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A. Now, ({I}UA;) is a sequence in F[L]{?) converging to {I}U A, hence {I}U
Ae F[L])#FY) as required. The limit ordinal case is clear. Since F[L](™) £,
it follows that F[L](?? is infinite for each 8 < w?, so that {I} € F[L](®) for
every l € L, and each § < w®. Thus {I} € F[L]* for every ! € L and hence
= }'[L}_(“’a"‘l), so that s(F[L]} > w® + 1. Finally, we apply the previous
case to F[L] to obtain M = (m;) € [L] with So(M) C F[M]. Then setting
M’ = (m;)i»2 we have S, (M') T F[M'] as required. w
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On Mackey topology for groups
by

M. J. CHASCO (Pamplona), E. MARTIN-PEINADOR (Madrid)
and V. TARIELADZE (Thilisi)

Abstract. The present paper is a contribution to fill in a gap existing between the
theory of topological vector spaces and that of topological abelian groups. Topological
vector spaces have been extensively studied as part of Functional Analysis. It is natural
to expect that some important and elegant theorems about topological vector spaces
may have analogous versions for abelian topological groups. The main obstruction to get
such versions is probably the lack of the notion of convexity in the framework of groups.
However, the introduction of quasi-convex sets and locally quasi-convex groups by Vilenkin
[26] and the work of Banaszezyk [1] have paved the way to obtain theorems of this nature.
We study here the group topologies compatible with a given duslity. We have obtained,
among others, the following result: for a complete metrizable topological abelian group,
there always exists a finest locally quasi-convex topology with the same set of continuous
characters as the original topology. We also give a description of this topology as an
&-topology and we prove that, for the additive group of a complete metrizable topological
vector space, it coincides with the ordinary Mackey topology.

Introduction. A vector topology T in a real topological vector space
E is called a compatible topology for E if the set of all 7-continuous linear
functionals is the same as the set E* of all continuous linear functionals in
the original topology of E. The Mackey-Arens theorem implies that if E is a
topological vector space, then there exists a finest locally convex compatible
topology for B, called in the literature the Mackey topology, and frequently
denoted by (B, B*). Similar assertions are also proved for topological vector
spaces over non-Archimedian fields [14]. In the present paper we study the
question for topological abelian groups.
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As above, let us say that a group topology 7 on an abelian topological
group X is a compatible topology for X if the set of all T-continuous char-
acters coincides with the set X" of all continuous characters in the initial
topology of X. Although it is a very natural question to study the group
topologies compatible with a given one, only a particular case has been con-
sidered in the literature so far: Varopoulos proves in [25] that the least upper
bound of all compatible locally precompact topologies is a compatible topol-
ogy. Our aim is to obtain results of this sort for a class of group topologies
as wide as possible.

First of all we show that the least upper bound of all compatible group
topalogies for a topological abelian group may not be a compatible topol-
ogy (see Proposition 2.2). Therefore, it is necessary to consider a smaller
class of compatible topologies. In this spirit we have chosen the class of
all locally quasi-convex compatible group topologies. The notion of locally
quasi-convex topological abelian group was introduced by Vilenkin at the
begining of the fifties [26], and was given further impetus by Banaszczyk, in
his monograph [1]. Our choice is motivated by the fact that the underlying
group of a topological vector space is locally quasi-convex if and only if the
space is locally convex ([1], (2.4)).

The class of all compatible locally quasi-convex group topologies for a
given topological abelian group X is nonempty: it always contains the Bohr
topology. The least upper bound of this class in the lattice of all topologies in
X, 75(X, X"}, is also a locally quasi-convex topology on X. Our main result,
Theorem 4.2, asserts that if X is a complete metrizable topological abelian
group, then 7,(X, X") is a compatible topology for X, which obviously is the
finest locally quasi-convex compatible topology. We also obtain a concrete
description of 7, (X, X"} for the considered case.

As proved in Proposition 5.4, if X is the additive topological group of
a complete metrizable real vector space, then 7¢(X, X") coincides with the
ordinary Mackey topology (X, X*). Thus, in the framework of metrizable
complete groups, our topology is & generalization of Mackey topology. We do
not know if this assertion holds true without any requirements. As a matter
of fact, the following question remains open: Is the topology 7, (X, X") a
compatible topology for an arbitrary topological abelian group?

As a by-product we have obtained a sort of “equicontinuity principle for
groups” (Theorem 1.5), which might be of interest in its own right. It states
the following: If X is a complete metrizable topological abelian group, then
any subset of X* which is compact in the pointwise convergence topology,
o(XN, X)), is equicontinuous. '

1. Preliminaries, Let X, Y be abelian groups. The set of all group
homomorphisms from X into ¥, Hom(X,Y), endowed with pointwise op-
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eration is a group. If X, ¥ are topological groups, the set of all continuous
homomorphisms CHom(X, Y) is clearly a subgroup of Hom(X, V). The sym-
bols C, B, Z, N will have the usual meaning, We identify T == R/Z with the
multiplicative group of complex numbers with modulus one, endowed with
the metric induced by that of C.

For a group X, any group homomeorphism ¢ : X — T is called a charac-
ter. Clearly, Hom(X, T} is a multiplicative abelian group, which it is natural
to call the algebraie dual of X. When X is a topological group, the set of all
continuous characters X" := CHom(X,T) is called the dual group of X. If
X separates the points of X, we will say that X is a DS-group (abbreviation
of dually separated group).

We recall that the Bohr topology of X, denoted by o(X,X"), is the
weakest topology in X with respect to which all the elements of X* are
continuous. Clearly, o(X, X") is Hausdorff if and only if X is a DS-group.
Note also that the topological group (X, o (X, X)) is always precompact.

In the dual group X*, we denote by (X", X) the topology of point-
wise convergence and by comp(X”,X) that of uniform convergence on
the compact subsets of X. For short, X2 := (X", o(X", X)} and X :=
(X", comp(X”, X)). Notice that, if # € X, the mapping 7 : XN = T de-
fined by ¢ =+ ¢(z) is a character which is continuous on X 2 and a fortiort
on X2 Obviously, the set {&: % € X} separates points in. X", therefore X
and X/ are DS-groups. The mapping ax : X — (X')" defined by z +— Z'is
a canonical group homomorphism. With the Pontryagin duality theorem in
mind, we claim that the topology comp(X", X) is the most natural for X".
Therefore, (X2 is called the bidual group of X. Recall that a topological
abelian group X is said to be Pontryagin reflezive if ax is a topological
isomorphism between the groups X and (X2)Z.

Let X be a topological abelian group, and let A C X, B C XN be
nonempty subsets. Define

A" = {p € X" : Re(¢(z)) = 0, Vz € A}
and

BY = {z € X : Re(¢(z)) = 0, V¢ € B},
where Re denotes the real part of a complex number. Clearly, A” (respec-
tively B9) is a closed subset of X (respectively of X, = (X,o(X, XM))-

We state for further use the following:

PROPOSITION 1.1. Let X be a topological abelion group and let U C X
be a neighborhood of the neutral element. Then:

(a) {# € Hom(X,T) : Re(f(z)) 2 0, Vo € U} C X".

(b) U* s an equicontinuous subset of X"

(c) U is a compact subset of X7
(d) U® is a compact subset of X[
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Proof. The proof can be found in [1] or in [18]. =

COROLLARY 1.2. Let X be o topological abelion group and let v be a
group topology in X such that (X, 7)" < X™. Then, for any r-neighborhood
U of the neutral element of X, the set U is compact in X7.

Proof. By Proposition 1.1(a), U™ C (X, 7)", and by 1.1(c), U™ is com-
pact in (X, 7)?. Since the natural injection (X, 7}) — X7 is continuous, />
is compact in X. m

COROLLARY 1.3, Let X be a fopological abelion group and let B C X5
be a nonempty subset. Then the following assertions are equivalent:

(a) B is equicontinuous.

(b) There is o neighborhood U of the neutral element of X such that
BcCU”.

(¢) B? is o neighborhood of the neuirel element of X

Proof. The implications (a}=-(b)=-(c) are evident. (c)=(a) follows from
1.1(b). mw

Next we state an “equicontinuity principle for groups” (Theorem 1.5),
and we prove that Glicksberg’s theorem is a consequence of it. Recall that
a topological space is said to be a Baire space if whenever the union of a
sequence of its closed subsets has an interior point, then some of them must
have an interior point. We call a topological group hereditarily Baire if any
of its closed separable subgroups is a Baire space with respect to the induced
topeclogy. Observe that any complete metrizable and any Hausdorff locally
compact topological group are in a natural way hereditarily Baire. For the

sake of completeness, we first include a result of [8], giving a slightly different
proof of it.

ProPOSITION 1.4. Let X, Y be topological groups, and let v, : X — Y
be a continuous homomorphism for each n € N, Suppose that the set of all
z € X such that (un(z)) is a Cauchy sequence in Y is a nonmeager subset
A of X. Then {uy : n € N} i3 equicontinuous.

Proof. Take a neighborhood V of the neutral element ey of Y, and de-
note by W ancther closed symmetric neighborhood of ey such that WWW
C V. Since (un(z)) is a Cauchy sequence for all z € A, we have

oo o o0
Acl) () feeX un@).(um(a)t e W= | | F,.
p=ln,m>p p==1
A being nonmeager and F}, closed for every p € N, one of them, say Fy, has
nonempty interior U. Due to continuity of «; there is a neighborhood U
of the neutral element of X such that Uy € UU™! and w(Uy) € W, 1 =
1,...,9. We now show that u, (1) € V for alln > ¢. Fixn> gand ¢ € U.
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We have © = :L’l.sv'z“l, where z1,z3 € U, According to our choice of g and
U, we have u,(z1)-(ug(21))™t € W, ug(za). (un(z2)) ™" € W, uy(z) € W.
Therefore, un{z) = un(21).(ug(1)) g (@) ug(za). (Un(z2)) ™* € WWW
C V. Thus, 1, (W) C V for all n € N, and we conclude that {u, :n € N} is
equicontinuous. =

THEOREM 1.5. Let X be o metrizable hereditarily Baire group, let Y
be o metrizable topological group, ond let B ¢ CHom(X,Y") be any sub-
set which is compact in the fopology of pointwise convergence. Then B is
equicontinuous,

Proof We first claim that X can he taken separable without loss of
generality. In fact, the equicontinuity of B will be proved if for any sequence
in X convergent to the neutral element, say x, — ex, we deduce that
u(z,) — ey uniformly with respect to u € B. Therefore we can restrict
ourselves to the closed subgroup of X generated by the sequence (i, ), which
is also Baire, by our assumption on X,

In order to prove that B is equicontinuous, it is enough to check that
any sequence of elements of B contains an equicontinuous subsequence, and
then take into account the metrizability of X

Consider thus a sequence {u, : n € N} in B. Let 7 be the topology in
CHom{X,Y) of pointwise convergence on X, and let 75 be that of pointwise
convergence on a countable dense subset of X'. Clearly, 7 C 7, therefore B is
compact in 79, and in fact 7 and vy coincide on B. Since 7y is metrizable, so is
the topology induced by 7 on B, and consequently the sequence {un : n & N}
has a subsequence {ux, : n &€ N} which converges pointwise to an element
u € B. The equicontinuity of {ux, : n € N} now follows from Proposition
14 m

REMARK 1. In [19] it was already proved that any poinfwise convergent
sequence of continuous homomorphisms from a Baire topological group is
equicontinuous. The statement of Theorem 1.5 remains valid if the group
X is either Baire separable or Cech-complete ([24], Lemma 4.1(2), and 7],
Theorem 2.3, respectively). The analogous facts, and even stronger, are well
known in the context of topological vector spaces (Banach-Steinhaus theo-
rem). Namely, if X and Y are topological vector spaces, X is a Baire space
and B ¢ CHom(X,Y) is bounded in the topology of pointwise convergence,
then B is equicontinuous.

COROLLARY 1.6. Let X be a metrizable hereditarily Baire, or o separable
Baire, or a Cech-complete topological abelian group, ond let B - X bea
compact subset, Then B is equicontinuous, and consequently it is compact
in X2

Proof. This is a direct consequence of Theorem 1.5 and Remark 1. m
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CoOROLLARY 1.7. Let X be a Pontryagin reflezive topological abelian
group such that X[ is hereditarily Baire and metrizable or separable Baire
or Cech-complete. Then any o(X, X")-compact subset B of X is compact
in the original topology of X.

Proof. Consider B as a compact subset of (X')7. By Corollary 1.6, B
is compact in (X2)?. Now by Pontryagin reflexivity of X, the topology of
(X2 is precisely the original topology of X. m

COROLLARY 1.8 (Glicksberg's theorem). Let X be o locally compact
abelian group. Then any o(X, X")-compact subset of X is compact in the
original topology of X.

Proof. This is a direct consequence of Corollary 1.7, since X2 is locally
compact, therefore Cech-complete. m

REMARK 2. Another proof of Glicksberg’s theorem is given in [7]. Notice
that Corollary 1.7 does not hold for all Pontryagin reflexive groups (see [20]).
The assertion of Corollary 1.8 is also valid for nuclear groups (see [2]).

‘We say that a topological abelian group X is g-barrelled if any com-
pact subset of X is equicontinuous. Thus, Corollary 1.6 asserts that any
hereditarily Baire metrizable or separable Baire or Cech-complete topologi-
cal abelian group is g-barrelled.

Later on we shall clarify the relationship between the notions of g-
barrelled group and barrelled in the ordinary sense for topological vector
spaces, thus obtaining many other examples of g-barrelled groups.

The following assertion gives a permanence property of the class of g-
barrelled groups.

PROPOSITION 1.9. Let (X;)icr be a family of g-barrelled groups, and for
each i € I, let u; be o group homomorphism from X, into an abelion group
G. Then G, endowed with the finest group topology that maekes continuous
all the homomorphims w; for 1 € I, is a g-barrelled group.

Proof. Let K C G be a compact subset. We will see that K< is a
neighborhood of the neutral element in G, and then apply Corollary 1.3.
For any fixed ¢ € I, u; : X; — G is continuous and so is its adjoint, w} :
GL — (X)) consequently, u}(K) is compact in (X;)2. Since X; is a g
barrelled group, w,(K) is equicontinuous. This implies that (ui(K))< is a
neighborhood of the neutral element in X;. But u; ' (K9) = (u(K))<, and
by the definition of the topology of G, the set K is a neighborhood of the
neutral element in G, hence K is equicontinuous, and the claim is proved. w

We now establish some notations and results for topological real vector
spaces, as we did above for abelian groups.
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Let B and I be vector spaces. Denote by Lin{E, F'} the vector space
of all linear operators from F info F', and let us call E* the algebraisc dual
of B, i.e. E* = Lin(E,R). If E and F are topological vector spaces, then
CLin(E, F') denotes the vector space of all continuous linear operators, and
E* = CLin(E, R) is called the dual of E. If E* separates the points of E we
say that E is a DS-space. The weak topologies o(F, E*} and o(E*, E) of E
and of E*, respectively, are defined as the corresponding pointwise conver-
gence topologies. In E* we can also consider comp(E~, E), the topology of
uniform convergence on the compact subsets of E, The spaces (B*,c(E*, E))
and (E*, comp(E*, E)) will be denoted by Ej and E¢ respectively. It is clear
that £, and hence Ey, is a DS-space.

A vector space E is also an additive group, and therefore it is possible to
consider the group Hom(E, T). The mapping p : B* —+ Hom(E, T), defined
by the equality

p(l) = exp(2mil) foralll e B,

is an injective group homomorphism between the additive group of F* and
the multiplicative group Hom(E, T). It is easy to see that a character &€
Hom(E,T) belongs to the range of p if and only if the restriciion of ¢ to
one-dimensional vector subspaces of E is continuous. If E is a topological
vector space then p(E*) = E", where B = CHom(E, T) is the dual group of
B considered as an additive topological abelian group. A proof of this simple
but important assertion can be seen in [10], (23.32.a). The restriction of p to
E* is also a topological group isomorphism between the topological groups
E* and E (see [1], (2.3)).

PROPOSITION 1.10. Let E be a topological vector space. Then:

(2) The space (B,o(E,E")) and the group (E,o(E,E")} have the same
family of compact subsets. .

(b) A subset B C E* is o(E*, E)-compact if p(B) is o{ E", E)-compact.

Proof. (a) This is Lemma 1.2 of [20].

(b) Apply (a) to E}. =

Let B be a topological vector space. 1 A C Eand B C E* are nonempty
sets, we define

A° = {z* € B* i |z"(z)| €1, Yz € A}
and
°B={reE:|z*(z)] <1, Vz" € B}.

Clearly, A° and °B are closed convex symmetric subsets of E7 and of
(B,o(E, E*)) respectively. According to the bipolar theorem, the converse
assertions also hold, i.e. if a subset Ay C E is convex symmetric and
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o(E, E*)-closed, then A; = °B for some subset B C E*, and the analogue
holds for subsets By C E*.

PrOPOSITION L.11. Let E be o tepological vector space, and let p : B* —
E’ be the above defined group isomorphism. For any nonempty A ¢ E and
B C E*, the following assertions hold:

(a) p((4A)°) C A% and if A is balanced, i.e. tA C A for all t € R with
l#] <1, then p((44)°) = A",

(b) °(4B) < (p(B))* end if B is balanced, then °(4B) = (p(B))°.

(c) (A%) c °(A®). If A is balanced, then (A®)? = °(4°).

(d) ((p(B))*) € p({(>B)°). If B is balanced, then ((p{B))) =p({°B)°).

Proof. (a) and (b) need only routine verification; (¢} and (d) follow
from (a) and (b) together with the bipolar theorem. m

PROPOSITION 1.12. For a topological vector space E, the following asser-
tions are equivalent:

(a}) The additive group E is g-barrelled.
(b) The compact subsets of Ex are equicontinuous.

Proof. (a)=(b). Let B C E} be compact. Then p(B) is compact in
E}. According to (a), p(B) is equicontinuous. This implies easily that B is
equicontinuous.

(b)=(a). Let C' < E{ be compact. By Proposition 1.10(b), p~*(C) is
compact in EZ, and now by (b) it is equicontinuous. Thus, C is also equicon-
tinuous. m

We say that a topological vector space E is g-barrelled if every compact
subset of B iz equicontinuous. Proposition 1.12 shows that a topological
vector space is g-barrelled if and only if its underlying topological group
is a g-barrelled topological group. Recall that a topological vector space is
barrelled if the bounded subsets of B are equicontinuous. Evidently, any
barrelled topological vector space is g-barrelled as a topological vector space,
but these two notions are different (see Remark 16). Thus, we have many
examples of g-barrelled topological vector spaces. In particular, they are
g-barrelled topological abelian groups.

A subgroup X of a topological abelian group is said to be dually em-
bedded if any continuous character ¢ : X ~— T is the restriction to Xo
of a continuous character ¢ : X — T. If X is a locally compact abelian
group, then all its subgroups are dually embedded. This is an important
consequence of the Pontryagin reflexivity theorem.

The parallel notion for topological vector spaces is the Hahn-Banach
extension property (HBEP). Namely, a vector subspace By of a topological
vector space E is said to have HBEP if any continuous linear functional
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lg : By — R is a restriction of a continuous linear functional [ : E — R.
It is well known that any dense vector subspace has HBEP, and that any
vector subspace of a locally convex space also has HBEP (the Hahn-Banach
theorem).

For further use, we now study the dual of a group, endowed with a
topology which is the supremum of a certain family of group topologies.
This was already done in [25] (Proposition 3, p. 481), but we get the result
with a weaker assumption.

PROPOSITION 1.13. Let X be an abelian group (respectively a vector
space), T, © € I, a family of group (vector) topologies in X, and let 7 =
sup{r; : i € I'}. Suppose that for any finite subset J C I the diagonal

Ds(X) = {(mi) e[[(X,m) 2 =zeX, vie J}
ies
is duolly embedded in [],o;(X, 7). Then any T-continuous character ¢ :
X — T is of the form

¢(z) =[] ¢sle)y =X,
ielg

where Iy C I s o finite subset and ¢; : X — T is o T;-continuous character

fort € Ip. (Respectively, any T-continuous linear functional i : X — R can

be ezpressed 05 [(x) = 3 e Li(x), Yo € X, with the anologous conditions.)

Proof. Pix a r-continuous character ¢ : X — T. It is easy to check that
there is a finite Iy C I such that ¢ is continuous in 7z, := sup{n; : i € In}
(take into account that 7 is a group topology and ¢ a homomorphism). Let
u: X — [Tigg, Xi be the mapping = — (&i)ic1o where &; = &. The topology
71, i the preimage under v of [[{r; : ¢ € Io}, so u is continuous from (X, 71,)
to [;cz, (X, 7:). Thus, the mapping

ahg 1 D, (X) = T,

defined by 1o (u(z)) = ¢(z), is a continuous character. By our assumption

Dy, (X) is dually embedded in ]z (X, 7:), therefore g has an extension
¥ [Lier, (X, 7) — T. It is well known that any such extension has the form
1Sl ?

b((@)ier) = [ ] wilws),
i€dp ) .
where ;1 (X, 1) — T, i € Iy, are continuous characters. Now it is. evident
that ¢ = HiGIQ ¢;, where ¢; = e, 1 € Jp. w .
REMARK 3. In other words, Proposition 1,13 says that, under mild con-
ditions, a group X, endowed with a topology which is the supremum of a

family of group topologies in X, say 7i, 4 € I, has as.dgal the group gen-
erated by the union ;¢ (X, 7)" inside Hom(X,T). Similarly, for a vector
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space X, (X,sup;c;73)* coincides with the vector subspace of X* generated
by the union (e, (X, )"

For a directed family of topologies the picture is stimpler.

ProPOSITION 1.14. Suppose that in the notations of Proposition 1.13,
Tiy & & 1, 4s a directed family with respect fo set-theoretic inclusion. Then

(X7T)A = U(Xv’r'i)/\
iel
in the case of groups, and

(X7 = J(xm)"
el
in the case of vector spaces.

Proof. This is straightforward from Proposition 1.13. (For the case of
groups it was already stated in [25], p. 483, Corollary.) =

2. Compatible topologies. We begin with some definitions and results
in the framework of topological vector spaces, which will be the model for
our work with topological abelian groups.

Let E be a topological vector space. A new vector topology 7 is said to
be compatible for E if (E,7)* = E*. There is at least one locally convex
compatible topology for E, the weak topology o(E, E*); the least upper
bound of all locally convex topologies compatible for B will be denoted by
7(E, E*). Proposition 1.13 together with the Hahn-Banach theorem implies
that 7(E, E*) is a compatible topology for E. Consequently, for any topolog-
ical vector space E, 7(E, E*) is the finest locally convex compatible topology
for E, and it is called the Mackey fopology of E. The Mackey—Arens theo-
rem asserts that 7(E, E*) is precisely the topology of uniform convergence
on all the o(E*, E)-compact convex subsets of E*. Recall that a locally con-
vex space E is called a Mackey space if its original topology coincides with
7(E, E*). All barrelled and all metrizable locally convex spaces are Mackey
spaces ([3], Sect. IV.2, Prop. 4).

For a locally convex space E, 7(E, E*) may be strictly finer than the
original topology of F. For instance, if E is an infinite-dimensional Banach
space, then the Mackey topology of the locally convex space (E,o(E, E*))
is the original topology of E, which is strictly finer than o(E, E*). Notice
also that if E is a nonlocally convex metrizable topological vector space,
then 7(E, E*) is coarser than the original topology of E.

In any topological vector space E there is, thus, a finest locally convex
compatible topology for E. The assumption of local convexity cannot be
removed: as proved in [12], if a topological vector space contains a dense
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infinite-codimensional vector subspace, then E does not admit a finest com-
patible vector topology. In [13] a similar result was obtained for locally
r-convex (0 < r < 1}, locally bounded and locally pseudoconvex topologies.
The following assertion can be considered as a refinement of the mentioned
result for a less general class of spaces.

PrOPOSITION 2.1. Let E be o metrizable infinite-dimensional topological
vector space, and let T be the least upper bound of the family of all compatible
vector topologies for E. Then:

(a) For any noncontinuous linear functional f : B — R there are two
vector topologies By and By compatible for E, finer than the original, such
that f is sup(B1, B2)-continuous.

(b) (B, 7)* = E*.

(c) The topology T is not compatible for E.

Proof. Evidently (a) implies (b), and (b) also implies (c) since, in the
considered case, E* # E*. Thus, we only have to prove (a). We shall follow
the scheme of [13].

Take f € E*\ E*; then ker f = {e € E: f(e) = 0} is dense in E. Since
ker f is itself a metrizable, infinite-dimensional topological vector space, it
contains a dense vector subspace G such that dim{ker f/G) = ®q (see [16]}.
And now, the proof of Proposition 1 of [13] works. However, we write out a
self-contained proof, without using Lemma 2.9 of [21].

Let X = F/G and let ¢ : B — X be the quotient map. Observe that
G is also dense in E and dim X = No. Define h € X? by hq(e) = f(e),
and a linear mapping S : X — X by S(z) = = — h(z)y, where y is a
fixed element of X such that h(y) = 2. Straightforward computations show
that that SS(z) = =, V& € X, therefore S is bijective. We can equip X
with a Hausdorff, dual-less vector topology cy (e (X,on1)* = {0}). Such
a topology can be constructed from a well-known dual-less t9pologlcal vee-
tor space, say, for instance, Ly /2[0,1]. Since the algebraic dimension of X
is No, it follows that X is algebraically isomorphic to a dense vector sub-
space of Ly /[0, 1], and one can take as oy the preimage topology of that of
Ly45[0,1]. _

Let oy be the image topology of o under S. Evidently, S : (X, 00) —
(X, o) is continuous. This implies that (X, ap)* = {0}.

The topology a := sup(a, o) is no longer dual-less. In fact, th.e sets
of the form S(Ay) N A2, where Ay, Az are ne_ighborhoods of zero in oy,
constitute a fundamental system of neighborhoods of zero in «, and the
equality S~*(S(Ay) M Ag) = Ay N S(Az) proves that § : (X, o) — (X,o) is
continuous. This, in turn, implies that the mapping = — Sz —x = -—.h(:r)y
is also (v, e)-continuous and, since a is Hausdorff, A : (X,a) — R is also
continuous.
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Denote by 75 the original topology of E, and let 8; = sup(7o, ¢ ()},
By means of Proposition 1.13, we will prove that the topologies 81 and £,
are compatible for E. :

First, we verify that the diagonal D = {(e,e) : e € E} is dense in
(E,70) % (E,q *(a;)). Teke (¢/,e") in Ex E. Since Gx G is dense in (B, ) x
(£, 70), we can pick anet (e}, ) in G'x G convergent to (&', —e”). Evidently,
(e -+ es +e”,es5+ef +e”) € D is such that es + ¥ + ¢’ — ¢ in 79, and it
remains to show that e;+ejf +e” — € in g7 {a;), L.e. g{ef+ef +e”) — g{e)
in ;. But €}, ej are in G, hence g(es + ef + ") = g(e”) for all §. Applying
now Proposition 1.13, we have (E,3;)* = E*.

Since sup(B1, G2) is finer than sup(g~1(e), g7 (c2)), we conclude that
f is also sup(3;, fz)-continuous. m

REMARK 4. Let E be a topological vector space and let 7y (E) be the
family of all vector topologies compatible for E. It follows easily from Zorn’s
lemma and Proposition 1.14 that the partially ordered family (73 (E),C)
has maximal elements. Proposition 2.1(a) implies that if F is an infinite-

dimensional metrizable topological vector space, then its original topology
is not a maximal element of 7y, (E).

By analogy to the case of vector spaces, we say that a group topology 7 on
a topological abelian group X is compatible for X if (X, 7)" = X". Clearly,
the original topology of X is compatible and it is natural to ask whether the
least upper bound of the family of all compatible topologies for X is again a

compatible topology. The following reinterpretation of Proposition 2.1 gives
a negative answer in general.

- PROPOSITION 2.2. Let E be a metrizoble infinite-dimensional topological
vector space, and let 7, be the least upper bound of the family of all com-
patible group topologies for the underlying topological abelian group -of E.
Then

En gp(Ea) C (B, 7).
In particular, Ty is not a compatidle topology for the additive topological
abelian group of E.
Proof. Since there exists a noncontinuous linear functional, the inclu-
sion . .
E" =p(E*) C p(E*)
is strict. Take any f € E*. Then p(f) is a F~continuous character (see

Proposition 2.1), and the inclusion p(E*) ¢ (E, Tz)" will follow from the
fact that 7 is finer than 7. w

REMARK 5. Let X be a topological abelian group and let Ty (X) be the
family of all group topologies compatible for X. It follows easily from Zorn’s
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Jemma and Proposition 1.14 that the partially ordered family (75(X), C)
has maximal elements.

3. Locally quasi-convex compatible topologies. The notion of lo-
cally quasi-convex group was introduced by Vilenkin in [26]. We refer the
reader to [1] for a closer examination of this class of groups. We only state
here the facts required for our aims.

A nonempty subset A of a topological abelian group X is said to he
quasi-conver if for any @ € X \ A there is a character ¢ € X" such that
¢ € A” and Re(s(z)) < 0. Observe that the notion of quasi-convex set
depends upon the pair (X, X") and therefore the family of quasi-convex
sets will not change if we equip X with another group topology compatible
for X. Obviously, any quasi-convex A C X contains the neutral element,
and the intersection of any family of quasi-convex sets is again quasi-convex.

The quasi-convez hull Q(A) of a subset A C X is defined as the inter-
section of all quasi-convex subsets containing A. This definition makes sense
because the whole group X is quasi-convex. It is straightforward to see that
Q(A) = (A*)°. The fact that A is quasi-convex if and only if 4 = Q(4)
immediately implies that any quasi-convex A C X is closed in the Boh_.r
topology o{X, X"}, A subgroup G C X is quasi-convex if and only if it is
closed in o (X, X") (see [1], (2.5)). _

Let E be a real topological vector space. From the bipolar theorem 1‘13
easily follows that an absolutely convex o(E, E*)-closed subset of & is quasi-
convex in E considered as a group. Conversely, Proposition 1.11(c) implies
that if A is a balanced subset of E and A is quasi-convex in the additive
group of E, then A is absolutely convex and o(FE, B*}-closed. In general,
& quasi-convex subset of E may not be convex in the ordinary sense. In
fact, a direct verification shows that the set {—1, 0,1} is quasi-convex in the
additive group of IR. .

If A is a nonempty subset of a topological abelian group X, thep A” is
quasi-convex in X2. The following assertion shows that if A is a neighbor-
hood of zero in X, then A has better properties.

LeMMA 3.1. Let X be a topological abelian group and let V be. ¢ nez‘giz—
borhood of the neutral element of X. Then V® ?Zs‘ quasi-conver in (Xa)s,
where Xg denotes the group X endowed with the discrete topology.

Proof. Take any ¢ € (Xa)* \ V>, It is clear that a(X) C ((iqu)g)".
Thus, it is sufficient to find an element @ € X such that ar.r }? (T:; )¢ and
Re(¢(a)) < 0. Suppose that such an element does not exist. Then for every
2 € (V*) we have Re(¢(z)) > 0. In particular, since V C (V7)%, we obl:am
Re(¢(x)) > 0 for all # € V. Therefore, by Proposition 1.1, ¢ € V7, a
contradiction. m :
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COROLLARY 3.2. Let X be o topological ebelian group, and let K C X*
be an equicontinuous subset which is quasi-convex in X2. Then K is quasi-
convex in (Xg)5.

Proof By Corollary 1.3, W := K< is a neighborhood of the neutral
element in X. Since K is quasi-convex in X7, we have K = W™ By the
previous lemma, K is quasi-convex in (Xg)2. »

REMARK 6. In general, a continuous homomorphic image of a quasi-
convex set may not be quasi-convex. In particular, a quasi-convex subset B
of X2 may not be quasi-convex in (Xy)2.

A topological abelian group (X, 7) is called locally quasi-conver if there
exists a fundamental system of quasi-convex neighborhoods for the neutral
element of X; in this case also the topology 7 is said to be locally quasi-
convex. Evidently, any Hausdorff locally quasi-convex topological group is a
DS-group. A topological vector space F considered as an additive topological
group is locally quasi-convex if and only if it is Jocally convex as a topological
vector space (see [1], (2.4)).

Subgroups of locally quasi-convex groups are locally quasi-convex. How-
ever, a Hausdorff quotient of a locally quasi-convex group may not be locally
quasi-convex ([1], Th. (5.1)(c)).

PROPOSITION 3.3. Let X be an abelian group, and let T € J, bea
family of locally quasi-convez group topologies in X. Then T = SUD,ey T 16
@ locally quasi-conver topology.

Proof. For every j € J, let V; be a quasi-convex 7;-neighborhood of
ex. The sets of the form

V=,
jeF
where F' C J is finite, are a fundamental system of T-neighborhoods of ex.
Now it is straightforward to show that V' is quasi-convex in 7. m

Proposition 3.3 implies that the product of an arbitrary family of lo-
cally quasi-convex groups is a locally quasi-convex group. Now we describe
another method to produce locally quasi-convex group topologies.

Let ¥ be a multiplicative group, B C ¥ a nonempty subset and n € N
a natural number. Here and below B will denote the set {y™ :y € B}.

Obviously B™) C B.B .7, B. A nonempty family & of subsets of ¥ is called
well-directed if the following conditions hold: '

(a) For By, By € &, there exists By € & such that Bi U By ¢ Bs.
(b) For B € G and n & N, there exists 4 € & such that B(™ ¢ A.
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If 6 is the family of all nonempty finite subsets, or of all compact subsets,
of Y, then & is well-directed. We do not know if the family of all compact
quasi-convex. subsets of a topological abelian group is well-directed.

For a given family & of subsets of ¥, denote by & the family of all sets
of the form ngl) u.. .UB& “), where n,ﬁl, ..., Kk, are natural numbers, and
By,..., By are elements of &. Clearly, © is well-directed and contains &.

In what follows it will be convenient to fix a group duality (X,Y), which
consists of an abelian group X and a subgroup ¥ of Hom(X, T). If ¥ sepa-
rates the points of X, we say that the duality is separating. The topologies
o{X,Y) and o(¥, X) are defined as in Section 1 for the case Y = X*. For
AcC X and B C Y, the subsets A¥ C ¥ and B* C X are defined analo-
gously.

A topology 7 in X is compatible with a group duality (X,Y) if (X, )"
=Y. Similarly, a topology +' in ¥ is compatible with the duality if (¥, /)"
coincides with the natural image of X in Hom(Y, T).

Let (X,Y") be a group duality and & a family of nonempty subsets of X.
Since T is a metric space, we can consider in ¥ € T the topology 7s (Y, X)
of uniform convergence on the sets A € G. It will be called the G-topology,
and it is a group topology. If & covers X, then 75(Y; X) is Hausdorff.

In the same fashion, if & is a family of nonempty subsets of ¥, and
a: X — Hom(Y,T) the natural homomorphism, then the preimage topology
o Yre (a(X),Y)) will be denoted by 7e:(X,Y) and called the &'-topology
of X. Clearly, the &'-topology in X is a group topology and it is Hausdorff
if Y separates the points of X and &' covers Y. It can be easily checked
that TG(Y, X) s Tg(y: X) and Te (X, Y) = ’I‘é';.'(X, Y

PROPOSITION 3.4, Let X be a group, Y o subgroup of Hom(X,T), and
& and & families of nonempty subsets of X and Y respectively. Then:

(a) The collection

B={B:Be&}
is o fundomental system of neighborhoods of the neutral element ex in the
topology Tes: (X, Y). In particular, Te(X,Y) is o locally quosi-convex topol-
0gy.

(b} The collection

A={A": 4 € G}
is a fundamental system of neighbourhoods of the neutrel element ey in the
topology 7 (V. X). In particular, 7e:(Y, X} is locally quasi-conven.

Proof, We only indicate the proof of (a). The proof of (b) is similar.

It is easy to see that the family

Ve ={zrecX: supl|l-dz) <e}, 0<e<2 Beb&,
¢eB -
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is a fundamental system of neighborhoods of ex for the topology 7a/ (X, Y).
FixBe & . Ifz ¢ Vg, then Re(¢(z)) > 0 for all 4 € B, ie. z € B
Thus, every member of the family B is a 7e.(X, ¥ )-neighborhood of ex. In
order to see that B is a fundamental system of neighborhoods, take a fixed
e €(0,2] and B € &'. Choose n &€ N such that 2/n < ¢. Taking into account
the relationship

{t €T:Re(t)>20,...,Re(t") >0} C {teT: |1 -¢ < 2/n},

since &' is well-directed, there exists D € & such that BUBM U, .uBM™
C D. If z € D9, then Re{¢(z)) > 0, ..., Re(¢"(z)) > 0 for all ¢ € B.
Therefore supyep |1 — ¢(z)| < 2/n < g and & € V. Thus, D9 C Vg, and
the first part of (a) is proved.

Now we show that every member of B is quasi-convex in 7a/(X,Y). Fix
again B € &'. By Proposition 1.1(a), (B%)”> C (X,7e/)". Let z € X \ B<.
There is ¢ € B such that Re(¢(z)) < 0. Since B C (B9, the quasi-
convexity of B9 is proved. m

COROLLARY 3.5. Let the family &' be such that (X,7e)" C Y. Then,
for any B € &, the set (B*)" is compact in (Y, o (Y, X}). In particular, any
such B is relatively o(Y, X)-compact.

Proof. By Proposition 3.4 the set B9 is a neighborhood of ex in the
topology 7/ (X,Y). According to Proposition 1.1(a) and (c), (B9)" is com-
pact in (X, 7¢/),. Since the natural embedding (X, 7e:)2 — (Y, o(Y, X)) is
continuous, we deduce that (B9)” is compact in ¢(¥; X). =

COROLLARY 3.6. Assume that the group duality (X,Y) is separating and
that the topology 76 (Y, X) is compatible with (X,Y). If A € G, then (4”)"
is compact in (X, 0(X,Y)). In particular, A itself is o(X, Y )-relatively com-
pact.

Proof. Apply Corollary 3.5 to the duality (Y, a(X)), and use the fact
that the natural mapping
a:(X,0(X,Y)) = (a(X),0(a(X),Y))
is a topological isomorphism. w

Proposition 3.4 implies that o(X,Y) is a locally quasi-convex topology
in X, since it is the &'-topology for the family of finite subsets of V. It
is clear that for any family &' which covers Y, ¢(X,Y) C 7e:(X,Y). The
following assertion states another important property of this topology.

THEOREM 3.7. Let (X,Y) be a group dudlity. Then the topology o(X,Y)
is compatible with (X,Y), i.e., (X, 0(X, YY) =Y.

Proof. Evidently, Y ¢ (X,0(X,Y))". We prove the reverse inclusion.
Fix any ¢ € (X,0(X,Y))". By Proposition 3.4 there exist n € N and

icm

Mackey topology for groups 273

P1y.- - Pn €Y such that
z € ({¢1,..,0n})" = Re(e(x)) > 0.

Consider the homomorphism 2 — u(z) := (¢1(z),...,¢n(z)) and put
G = u{X). Clearly, u : X — T™ is continuous and G is a subgroup of T%.
Define a mapping g : G — T by

bo(ul@)) = ¢(z),

It is straightforward to check that ¢ is a weli-defined continuous character.
Sinece T™ is a compact abelian group, its subgroup G is dually embedded
in T". Hence, 1)y has an extension ¥ € (T™)". Since (T*}" = Z*, there are
integers mi, ..., My such that

B(w) = o (u(z)) = p(u(z)) = [ [ (#r(z))™.
k=1

e X,

Consequently, ¢ = [[i 5 €Y. u

REMARK 7. The assertion of Theorem 3.7 is well known for the case of
a separating duality (see [25], p. 481, Corollary; see also [7], p. 37, Theorem
2.3.4, where an interesting proof without using the Pontryagin duality is
given). We have included the proof to underline that it also holds without
requiring that ¥ separates the points of X.

COROLLARY 3.8. Let (X,Y) be o group duality. Then the topology
o(Y,X) is compatible with (X,Y}, i.e.

(¥, o (Y, X)) = a(X).

In other words, for any ¥ € (Y, (Y, X))", there is an element x € X such
that ’

w(d)=(z), VoY
If Y separates the points of X, the element x with that property is unique.

Proof. Apply Theorem 3.7 to the duality (¥, (X)) =

Consider now the topology comp(X",X), i.e. the G-topology on the
compact subsets of X. Again by Proposition 3.4 we ﬁ.nd that X =
(X, comp(X”, X)) is a locally quasi-convex group. In pa,rgcular, 1fhe group
(X2 is also locally quasi-convex, therefore any Pontryagin }reﬂexwe group
is locally quasi-convex. All Hausdorff locally compact abelian groups are
locally quasi-convex, and so are Hausdorff locally precompact t_opologlcal
abelian groups. The latter can be embedded in the corresponding locally
compact Hausdorff abelian group. It is easy to see that a nqn—Hausdorﬁ
topological abelian group X whose associated Hausdorff abehfm group is
locally quasi-convex must also be locally quasi-convex. From this remark it
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follows that any locally precompact (Hausdorff or not) topological abelian
group is locally guasi-convex.

So far we have seen that any &-topology is a locally quasi-convex topol-
ogy. Conversely, let us see now that any locally quasi-convex topology is an
G-topology for a suitable family &. Denocte by 7.(X, X") the S-topology,
where &, is the family of all the equicontinuous subsets of X /.

PROPOSITION 3.9. Let X be a topological abelian group, and let Tx be
s original topolegy. Then:

(a) o{X, XN) C (X, XN) C 7x.
(b) X is locally quasi-convez if and only if Tx = 7o(X, X").
(¢) If X is locally quasi-convez, then Tx = 1a(X,X"), where & is the

family of those equicontinuous subsets of X" which are compact and quasi-
convez in X2 = (X" o(X" X)). ‘

Proof. {a) The first inclusion is evident, and the second follows from
Proposition 3.4(a), together with the fact that the family &, is well-directed,
and Corollary 1.3.

(b) Assume that X is locally quasi-convex, and that V is a quasi-convex
neighborhood of the neutral element ex. By Proposition 1.1{(b), V* € &,.
Thus, {(V®) is a neighborhood of ex in 7.(X, X"). Since V is quasi-convex,
we have V = (V™) and therefore 7x C (X, X"). Now by (a) we have the
desired equality.

(¢) By (b) we have 75 (X, X") C Tx. On the other hand, let V be a quasi-
convex neighborhood of ey in 7x. We have V = (V*)*. By Proposition 1.1,
V> C X is equicontinuous o (X", X)-compact and, being a polar set, it is
quasi-convex. This implies that rx C 7¢(X,X"). =

REMARK 8. For a topological abelian group X the topology 7o (X, X") is
the finest locally quasi-convex topology coarser than the original topology
of X. The family of quasi-convex hulls of all neighborhoods of the neutral
element of X is a fundamental system of neighborhoods (see [4]).

Consider again a group duality (X,Y). As we have seen, the locally
quasi-convex topology o(X,Y) is compatible for (X, ¥). In fact, it is even
precompact. A complete description of all locally precompact compatible
topologies is contained in [25], in the following terms. Let £ be a locally
compact topology in ¥ such that (Y, X) C £; then the topology L. of
uniform convergence on all £-compact subsets of Y is a locally precompact
topclogy in X compatible with the duality. Furthermore, all locally precom-
pact topologies in X compatible with the duality can be obtained in this
way (see [25], p. 480, Proposition 1). Denote now by 7ya(X,Y) the least
upper bound of the family of all such topologies in X. The main results in
this direction are the following: v, (X,Y) is an G-topology in X, where
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K € & if and only if K is a compact subset of ¥ for some locally com-
pact topology £(K) finer than (Y, X). Also, if P is a projective limit of
locally precompact topologies in X, then P is compatible with the duality
if and only if (X,Y) € P C 7vur(X,Y) (see [25], p. 483, Proposition 5). In
what follows we shall study similar problems for the wider class of locally
quasi-convex topologics.

We denote by (X, Y) (or just 22) the family of all locally quasi-convex
topologies in X compatible with a group duality (X,Y).

PrOPOSITION 3.10. In the partiolly ordered set (Q(X,Y), C), there al-
ways exist maximal elements.

Proof. This follows from Zorn’s lemma and Propositions 1.14 and 3.3. =

In a natural way, the Mackey-Arens theorem suggests the following ques-
tions:

QuesTION 1. Is there a finest locally quasi-convex topology in X com-
patible with a group duality {X,Y)?

QuEsTION 2. If there is such a topology, may it be described as an
S-topology for an appropriate family & of subsets of Y7

We first study both guestions separately, and later on we shall provide
answers for some group cualities.

Denote by 75(X,Y) the least upper bound of the family of all locally
quasi-convex topologies compatible with a group duality (X,Y). In other
words, 7,(X,Y) is the Lub. of Q(X,¥) in the family of all topologies in X.
Proposition 3.3 implies that 7,(X,Y) is a locally quasi-convex topology in X.
Therefore Question 1 is reduced to finding out when the topology 7g(X,Y)
is compadtible with the duality (X,Y"), which in turn can be reformulated as
we indicate now.

PROPOSITION 3.11. Let (X,Y) be a group duality. The following asser-
tions are equivalent:

(a) The topology T4(X,Y) s compatible with (X,Y). ‘

(b) For any two locally quasi-conver topologies in X, qnd 79, which are
compatible with the duality (X,Y"), the topology sup(r1, o) is also compatible
with (X,Y).

Proof. (a)=-(h) is evident. On the other hand, condition-(b) implies
that the family Q(X,Y) is directed with respect to set-theoretic inclusion.
Applying Proposition 1.14 we obtain (b)=>(a). =

PROPOSITION 3.12. Let (X,Y) be a group duality such that the topology
7o(X,Y) is compatible with (X,Y). Then 7,(X,Y) is an G-topology, where
& is g well-directed fomily of compact quasi-conver subsets of (¥,0(Y,X)).
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Proof. We have (X, 7,(X,Y))" = Y and it remains to apply Proposition
3.9(c). =

REMARK 9. The authors do not know if the family & in the above propo-
gition can be taken to be the family of all compact quasi-convex subsets of
Y, o(Y, X))

The topology 7,(X,Y) is in a sense a “descriptive candidate” to be
the Mackey topology for the group duality (X,Y). Motivated again by the
Mackey—-Arens theorem, we now introduce a “constructive candidate”,

Denote by Gq. (Y, X) or just G the family of all compact quasi-convex
subsets of (Y, o (Y, X)), and by 74.(X,Y") the G -topology on X . According
to Proposition 3.4(a), 74c(X,Y) is a locally quasi-convex topology.

ProrosITION 3.13. Let (X,Y) be a group duelity. Then
Te(X,Y) C e (X, Y).

Proof. By Proposition 3.9(c), any locally qua31—convex topology 7 on
X is an G-topology, with & C Gg.. »

PRrROPOSITION 3.14. Let (X,Y) be o group duality. The following state-
ments are eguivelent:

(a) The topology Tq(X,Y) is compatible for (X,Y) and in that case
Tg(X,Y) = 7. (X, Y).

(b) The family Gy is well-directed and any of its members is quasi-
convex in (Xa),.

Proof. (a)=(b). By Proposition 3.9 the family G4, coincides with the
family of all 74c(X,Y)-equicontinuous compact quasi-convex subsets of
{(Y,o(Y, X)). This implies that &, is well-directed and according to Corol-
lary 3.2 the second part of (b) also holds.

(b)=>(a). Take any ¢ € (X,7(X,Y))". We show that ¢ & Y. Since
Sqc is well-directed, by the continuity of ¢ and Proposition 3.4(a), there
exists K € Gy such that Re(¢(z)) = 0 for all £ € K. Consequently,
¢ belongs to the quasi-convex hull of K in (X4)}. According to (b) the
set K itself is quasi-convex in {X4)}, thus we obtain ¢ € K C Y. There-
fore (X,74¢(X,Y))* C V. The reverse inclusion follows from the fact that
(X, V) C 7e(X,Y). w

4. The main theorems. For a given group duality (X,Y), we do not
know in general if the topologies 7,(X,Y) and 74.(X,Y") are compatible. We
now study a related question. As we observed in Section 2, any barrelled
locally convex space is a Mackey space. In Section 1 we have scen that a
notion of barrelledness can be introduced for groups. Now a natural question
is the following: Do barrelled groups behave the same as barrelled spaces

icm

Mackey topology for groups 277

with respect to the Mackey topology? Later on we shall see that the answer
is positive.

We say that a topological abelian group (X,7) is pre-Mackey if any
compact and quasi-convex subset of X is equicontinuous in +; in this case
the topology 7 is also said to be a pre-Mackey topology. Recall that (X, )
is g-barrelled if any compact subset of X is equicontinuous. This implies
that a g-barrelled group is a pre-Mackey group. We can now formulate the
main result:

THEOREM 4.1. Let (X,Y) be a group duality. Suppose that 7y is ¢ group
topology (not necessarily locally quasi-conver) in X, compatible with (X,Y")
and such that one of the following conditions is satisfied:

(1) (X,70) s a pre-Mackey group.

(2) (X, 70) is a g-barrelled group. )

(8) (X, 70) 45 a hereditarily Baire metrizable or a Cech-complete group.
(4) (X,7p) is a complete metrizable group.

Then:

(a) (X, Y) C 7.

(b) The topology 7yo(X,Y) s compatible with (X,Y).

(c) 7(X,Y) = 1o (X, Y).

{d) A locally quasi-convez topology 7 in X is compatible with (X,Y) if
and only if o(X,Y) C 7 C 74(X,Y).

Proof. By Corollary 1.6 we see that (4)=-(3)}={2)=-(1). Evidently,
(a)=(b). By Proposition 3.13 and the definition of 75(X,Y’), (b) implies
(c). Statement (d) follows from (c) and the definition of 74(X,Y). So,
we only need to prove that (1) implies (a). This follows from Proposition
3.9(a). In fact, we have (X,7)" = Y, and consequently, any member of
Gq(Y, X) is a compact quasi-convex subset of (X, 70)7. Since (X, ) is a
pre-Mackey group, any member of Gy (Y, X) is mp-equicontinuous. Hence,
Tqe(X, ¥) C 7e(Xo, (X0)"), where Xg := (X, 75). By Proposition 3.9(a) we
obtain 7o (X, Y} C 7(Xo, (X0)*) C 70, L. (a) holds. m

We now reformulate the theorem in terms of the natural duality of a
topological abelian group.

THEOREM 4.2. Let X be o topological abelian group. Suppose that one of
the following conditions is satisfled:

(1) X is a pre-Mackey group.

(2) X s a g-barrelled group.

(8) X is o hereditarily Baire metrizable or a Cech-complete group.

(4) X is a complete metrizable group.
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Then:

(a) The topology 74.(X, X") is coarser than the original topology of X.

(b) The topology 74 (X, X*) is a compatible topology for X .

(€) Te(X, XN) = 740 (X, XN).

(d) 7qe(X, X7") ds the finest locally quasi-comvex topology compatible
for X.

{e) If X is locally quasi-convez, then 1o (X, X") is the original topology
of X.

Proof. The assertions (a), (b), (¢}, (d) are the same as those of Theorem
4.1. It is straightforward that (a) and (d) imply (e). m

REMARK 10. Condition (1) is not necessary for 7,(X, X") to be a com-
patible topology. In fact, if X = (R, o(R,R")), then 75(R,R") is the usual
topology of R. :

COROLLARY 4.3. Let X be an abelian group, and let 7 and 7o be locally
quasi-conver pre-Mackey topologies in X such that

(X, )" = (X, m)".

Then 11 = 75. Equivalently, there is at most one locally quasi-conves pre-
Mackey topology compatible with a group duality.

Proof. Put X" := (X,7)". By Theorem 4.2 we have 71 = 7, (X, X")
= Ty. A

The fact that a locally compact topology on an abelian group X is deter-
mined by the set of all continuous characters on X (see [9]) can be obtained
as a consequence of the above corollary.

COROLLARY 4.4 (9, [25]). Let 7 and 7 be two locally compact group
topologies on an abelian group X such that (X, )" = (X,72)". Then
T = T2.

Proof. As remarked before, locally compact groups are locally quasi-
convex. On the other hand, according to Corollary 1.6, a locally compact
abelian group is g-barrelled and consequently it is also a pre-Mackey group.
Thus, the assertion follows from Corollary 4.3. m

REMARX 11. For locally compact topologies more is known. Namely, if
7 C 72 and 71 # 7 are locally compact group topologies on an abelian
group X, then there exist at least 2%t my.continuous characters that are
71-discontinuous (see [7], p. 11R).

COROLLARY 4.5. Let X be a locally quasi-convex pre-Mackey group. Sup-

pose that there is a locally compact group topology compatible for X. Then
X is loeally compact, :
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Proof. Any locally compact group topology is locally quasi-convex and
pre-Mackey. Therefore the conclusion follows from Corollary 4.3. =

ReMaRrK 12, Corollary 4.5 Implies that if X is the underlying additive
group of an infinite-dimensional Banach space, there is no locally compact
compatible group topology. A direct proof of this assertion is not evident.

REMARK 13. As shown in [5], the conclusion of Corollary 4.3 does not
hold under the assumption that (X, () and (X, 72) are both Pontryagin re-
flexive groups. Thus, a Pontryagin reflexive group may not be a pre-Mackey
group.

Let X be a topological abelian group, Denote by S5, the family of all
o(XN, X)-compact subsets of X* and by 7¢(X, X") the Gg-topology in X.
Evidently, 74¢(X, X) € 7%(X, X"). These two topologies coincide if X is
g-barrelled. We can further formulate the following:

THEOREM 4.6. Let X be a topological abelion group. Suppose that one of
the following conditions is satisfied:

(1) X is o g-barrelled group. )
(2) X is o metrizable hereditarily Baire or ¢ Cech-complete group.
(8) X is a complete metrizadle group.

Then:

(a) The topology Te(X, X7) is coarser than the original topology of X.

(b) The topelogy Te(X, X*) is a compatidle topology for X.

(c) 'TE(Xa-X.A) =T€1€‘-(X=XA) E’rfc(X’XA)' .

(d) 7e(X, X") is the finest locally quasi-conves topology compatible
for X. » N

(e) If X is locally quasi-convez, then mie(X, X ") is the original topology
of X.

Proof. Thisis a particular case of Theorem 4.2, since now Tye (X, XN =
T X, XN). m

5. Connections with the usual Mackey topology of‘ a topological
vector space. The topologies 74(X, X"} and 7ee(X, X7), mtrodu::;ed and
studied in the previous section, are natural candidates to be the “Mackey
topology” for an arbitrary topological abelian group X. We have defined
them using only tools of the theory of topological groups. No?v we shall
prove that, rather unexpectedly, for the underlying group c?f a wide cle.mss of
topological vector spaces, these two topologies coincide with the ordinary

~ Mackey topology. We do not know if this happens in general.

Recall that for a topological vector space E, the Mackey topology
(B, B*) is the topology of uniform convergence on the absolutely convex
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compact subsets of E*. Denote by 7¢.(E, E*}, as in the case of groups, the
topology of uniform convergence on compact subsets of E¥.

ProposiTiON 5.1, Let E be o topological vector space. Then
T(E,E*) C 74(B, B") C 7qc(E, E") C (B, B") = 1io(E, E*).

Proof. By the Mackey—Arens theorem (E, 7{E, E*})* = E*, and conse-
quently (E,7(E,E*})" = E". Since 7(E, E*) is a locally convex topolegy,
it is a locally quasi-convex group topology in E, so 7(E, B*) C 7,(E, EM).
The inclusion 74(E, BE") C 7o (E, E") is valid for an arbitrary topologi-
cal abelian group E (see Proposition 3.13). On the other hand, the inclu-
sion Tyc(E, EM) C 7(E, EN) is evident. Finally, 7.(E, B®) C (B, E*)
follows from the fact that any compact subset of E} has the form p(B),
where B is a compact subset of E} (see Proposition 1.10). In order to
show 74 (E, E*) C 7c(E, B"), it is enough to prove that, for any fixed bal-
anced compact set B C E}, °B is a neighborhood of zero in 74.(E, E").

Clearly, %B is also a balanced subset of E*. By Proposition 1.11 we have

°B = (p(1B))". Taking into account that p(3B) is a compact subset of

E?, we deduce that °B is a neighborhood of zero in 74 (E, E). m

PROPOSITION 5.2. Let E be a topological vector space such that EX has
the convex compactness property, i.e., the absolutely conver hull of any com-
pact subset of Ej is relatively compect in EX. Then

(B, B*) = 175(E, B") = Toc(E, E™).

Consequently, the Mackey topology 7(E, E*) is the finest among all locally
quasi-convet topologies compatible for E defined on the additive group of E.

Proof. The convex compactness property of E* obviously implies that
7(E, E*) = 73c(E, E*). An application of Proposition 5.1 gives the stated
equalities. The last conclusion follows from the definition of ,(E, ") and
from the Mackey—Arens theorem. m

REMARK 14. We shall see below that the convex compactness property
holds for a wide class of spaces. Notice, however, that Proposition 5.2 pro-
vides examples of topological abelian groups E which are not pre-Mackey,
but still 74 (B, B") = 7yc(E, B") is the finest compatible locally quasi-convex
topology. Consider, more precisely, an infinite-dimensional Banach space
equipped with its weak topology.

Denote by 8(E*, E) the strong topology in the dual E* of a topological
vector space B; that is, §(E* E) is the topology of uniform convergence
on all ¢(E, E*)-bounded subsets of E. As usual, Ef = (B*,0(E* E)).
Recall that E is said to be infrabarrelled if the bounded subsets of By are
equicontinuous. Evidently, any barrelled space is infrabarrelled. Also, if E is
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a metrizable topological vector space, then E is infrabarrelled. The following
statemnent may be of independent interest:

PROPOSITION 5.3. Let B be a topological vector space. Consider the as-
sertions:

(a) B 1is barrelled.

(b} E is g-barrelled.

{c¢) The space Iy has the conver compactness property.

(d) The absolutely convexr hull of any null sequence of B is relatively
compact in .

(e) Any bounded subsel of £} is bounded in B},

Then (a)=(b)=p(c)=>(d)=2(e). If E is infrabarrelled, in particular, if E is
metrizable, then (e)=>(a).

Proof The implications (a)=>(b) and (c)=>(d) are evident. It is also
clear that, if B is infrabarrelled, then (e) implies (a).

(b)=>(c). Let B < EX be a compact subset. Since E is g-barrelled, B is
equicontinuous, Consequently, °B is a neighborhood of zero in E. Accord-
ing to the Alaoglu-Bourbaki theorem, (*B)° is compact in E7. Now, the
absolutely convex hull of B is contained in (°B)°.

(d)=>(e). Suppose, by contradiction, that a bounded subset B C E7 is
not bounded in 5. Then we can find a o(E, E*)-bounded set A C E and a

sequence (z3,) ¢ B such that

sup |z (z)] > n?,  YneN
zEA

Since B is bounded in B, we have lim z%(z) = 0 for all z € E, ie.

(22%) is a null sequence in Ej. Let K be its closed absolutely convex hull.

‘According to (d), K is compact in E}. Thus, K is an absolutely convex

complete subset of E, which by the Banach-Mackey theorem is bounded
in Ej. In particular, the sequence (L) is bounded in Bj. But by the above
condition, we have

ia::‘],(x) =00, m

sup sup | =

wEAneN

REMARK 15. For a general locally convex space E, assertion (c}) may

not imply (b). For instance, let B be an infinite-dimensional Bangch space.

Consider E, = (B, o(E, F*)). Bvidently, B} = (B,)%. So, according to the
implication (a)=>(c), the space B, satisfies (c}, but it is not g-barrelled.

REMARK 16. As J. Mendoza has pointed out, in general (b) does not
imply (a) in Proposition 5.8, For instance, if E is a rfonreﬂexwe Banach
space, then (E*,+(E*, E)) is a g-barrelled space which is not barrelled.
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REMARK 17. The notion of g-barrelled locally convex space seems not
to have been considered earlier in the literature. A related notion has been
introduced in [27]: a locally convex space E is called sequentially barrelled if
any null sequence in f7 is equicontinuous. It is shown in [27] (Proposition
4.1) that Proposition 5.3(e) is valid for sequentially barrelled spaces. The
original topology of a sequentially barrelled space may not coincide with
the Mackey topology 7(E, E*) (see [11], p. 250, where sequentially barrelled
spaces are named cy-barrelled). Thus, a sequentially barrelled space may not
be g-barrelled.

Propositions 5.2 and 5.3 imply:

PROPOSITION 5.4. Let B be a topological vector space. The Mackey topol-
ogy T(E,E*) is the finest among all locally gquasi-convex compatidle group
topologies for the additive group of E if E satisfies one of the following
conditions:

(a) B is barrelled.

(b) E is g-barrelled.

(c) E is a Baire space.

(d) E is complete and metrizable.

Finally, we show that the topology considered in [25] very seldom has
the property stated in Proposition 5.4.

PROFOSITION 5.5. Let E be o topological vector space, and let Tyar (E) be
the least upper bound of the family of all locally precompact compatible group
topologies for the additive topological group of E. Then Tye:(E) = o(E, E*).

Proof. We first show that Ty, (E) is finer than o(F,E*). Fix f € E*
and denote by T; the preimage of the topology of R under f. It is sufficient
to prove that 77 is coarser than 7y (E). Obviously, 77 is a precompact
topology and

(B,7s)" = {p(tf) : t € R}.
Put vy = sup{ry,o(E, B")). It is easy to check that v is a compatible group
topology for E. Hence vy and a fortiori 75 is coarser than Tvar (E).

In order to show that o(E,E*) is finer than 7vw..(E), fix a locally pre-
compact compatible group topology 7 in E; we prove that v C o(E, E*).
We can assume that there is a locally compact abelian group ¥ and a group
homomorphism « : E — Y such that + is the preimage of the topology of ¥’
under u. Further, we can assume that ¥ is a closed subgroup of a product
™ x K x D, where n is a natural number, and K and [ are respectively a
compact and a discrete topological abelian group ([1}, (1.9)). There are thus
r-continuous homomorphisms uy : B — R*, us : & — K and uz : B — D
such that u{z) = (us(z),u2(z),us(x)), for all z € E. We now prove that

icm

Muckey topology for groups 283

u,; are continnous with respect to o(B, B*), and therefore T is coarser than
(B, B*).

First, it iy casy to see that we can find continuous linear forms f; : E — R,
i = 1,...,n, such that w(s) = (fi(z),..., ful2)), 2 € E. Thus u; is
o{E, E* )~continuous.

In the second place, T-continuity of uy implies that it is continuous with
respect to o (1, ) and o(K,K™). But the latter is the original topology
of X, and o(F, E™) is coarser than o(E, E*). Therefore, uz is o(E, E*)-
continnous,

Finally, ug + & - 10 i r-continuous, and therefore G = kerug is a 7-
open subgroup of £, Since 7 is locally precopact, it is locally quasi-convex.
By Proposition 5.1, 7 ¢ .(#, £*), Consequently, & is an open subgroup
of E. Since B in connected, G = E, and uy i3 the null homomorphism, which
ig obviously o (E, " )-continuous. =

References

[1j W, Banaszcayk, ddditive Subgroups of Topelogical Vector Spaces, Lecture Notes
in Math. 1466, Springer, Berlin, 1981,

2] W. Banaszezayk and B Martin-Peinador, The Glicksbery theorem on weakly
compact sete for nuclear groups, in: Ann, New York Acad. Sci. 788, 1996, 34-39.

3] N. Bourbaki, Bspaces vestoriels topologiques, Masson, Paris, 1881.

[4] M. Bruguera, Some propertics of locally quasi-convex groups, Topology Appl. 77
(1697), 87-94.

5 ‘M. J. Chasco and B, Martin-Peinador, Ponbryagin refiezive groups are not
determined by their continuous characters, Rocky Mountain J. Math. 28 (1998},
155160,

6] W.W. Comfort and K. A, Ross, Tapologics induced by groups of characters,
Fund. Math. 55 (1064), 283-201.

(7 D.N. Dikranjan, I. R. Prodanov and L. N. Stoyanov, Topelogical Groups.
Characters, Dualitics and Minimal Group Topologies, Marcel Dekker, New York,
1990,

(8] 1 ¥leigcher and T, Trayunor, Continuity of homomorphisms on o Buire group,
Proc. Amer, Math. Soc. 93 (1985), 367-368.

0] I Glicksberg, Uniform boundedness for groups, Canad. J. Math. 14 (1962), 269
276,

[10] E. Hewitt and K. A. Rons, Abstract Hormonic Analysis I, Grundlehren Math.
Wien, 115, Springer, 1963,

(11} H. Jarchow, Locally Conver Spaces, B, G. Teubner, Stuttgart, 1981.

[12] J. Kakol, Note on compatible vector topolagics, Proc. Amer. Math. Soc. 99 (1687},
680602,

(18] J. Kakol, The Mackey-Arens thearem for non-locally conves spaces, Collect. Math.
41 (1990), 126-132.

4] J. Kakol, O Péres-Garciaand W. Schikhof, Cerdinality and Mackey topolagies
of non-Archimedian Banach and Préchet spaces, Bull. Polish Acad. Sci. Math. 44
(1896), 131~141.,



284 M. J. Chasco et al

[18] G. Kéthe, Topological Vector Spaces I, Springer, Berlin, 1969.

[16) I.Labuda and 7. Lipecki, On subseries convergent series and m-quasi-bases in
topological linear spaces, Manuscripta Math. 38 {1982), 87-98.

[17] I Namiocka, Separate continuily and joint continuily, Pacific J. Math. 51 (1974),
515-631. ’

[18] N. Noble, k-groups and duality, Trans. Amer. Math. Soc, 151 (1970), 551-561.

[19] B.J. Pettis, On continuity and openness of homomorphisms in topelogical groups,
Ann. of Math. 52 (1950}, 293-308. ,

[20] D. Remus and F. J, Trigos-Arrieta, Abelian groups which satisfy Pontryagin
duality need not respect compactness, Proc. Amer. Math. Soc. 117 (1993}, 1195-
1200.

[21] W. Roelcke and S. Dierolf, On the three-spuce problem for topological vector
spaces, Collect. Math. 32 (1981), 3-25.

[22] H. H. Schaefer, Topological Vector Spaces, Springer, 1971.

[23] M. F. Smith, The Pontryagin duality theorem in linear spaces, Ann. of Math. 56
(1952), 248-253. '

[24] J.P. Troallic, Sequential criteria for equicontinuity and uniformities on topological
groups, Topology Appl. 68 (1996), 83-95.

[25] N. T. Varopoulos, Studies ¢n harmonic analysis, Proc. Cambridge Philos. Soc.
60 (1964), 467-516.

[26] N.Ya. Vilenkin, The theory of characters of topological Abelian groups with o given
boundedness, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 439-462 (in Russian).

[27] J. H. Webb, Sequential convergence in locally convez spaces, Proc. Cambridge
Philos. Soc. 64 (1968), 341-364.

Facultad de Ciencias
Universidad de Navarra

31080 Pamplona, Spain

E-mail: mjchasco@fisica.unav.es

Facultad de Ciencias Matemdticas
Universidad Complutense de Madrid
28040 Madrid, Spain

E-mail: EM.peinador@mat.ucrn.es

Muskhelishvili Institute of Comp. Math.
Georgian Academy of Sciences

Thilisi 93, Georgia

E-mail: tar@scien.corupmath.acnet.ge

Received September 25, 1997 (3965)
Revised version July 12, 1998 '

icm

STUDIA MATHEMATICA 132 (3) (19998)

On a vector-valued local ergodic theorem in Lo
by
RYOTARQO SATO (Okayama)

Abstract. Let T = {T(u) : u € R} } be a strongly continuous d—dimenﬁonal semi-
group of linear contractions on Li(({Z, I, u)i X ), where (12, Z,p) is a o-finite measure
space and X is a reflexive Banach space. Since Ly ({2, 5phX)r :'Loo((ﬂ, E,' wy XY,
the adjoint semigroup T = {T™(u) c u € R}'} becomes a weak” -continuous semigroup Qf
linear contractions acting on Leo((£2, I, 1); X*}. In this paper the local ergodic theoreu} is
studied for the adjoint semigroup T™. Assuming that each T(u),u€ R}, hasa co:}tract?on
majorant P(u) defined on L1((2, T, p); R), that is, P(u) is a positive linear contraction
on Ly ((£2, £, u); ) such that |[T(u)f(w)|| < P(u)”f()“(w) almost everywhere on {2 for
every f € L1({2, %, ); X), we prove that the local ergodic theorem holds for T™.

1. Introduction. Define Py ={u=(u1,...,uq) 11 >0, 1 S < d} and
R = {u= (v1,..,%a) s 20, 1 €4 < d}, and denote by Zj the
class of all bounded intervals in Py and by Aq the d-dimensional Lebesgue
measure. Let X be a reflexive Banach space and (2,2, 1) be a o-finite
measgure space. We consider a strongly continucus d-dimensional semigroup
T = {T{(u) : u € Pg} of linear confractions on Lo (2, X) = L ((2, &, p1); X),
where L1 ({2, £, p); X) is. the usual Banach space of all X-valued strongly
measurable functions on {2 for which the norm is given by

17l = § 17 @)lidgs < o0,
n

Since X is reflexive by hypothesis, it follows (cf. Chapter IV of {4]) that
Ly (2, X)* = Lo (£2; X*), where Loo{f2; X*) is the Banach space of- all X™>-
valued strongly measurable functions on {2 for which the norm is given by

[ £llco = esssup{[|f (@) : w € £2} < co.

Thus the adjoint semigroup T* ={T™(u) : u € Py} becom’es a weak*—continu—
ous d-dimensional semigroup of linear contractions acting on Loo{2; X™).

1991 Mathematics Subject Classification: Primary 47A35. .
Key words and phrases: vector-valued local ergodic theorem, reflexive Banach space,

d-dimensional semigroup of linear contractions, contraction majorant.
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