S*. The purpose of this section is to prove
some basic results on the potential theory of the Schrédinger operator S
using CGT. We assume in the remainder that D is a bounded Lipschitz
domain in R%, d > @, g € J¢, and (D, q) is gaugeable.

THEOREM 6.1 (Harnack Principle). There are constants Cs and Cy such
that for every bell B(xz, 2r) with r < Cy and every function u > 0 which is
g-harmonic in B(z,2r), we hove

oY) u(y) < Cau(z), v € Blz,r).

Proof. If r > 0 is sufficiently small, then by Khasminski’s lemma we
see that Lemma 5.2 holds for (B(z,2r), ), = € R¢, with absolute constants
e.g. C1 =1/2 and C; = 2. In the context of Lemma 5.2 we put Fy=wand
Fly) = B¥u(Xrg, 5 ) ¢ € RY. By the Harnack inequality for nonnegative
functions a-harmonic in B(zx, 37 /2) we obtain, for y € Bz, 1),

u(y) = Fyly) < 2F(y) < 2C(d)F(z) < 4C(d)Fy(z) = 4C(d)u(z).

In a similar way we derive from [B1] the boundary Harnack principle for
nonnegative g-harmonic functions and Lipschitz domains.

THEOREM 6.2 (Boundary Harnack Principle). There exist constants Cs
and R such that for all { € 8D, r € (0, R/2) and nontrivial functions u,v
2 0 which are g-harmonic in DN B(E,2r) and vanish continuously in D°nN
B(&,2r) we have '

(2) wz)/v(z) < Csuly)/v(y),
and limu(zx)/v(z) erists as D> 2 — €.

T,y € DNB(¢,r),
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Proof. Forr > 0 small enough every Lipschitz domain D,. such that Dn
B(¢,r/R) C D, C DN B(¢,r) with R = R(D) (see [B1]) is gaugeable with
the corresponding constants Cy/Cy and Cy/C). By BHP and the Harnack
chain inequality for a-harmonic functions [B1], the present result follows
from Lemma 5.2.

Let us remark that BHP gives only relative estimates for g-harmonic
functions in gaugeable Lipschitz domains. Individual estimates for growth
properties of g-harmonic functions (e.g. the Carleson estimate) are simple
consequences of Lemma 5.2 and the corresponding results for a-harmonic
functions [B1].

We now give a representation theorem for nonnegative functions which
are g-harmonic in the Lipschitz domain D. Let xg € D be fixed.

LemMMaA 6.3. For every £ € 8D,
o V{z,y)
3 Kz, &)= 1 —_—
(3) o(z,8) = lim Vz0,)

exists for all x € R®. The mapping (z,£) — K,(2,£) is continuous in D x
OD. For every £ € 8D the function K,(-,£) is singular g-harmonic in D
with Kg(20,€) = 1. If £,n € 0D and £ £ 1 then Ky(2,£) — 0 asz — 7.

Proof. The above lemma is proved in [B2] for ¢ = 0 and V replaced by
. By this result and Theorem 4.10 we cbtain

Viz,y) _ ulz,y) Glz,y) . ufz, £) ,
Viwo,y)  w(zo,y) Glzo,y) u(mo,g)K( &)

where K is the Martin kernel (for a-harmonic functions) on D. Thus, we
have obtained

(4) Ko(z,£) =

u(z, §)
wlzo, &) @)

As the factor u(z, £)/u(®p, £) is bounded and continuous, we need only check
that Ky(z, £} is g-harmonic in D. If U is a Lipschitz domain relatively com-
pact in D then 7y < ¢ holds P§ a.s. By the strong Markov property (2.13),
for z € U we obtain

Em{eq (TU)KQ(XTU'A g)] = (o, 5)_1Em [eq(m)u(x'ru ; f)K(XTU » E)]
= u(mﬂvE)_II((:D:&)EE:[BQ(TU)BQ(C) © B‘TU} = Kq(ms E)

THEOREM 6.4 (Martin Representation). For each finite Borel measure y
on 6D the function

(5) F@)= | Ky(z,€) p(de)

oD
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is singular g-harmonic in D with p(RY) = f(zo). Conversely, for each non-
negative function f which is singular g-harmonic in D there is a unique
finite Borel measure u on 8D such that (5) holds.

Proof The first statement is an easy consequence of Lemma 6.3 and
Fubini-Tonelli.

Let f > 0 be a singular g-harmonic function in D. We define D, =
{z € D : dist(z,D) > 1/n}. For n large enough each Dy, is a Lipschitz
domain with Lipschitz character essentially the same as D. Let V, (resp.
G,.) denote the g-Green (resp. Green) function for Dp, and un(z,y) the
conditional gauge for D,. Since Vi(z,y) T V(z,y) and Gu(z,y) T G(z,¥)
we obtain un(z,y) — u(z,y) as n — 0o, by (4.15) of Theorem 4.10.

We claim that the functions {u, } are equicontinuous. Indeed, the gauges
up, are uniformly bounded and by the proof of Theorem 4.9 the same is
true for the conditional gauges uy,. Since the constants in the 3G Theorem
depend on the domain only through its diameter and Lipschitz character,
by the proof of Theorem 4.10 the functions u, are equicontinuous. Clearly
now u,(z,y) — u(z,y) uniformly on their respective domains of definition.

We are ready for the selection of the representing measure u for f. For
z € D we have

f(=z)

li

Bleq(tp, ) F( X, )]
Gp, (z,v)

D\ED DS Ald, —a)un(w,v)lv—_!;@ fly) dvdy

~ | G2 (o) )

il

Dy
where

Ha(dv) = (D\SD Ald,—a)f (y)%f%‘;;? dy) dv.

By Lemma 5.2 and [B2], i, = [i {weakly), where fi is a finite Borel measure
supported by 8D with (8D} < const - f(zo) and such that for x € I,

Gp, (z,v) .
| =22y (dv) = | K (m,6) Ti(d6).

Da C""Dn ($03 "U) 8D
By the uniform convergence of u, it follows that

Gp (z,v ~
| S0l (o, 0) ) — | Ko, 2l ) )

GDﬂ (zoi v) 8D
Taking p(d€) = u(zg, £)}H(dE), we obtain u{zo, v)un{dv) = p(dv) asn — oo,
which together with (4) gives the representation (5). The uniqueness of (3)
follows from the weak convergence.

DTI.
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The description of nonnegative g-harmonic functions is concluded in the
following lemma.

LEMMA 6.5. Fvery nonnegative function f which is g-harmonic in D has
a untque representation

(@) = fi{z) + fa(z), =€ RY,

where the functions fi, fo are nonnegative regular and singular g-harmonic
in D, respectively.

The proof of Lemma 6.5 is analogous to the proof of the corresponding
result (for ¢ = 0) in [B2] and is omitted.
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An almost nowhere Fréchet smooth norm
on superreflexive spaces

by
EVA MATOUSKOVA (Praha and Linz)

Abstract. Every separable infinite-dimensional superreflexive Banach space admits
an equivalent norm which is Fréchet differentiable only on an Arcnszajn null set.

Introduction. Every convex continuous function on a separable Banach
space X is Gateaux differentiable on a dense Gs-set by a theorem of Mazur. If
the dual of X is separable it is even Fréchet differentiable on a dense G4-set.
If we confine ourselves to the weaker notion of Gateaux differentiability, then
locally Lipschitz functions, and in particular convex continuous functions,
are also differentiable on a set which is large in the sense of measure.

The strongest present result in this direction is due to Mankiewicz [Man]
and Aronszajn [A]. They defined in every separable Banach space a family
A of sets which mimics the family of Lebesgue null sets in finite dimensions.
The definitions of the family A (now usually called the Aronszajn null sets,
see Section 2) used by Mankiewicz and by Aronszajn are formally different;
it was recently shown by Cséroyei that they both coincide with the so called
Gaussian null sets [C]. Mankiewicz and Aronszajn proved that every locally
Lipschitz function is Gateaux differentiable almost everywhere, that is, ex-
cept on a set belonging to A. For Fréchet differentiability this fails except for
finite dimensions, where the classical theorem of Rademacher is available. If
X is a separable and infinite-dimensional Banach space then by a result of
Preiss and Tiger [PT] there is a Lipschitz function f on X such that the set
of points where f is Fréchet differentiable is Aronszajn null.

In [MM] it was shown that it is of no help to consider only convex
continuous functions. There exists an equivalent norm p on the separable
Hilbert space £3 such that the set of points where p is Fréchet differentiable
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