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A dichotomy on Schreier sets

by
ROBERT JUDD (Stillwater, Okla.)

Abstract. We show that the Schreier sets 8o (o < wy) have the following dichotomy
property. For every hereditary collection F of finite subsets of N, either there exists infinite
M= (my)2, C Nsuchthat So(M) = {{m; :i € E} : E € 8} C F, or there exist infinite
M= (m;)®2,, N C N such that FIN}(M) = {{ms: i€ F}: F € Fand F C N} C Sa.

1. Introduction. Collections of finite subsets of the natural numbers
have become important in Banach space theory. The Schreier sets Sa, de-
fined below for each countable ordinal , are the most common among these
sets. The first Schreier set, Sy, is fundamental to the construction of the orig-
inal Tsirelson space (see [T] and [FJ]), while the more general Schreier sets
are used to construct the Schreier spaces, which may be found in [Sch], [AA]
and [AO], and the exciting new collection of Tsirelson type spaces developed
by Argyros and Deliyanni [AD].

The Banach spaces mentioned above may be constructed with collec-
tions of finite subsets of the natural numbers other than the Schreler sets.
However, the Schreier sets are in scme sense universal for these alternate
collections. For example, a result of Odell, Tomczak and Wagner {OTW]
shows that for pointwise closed collections F of finite subsets of N there ex-
ists a subsequence N of N such that F(N) is a subset of one of the Schreier
sets. (The notation F(N) is described below.)

‘We show roughly that if we fix a Schreier set Sq, then hereditary collec-
tions F of finite subsets of N satisfy: either F is of sufficient complexity to
conbain the Schreier set, or the sets in F lying in some subsequence must be
contained in the Schreier set. The precise statement is a bit more compli-
cated. One must allow for a wide range of collections of finite subsets. For
example, the first Schreier set, 81, consists of all finite subsets of N whose
smallest element is at least as large as the size of the set. This condition is
called an admissibility condition. There are many such conditions. A differ-
ent admissibility condition would be to consider collections of finite subsets
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such that the square of the smallest element in each set is at least as large
as the number of elements in the set. We state the dichotomy theorem here,
deferring the notation until Section 2.

THEOREM 1.1. For each a < wa, for every hereditary collection
F C [N|<¥ and for all M € [N| either there exists M € [M] such that
So(M) C F or there exist M € [M), N € [N| such that F{N](M) C S,.

In the next section we define the Schreier classes 8, (o < wq) along with
other notions concerning collections of finite subsets of N. We also introduce
Schreier games; these are a method of choosing finite subsets of N in such
a way that the resulting set is in one of the collections S,. The combina-
torial framework for proving Theorem 1.1 is presented in Section 3 as the
dichotomy property and the proof of Theorem 1.1 is given in Section 4, We
devote Section 5 to an alternative proof of a result of Argyros, Mercourakis
and Tsarpalias [AMT], using Theorem 1.1.

2. Preliminaries. We use various subsets, and collections of subsets, of
the natural numbers throughout this paper; for future reference we define
all the notation for these sets at the beginning of this section. In general, L,
M and N will be infinite subsets of N, while E and F will be finite subsets,
and F and & will be collections of finite subsets of N. We consider every
subset of N, whether finite or infinite, to be an increasing sequence. Thus if
N C N, then N = (n;)$2, where ny < mng < ..., and if F is a finite subset,
then B = {e,...,ex} where e; < ... < e,

‘When N is an infinite subset of N we let [IV] be the set of infinite subsets
of N and we let [V]<“ represent the set of finite subsets of N. Let B, FF CN
and n > 1. We write E' < F' if either F'is empty or if max F < min I, n < E
if{n}<E,andn < Eifn <minFE.

Let F be a collection of finite subsets of N. We next define three prop-
erties which F may have: hereditary, spreading and closed. For F to be
hereditary requires that whenever £ ¢ F and F' € F then E ¢ F. We say F
is spreading if whenever F = {mq,...,m} € F and ny < ... < ny, satisfies
m; < n; for i < k, then {ny,...,ng} € F. The set 2¥ of all subsets of N is
a topological space under the topology of pointwise convergence; thus F is
(pointwise) closed if it is closed in 2. We collect the first and third proper-
ties together and say that F is adeguate if it is both closed and hereditary.

Finally we need some notation to talk about what happens when we
regtrict a collection of finite subsets of N to an infinite subset of N. Let
N = (n;) € [N] be an infinite sequence and let F C [N]<¥ be a collection
of finite subsets. We write the subset of F consisting only of those elements
which are also subsets of N as F[N|. Thus

FIN|={FeF:FCN}=Fn[NJ<.
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We also want to put F into the sequence N. In other words, if ¥ € F and
we define ng = {n; : 4 € F}, then F(N) is the collection of all such sets, i.e.
F(N) = {np: F &€ F}. (Note that ng is a finite subset of N.)

DEFINITION 2.1. The Schreier sets, S, for each o < wy, are defined
inductively as follows (see [AA]): let S = {{n} : n > 1} U {0} and & =
{FCN:|F| < F}. (Note that this definition allows for ¢ € &;.} If S, has
been defined then let

k
Soc-l-l Z{UFL":SF1< <Fk, F,e 8, (i=1,...,fﬂ), kEN}

izl
If o« is a limit ordinal with Sz defined for each 8 < a, choose and fix an
increasing sequence of ordinals (o} with o = gup,, &, and let

8o =|J{F €8a, :n < F}.
n=1

Note that each S, is hereditary, spreading and closed. The definition of S,
for o infinite depends on choices made when selecting sequences increasing
to limit ordinals. However, none of the results cited, nor obtained, in this
paper depend on which particular sequences were used to construct the sets
Sy.Forr>1and ay,..., 0 < w let

(.sal,...,sw):{F=UFi;Fiesai (i<r)and B <... < F}.

i=1

DEFINITION 2.2. We define a game for two players on N, called an
(a1, ..., a.)-Schreier game, for each r-tuple of ordinals with 0 < en <... <
Qr < wy. If 7 == 1, then we drop the parentheses and simply call it an
a-Schreier game. The two players ate A who chooses numbers and & who
chooses non-empty sets. Roughly, A will pick a finite sequence of numbers
and S will pick a finite sequence By < ... < By of finite subsets of N, The
number of choices made and the order of the plays will depend upon the
particular {o4,...,a,)-Schreier game being played, and may also depend
upon. previous plays.

We first describe the o-Schreier game for & < wi. In the 0-Schreier
game S chooses {n} for some n > 1. In the 1-Schreier game N picks [ = 1_
and S chooses E € [N|<“ such that |E| > l. Suppose we have already
described the a-Schreier game for @ < wy. The (o + 1)-Schreier game starts
with A picking I > 1 and then the two players play the a-Schreier game I
times, with the additional condition that if E is the last set & chose in the
ith a-Schreier game and F is the first set S chose in the (i + 1)th a-Schreier
game, then E < F. For o a limit ordinal suppose we have already described
the ~-Schreier game for each v < o and let o, /& be the sequence used to
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define S,. The a-Schreier game starts with N picking | > 1 and then the
two players play the og-Schreier game.

fa <...< o < wi,then an (aa,...,o,)-Schreier game is simply
an a,-Schreier game followed by an ap-Schreier game, and so on, finishing
with an a,-Schreier game. The only other condition is that if £ is the last
set S chose in the a;-Schreier game and F is the first set S chose in the
4 1-Schreier game, then B < F. In the sequel, by an (a1, ..., 0 )-gome we
shall mean an (ay, ..., o, )-Schreier game.

As an example, consider the 2-Schreier game. A chooses | > 1 and then
they play the (1,.!.,1)-game. This starts with A choosing &; > 1 and then
8 chooses Ep with |Ey| > ki. Then N chooses ko and & chooses Ey with
|E2| > k2 and E; > E). This continues until N has chosen k; and & has
chosen Ej with |Ey| > k; and E; > Ey_1. The set resulting from this game
is B = Ui=1 E;. In general, if A and § play a Schreier game, and (E)k_, is
the sequence of sets which & chose in the game, with F; < Eit (1 <1 <k),
then the set E resulting from the game is defined as B = Ufﬁl E;.

A bound (ai,...,a,)-Schreier game is one where at each stage N s
restricted to exactly one choice of number to pick. If A and 8 play a bound
game and E is the set resulting from this game, then we say S chose E as
small as possible if at each stage, when & had to choose a set E; of size at
least !;, then S always chose E; of size equal to /;.

We say that A has a winning strategy for the (o, ..., o, )-Schreier game
on F C [NJ<* if A can choose integers so that, whatever sets S picks, the
set E resulting from the game does not belong to F. Notice that if N has a
winning strategy for the (a, . . ., o, )-Schreier game on F C [N]<¥, then A/
also has a winning strategy for the (ay, ..., e, )-Schreier game on F[M] for
any M € [N] since F[M] C F. _

As an example of a winning strategy for A" we shall consider the (1,1)-
game on &;. In this game A chooses I > 1, next & chooses E € [N<*
with |E| > I, then N chooses m > 1 and finally & chooses ¥ > E with
|F| > m. A winning strategy for A in this game would be to choose { = 1
and m = min E (which A" may do since & chooses E before A" chooses m).
Now, if A= EUF, then |A] >[4+ m =1+ m > min A, while if A were in
Si, then we would have |4| < min A. Thus 4 ¢ &1, which is what N was
trying to achieve.

3. The Dichotomy Property

DEFINITION 3.1. An r-tuple of ordinals, {ay,..., 0, ) with0 <o £ ... <
& < w1, has the Dichotomy Property (D) if for each hereditary collection
F C [N|<¢ and every N € [N], either there exists M € [N] such that

(Sags--->Sa)(M) C F, or there exists M € [N] such that A has a winning
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strategy for the (v, ..., o )-Schreier game on F[M].

This section is devoted to proving that every increasing r-tuple of count-
able ordinals bas the Dichotomy Property. '

ProproSITION 3.2. The r-tuple (a1,...,0y) has the Dichotomy Prop-
erty (D) for each v > 1 and every r-tuple of ordinals with 0 < oy < ... £ o
< Wy

We prove this inductively in several stages using a technique developed
by Kiriakouli and Negrepontis [KN]. The method consists of a double in-
duction. To prove that every r-tuple of ordimals, (o4,...,a,), has a cer-
tain property (P) one first shows that if (a1,..., o) has (P), then so does
{(o,@1,...,0r). Next one demonstrates that if {@,.%.,a,@1,...,0,) has the
property for every k > 1, then so does (@ + 1, c,..., ). The rest of the
proof usually follows easily from these two results. In our case the key to
proving Proposition 3.2 is the following lemma:

LEMMA 3.3. Det r 21 ondlet 0 < o € ... < o < wy. If {@1,..., )
has the Dichotomy Property (D), then so does (0,01,...,04).

Proof. Let F C [N]<“ be hereditary and N = (7%;){2; € [N]. Then we
seek L € [N] such that either (So, Say, . .-, Sa,)(L) € F or A has a winning
strategy for the (0, a,- .., a,)-game on F[L]. We cannot find L all at once;
instead we must choose it bit by bit. We construct sequences M; = (mi)32,
with N = My 2 My D ... such that either {m{}UF € F for each F C S(M;)
with F > mi, or else A" has a winning strategy in the (0, cu, ..., ar)-game
on F[M;] provided the first choice of § is {ml}. We may then choose L as
a diagonal subseguence of these sequences M;.

‘We begin by defining

Fi :{Fi{ﬁl}UFEf[MO]}.

Since (a1, . .., ) has (D), it follows that there exists M1 = (m})2; € [N]
such that either A has a winning strategy for the (e, ..., )-Schreier
game on Fi[M1], or (Says.--»Sap)(M1) is a subset of Fi. Let M; =
(i1, 3, Ty, - - .) be the sequence My with its first element replaced by 7.
Now, either {7iy} U E € F for each B € (Say, .-, S, )(M1) with B > 7
or {m} UF ¢ F for every set F C My \ {%1} resulting from N playing
a winning strategy for the (eq,...,0r)-game on Fi[M;]. This last follows
since if F € F1[M;] and F > 7y, then F € FiMy)].

Suppose we have chosen sequences NOM 2 M2 ... 2 My with
the properties:

o If M, = (m})?;l for 1 < ¢ < I, then m}‘l = m;'. whenever 1 < 7 < 1
and 1 <4 <.



250 R. Judd

o For each i =1,...,1 — 1, cither {mé}UF € F for all ' € (S,,,...
o 8o )(M;) with F > mi, or else {mi}UF ¢ F for any F C (m§)2,,,
resulting from N playing 2 winning strategy in the (au,...,a;)-game on
Fi[M;), where F; = {F : {mi™ '} U F € F[M; 1]}

To construct the next sequence M; we define
Fi={F:{m""Y U F e F[Mi_4]}.

Since {o,...,q,) has (D), it follows that there exists My = (mh); € [Mi-1]
such that either A has a winning strategy for the (21, - .., op )-Schreier game
on Fi[M), or (Sayy .-+ Se, ) (M) C Fi. Let

T -1 =1 =l
My=(m{ . omy A, T, )

be the sequence M; with the first 1 elements replaced by the first [ ele-
ments of M;_;. As with M; and Fy, either {mi} U F' € F for each F €
(Says-- > S )(M) with F > mi, or {ml} UF & F for every F C (ml)is,
resulting from N playing a winning strategy for the (a1, ..., o)-game on
Fi[ M.

We repeat this process for each [ > 1. Let M = (my)72, be the sequence
defined by my = m¥ for each k > 1. Then for each | > 1, either {m;}UF € F
for all F € (Says. .- Sa, ) (M) with F > my, or {my} U F & F for each
F C [my)p> resulting from AN playing a winning strategy for the
(@i,...,0n)-game on Fi[M]. This induces a coloring on N; in the first case
we color I € N red, and in the second, blue.

Now, either there exists an infinite subsequence J € [N] such that every
4 € J is colored red, in which case let I = (m;)jes, or there exists k > 1
such that [ is colored blue for all { > &, and then let L = (m)i>%. In the
first case it is clear that (S, Says- . -1 Sa, )(L) € F. In the second case, if S
picks {n} with n & L, then the resulting set cannot be in F[L]. Otherwise
8 picks {m;} for some ! > k and then A has a winning strategy for the
(a1,...,q,)-Schreier game on JFi[(m;);>i]. In either situation we see that
N has a winning strategy for the (0, o, ..., &, )-Schreier game on F[L] as
required. m

LeMma 34 F 0 < a < a < ... < ap, for somer > 0, and the
(k + r)-tuple (o, %, 0,1, ..., a,) has property (D) for every k > 1, then
(¢ +1,01,...,0n) has property (D). .

Proof. Let F C [N|<“ be hereditary, let ¥ € [N] and find sequences N 2
Ly D Ly 2 ... such that for each k either (S,,. 5,84, 80, 1 Sa, ) (Lk)
C F, or N has a winning strategy in the {a,.% ,a,1,..., e, )-Schreier
game on F[Lg]. In this last case A has a winning strategy in the (o + 1,
a1, ..,0p)-Schreler game on F[Ly] given as follows: for the (a + 1)-game
N picks k and then plays a winning strategy in the {@,.% 0, 1,...,00)-
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Schreier game on F[Ly]. Otherwise we set L = (If) and then we obtain
(8a+118a19 T ?Sar)(L) - F.o=

LeMMA 3.5, If « is a limit ordinel with o < a1 < ... £ ay, for
some v >0, and (B,01,...,a.) has property (D) for every 8 < a, then
(oya1,...,0n) has property (D).

Proof. As before, let F C [NI<“ be hereditary, let N € [N] and find
N 2 L1 2 Ly D ... such that for every k either (8g,,8ay,-- - s Sa, ) (Lr) © F,
or A has a winning strategy in the (8g, 21, .. ., & )-Schreier game on F[Ly],
where Gy ./ o is the sequence used to define S,. In the second case N has
a winning strategy in the (a,au,. .., @, )-game on F{Ly] by choosing & and
playing a winning strategy in the (Gy, @1,.. ., )-Schreier game on F[Lg].
Otherwise we let L = (If), and then (84, 8ay,-+»Sa (L) S F. u

LEMMA 36. If 0 < a1 £ ... < ap, for somer > 1, and (a1,..., )
has property (D) then so too does (Br,...,8s,00,. .., 0p) forall §y < ... <
s < oy and each 5 > 1.

Proof. We prove this by induction on G, for arbitrary s and oq > 5.
‘When 3, = 0 the result follows by iterating Lemma 3.3 s times.

Suppose that we have proven the result for 8 = s, i.e. we have shown
that for every @y > ... > o1 = 3, if (01,..., &) has property (D}, then so
too does (Y1, -+, Vks B 21, -, ) forall yp < ... <y < 3. Clearly, we may
take each y; = £ and so in particular we have proven that for every ar > ...
.2 ay > B, if (o1,...,a) has property (D), then B,. %, B0, ..., 00)
also has property (D) for each k > 1. Hence by Lemma 4.3 so does (8-+1,
o, ..., Q). Iterating this argument, we see that if @, > ... > 1 > B and
(@y,...,c) has property (D), then (8+1,. 1.B8+1,a1,...,0-) also has
property (D) for all 1 > 1, and hence (y1,..., %, 3+1,. LB L, 0
does too, for all vy < ... <y < 53, by the result for 5. In other words, for
every ap > ... > ap = B+ 1,if (a1,...,q) has property (D), then so too
does (B, ..., 85,01y ) forall fr <... < B, < B +1 and any s > 1, as
required.

If 3, is a limit ordinal and we have proven the result for each § < Bs,
then (8, @y, .. ., o) has property (D) for each 8 < 8. Thus, by Lemma 3.5,
the (r 4 1)-tuple (B, €11, - .., @) also has property (D). Now, as in the suc-
cessor case, we conclude that (5, .., Beye1,. .., o) has property (D) as
required. =

Proof of Proposition 8.2. We prove by induction that (=) has property
(D) for each e < wy, and then the result follows from Lemma 3.6. Let o =0,
let F C [N]<¢ be hereditary and let N € [N]. Let L={n & N : {n} € F}
if I is infinite let M = L, and then So(M) C F. Otherwise let M = N\ L,
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then A has a winning strategy for the 0-Schreier game on F[M] since this
get is empty. This completes the proof for a = 0.

If (o) has (D) then by Lemma 3.6 so does (o,.%., ) for each k > L.
Thus (e -+ 1) has (D) by Lemma 3.4. If o is a limit ordinal and (5) has (D)
for each § < « then (&) has (D) by Lemma 3.5. m

4. The main result. In this section we prove Theorem 1.1. Actually
we prove a somewhat stronpger statement:

THEOREM 4.1. For all v > 1 and ewch r-tuple of countable ordinals
0<€a €... < ap <w, if Fis a hereditary collection, F C [N]<¥ and
N € [N), then either there exists M & [N] such that (Sa,,-..,8a, ) (M) CF,
or there exist M € |[N], N € [N] such that FIM|(N) C (Say;-- -, Sa.)-

ProPOSITION 4.2. If S and N play o bound {ov,...,a.)-game, then
there exists N = (n;) € [N such that if E is any result of this bound
game where S chose E as small as possible, then ng = {n; : 1 € E} €
(Sazs > 8a,)-

Before we give the proof of this proposition we recall the notion of
spreading. A collection F C [N]<¥ is spreading if it has the property that if
G=1{g1,-...9n} € Fand H={hy,..., h,} satisfies g; < h; (j = 1,...,n),
then also H € F. In this case we say that H is a spreading of G. Moreover,
it is easy to see that if F is spreading and M = (my), N = (n;) € [N] satisfy
mq < nyg for all ¢, then mg € F implies that ng € F.

Proof of Proposition 4.2. We first prove the result for » = 1 by induction
on . This is then easy to generalize. In order to find the sequence N = (n)
we construct an increasing function f: N — N and let n, = f(t).

CASE 1: & = 0. This is clearly true, just by setting f(1) = ¢.

CasE 2: @ = o+ 1. We assume that for any bound o-game there exists a
function f as above. Now, an (a+1)-game consists of A/ choosing k and then
the two players playing a bound (e, .*.,a)-game. Since the (o -+ 1)-game
is bound there is only one choice of k which N may make. For each of the
bound a-games which make up the (o + 1)-game we shall choose below a
function £ such that f{(E;) = {f'(t) : t € E;} € S,, for any set B; resulting
from the ith o-game. We then let f(£) =k + 300, fi(t).

The first c-game is already fixed, so we may choose f! using the hy-
pothesis. However, the ith a-game, while bound, depends on which sets
were picked in the first 4 — 1 games, so we cannot just pick f* straight from
the hypothesis—instead we have to cover all possible bound a-games which
may be played. Fortunately, for any fixed integer ¢ only finitely many bound
{a, 171, &)-games can be played which finish before ¢; let this number be s.
Thus there are s possible bound a~games we could be playing. If s # 0,
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then let the finctions from these be fioooos foand let fi(t) = 307 F1(2).
Otherwise let f*(¢) =t.

We must now show that the function f given by f(£) = k+ Yo, 7%(f)
is the function we seek for the bound (o +1)-game. Let E = | J¥_, E; be the
result of the bound {«,.*.,a)-game where S chose E as small as possible
and where F; is the result of the ith a-game. We show that fi(%;) € &, for
i < k. We already know that this works for i = 1 by the hypothesis. Then for
1 < i < k, once we have chosen £y < ... < E;..1 we will have fixed the bound
a-game we are playing when choosing E;. Let the function for this game
be f’; then from the induction hypothesis, f/(E;) = {f'(t) : t € E;} € S,
But by the construction of f* we know that f*(£) > f'(t} for each ¢t in E;.
To obtain f1(E;) € S, recall that the collection S, is spreading and clearly
F4(E;) is a spreading of f'(E;), hence fi(E;) is also in S,. Finally, since
f(t) = Fi(t) for every i and ¢, it follows that f(E;) € Sy (i=1,...,k) and
since f(1) > k we have k £ By < ... < Ey, so that F = Ule F; € Spq1 as
required.

CASE 3: « is a limit ordinal. For the a-game N is bound to pick / and
then they play a bound ¢;-game (where o, / o is the sequence of ordinals
increasing to ¢ fixed in the definition of §,). By assumption we may choose
f' for the oy-game such that if E is the result of the oy-game where 8
chose E as small as possible, then f'(E) € Sa,. Let f{t) = f'(t) + l. Now,
F/(E) € Sa, for the E we fixed initially, which implies f(F) € &, since
f(BE) is a spreading of f(E). Finally, f(1) > I, hence f(F) € Sy since
{F &8, :1<F}C &,

To generalize for (@y,...,a,) we proceed as in Case 2, using bound
oy-games (i=1,...,7}. n

COROLLARY 4.3. If N has o winning strategy for an (o, .. - ,ar)-Schreier
game on o hereditary collection F C [N[<*, then there exists N = (n;) € [N]
such that F(N) C (Say,-- - Sar)-

Proof Suppose A has a winning strategy for an (u,. .., o )-Schreier
game on F C [N]<¥. Let A/, § play the bound (ay,-..,ar)-game where
N always chooses | as small as possible so that N will win., Let E € F;
then we may decompose E = | JI_, Bi according to this game as follows.
If the first set which S chooses must have length greater than or equal
to Iy, then let By = {e1,...,er, }; if S has chosen By < ... < Eq_1 and &
must pick the gth set to have length at least Iy, then let Ey be the next
elements of E after F,..;. Since N has a winning strategy, and E € F, this
process must exhaust E, but at that point let S continue the game, always
choosing sets as small as possible, and let E be the union of the sets obtained
(including ). Now, by Proposition 4.2, there exists N = (n;) € [N] such
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that np € (S4,,...,8a,) for any set F' resulting from such a game. Thus
ng € {Saxs- -+, Sa, ), and hence so is ng since F C E and 8, is hereditary
for each . So finally, F(N} C (Say,. .., 84, ) as required. m

These results are sufficient to prove Theorem 4.1:

Proof of Theorem 4.1. Let r > 1, let 0 < a1 < ... € @ < wy, and
let F be a hereditary collection, F C [N]<*. Since (ay,...,q,) has the
Dichotorny Property, it follows that either there exists M € [N ] such that
(Saqs- 1 8an)(M) C F, in which case the proof is complete, or there exists
M € [N] such that A has a winning strategy for the (@1, ..., & )-Schreier
game on F[M]. Now F[M] is again hereditary and thus by Corollary 4.3

there exists N & {N| such that FIM|(N) C (Sa,,...,Se,) as required. w
Theorem 1.1 follows from Theorem 4.1 as an immediate 'corollary.

REMARK 4.4. It should be noted that Theorem 4.1 is no longer true if we
do not first restrict 7 to a subsequence of N, Indeed, we have the following
example:

ExXAMPLE 4.5. We construct a hereditary collection F C [N]<¥ such that
for every M € [N] we have both 8; (M) € F and F(M) € S1.
Let F, = {2 +1,...,2% + k} for each k > 1 and let

o
F=|J{1}UE E: EC F}.
k=1
Then F is clearly hereditary. Let M < [N] and let | = my. Then F =
{mi}Ump, € F(M), but |F| =1+ 1 > minF and hence F ¢ S;. Fur-
thermore, 8;(M) ¢ F; indeed, suppose E € S1(M) and E € F with
\E| > 2. Let E = {ey,...,e,} and find & such that & < Fi. Now let
E' = {ey,...,e5-1,Mgry;}. Then F' is still in §;(M) since this collection
is spreading, but E' € F becausge if £y F' € F then either FC F', ' C F
or |[FNF'| =0or 1, None of these is true for £, E',

5. Application. In this section we use Theorem 1.1 to provide an al-
termative proof of a result in a paper of Argyros, Mercourakis and Tsar-
palias [AMT]. We first state some definitions.

DerINITION 5.1, Let F be an adequate family (hereditary and closed) of
finite subsets of N as defined in Section 2. For L € [N] we define the sirong
Cantor-Bendizson derivative of F{L] for each ordinal & < wy to be

FILIM = {A € F[L} : A is a cluster point of F[AU N] for each N € [L]}.

Thus for finite AC L we have A € F[L]M ifand only if {I e L: AU {I} &F}
is finite. If we have defined F[L](®), the ceth strong Cantor-Bendikson deriva-
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tive of F[L], then we define the (o + 1)th derivative as follows:
FILJED = (FIL) ).

If @ is a limit ordinal and we have defined F[L]*®) for each 8 < , then we
set
FIL® = () FILI.
A<

The strong Cantor--Bendizson index [AMT] of F[L] is defined to be the
smallest countable ordinal @ < w; such that F[L](®*) = §). We denote this
index by s(F[L]). For more details concerning the strong Cantor-Bendixson
derivative and index refer to [AMT).

REMARK 5.2. The following are stated in [AMT] or are simple conse-
quences of that work:

(i) The strong Cantor-Bendixson index must be a successor ordinal.
(ii) For each o < wy we have s(8,) = w™ + 1.
(ili) If F C [N]<¢ is spreading, then s(F[L]) = s(F) for every L € [N].
(iv) ¥ s(F[L]) > o, then s(F[M]) > a for every M € [L] ([AMT], Propo-
sition 2.2.3).

We prove the following result from [AMT] (Theorem 2.2.6):

THEOREM 5.3 ([AMT)). Let F C [N|<* be an adequate family. If there
exists I € [N] such that s(F[L]) > w®, then there emists M € [L] such that
S.(M) C FIM).

Proof Let 7 C [N|<* be an adequate family and let L € [N| satisfy
s(F[L]) > w*. Suppose first that in fact s(F[L]) > w® + 1. Now, by Theo-
rem 1.1, either there exists M & [L] such that S, (M) C F[M] as required,
or else there exist M & [L], N € [N] such that F{M|(N) € So. We can eas-
ily see that the index of F[M] is the same as the index of (F[M](N ))[N M)
where Nag = (fim }meae- Indeed, if (4;) is a sequence in F{M] 8) converging
to A € F[M)B+1) | then (na,) is a sequence in {(F[M] (N)[N]®) converg-
ing to ng € (F[M](N))[Nag) P+ and vice versa. Thus, if F[M}(N) & Sa,
then

s(FIM]) = s((F[MI(N))[Npl) £ 5(Sa[Nn]) = +1.
However, by Remark 5.2(iv), s(F[M]) > w* + 1, a contradiction. Thus the
second case above cannot happen.

To finish the proof we assume that s(F[L]) = w® + 1 and define

F={{njuF :FeF, n< FYUF.

It Ae FIL®\ {0} and | € L with [ < A, then {I}UA€ f[L]iﬁ). Indeed,
suppose this is true for some ordinal 3 < o and let A € F [L]¢E+D) \{@} and
1 € L with [ < A, Then there exists a sequence (4;) C F[L]¥) converging to
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A. Now, ({I}UA;) is a sequence in F[L]{?) converging to {I}U A, hence {I}U
Ae F[L])#FY) as required. The limit ordinal case is clear. Since F[L](™) £,
it follows that F[L](?? is infinite for each 8 < w?, so that {I} € F[L](®) for
every l € L, and each § < w®. Thus {I} € F[L]* for every ! € L and hence
= }'[L}_(“’a"‘l), so that s(F[L]} > w® + 1. Finally, we apply the previous
case to F[L] to obtain M = (m;) € [L] with So(M) C F[M]. Then setting
M’ = (m;)i»2 we have S, (M') T F[M'] as required. w
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On Mackey topology for groups
by

M. J. CHASCO (Pamplona), E. MARTIN-PEINADOR (Madrid)
and V. TARIELADZE (Thilisi)

Abstract. The present paper is a contribution to fill in a gap existing between the
theory of topological vector spaces and that of topological abelian groups. Topological
vector spaces have been extensively studied as part of Functional Analysis. It is natural
to expect that some important and elegant theorems about topological vector spaces
may have analogous versions for abelian topological groups. The main obstruction to get
such versions is probably the lack of the notion of convexity in the framework of groups.
However, the introduction of quasi-convex sets and locally quasi-convex groups by Vilenkin
[26] and the work of Banaszezyk [1] have paved the way to obtain theorems of this nature.
We study here the group topologies compatible with a given duslity. We have obtained,
among others, the following result: for a complete metrizable topological abelian group,
there always exists a finest locally quasi-convex topology with the same set of continuous
characters as the original topology. We also give a description of this topology as an
&-topology and we prove that, for the additive group of a complete metrizable topological
vector space, it coincides with the ordinary Mackey topology.

Introduction. A vector topology T in a real topological vector space
E is called a compatible topology for E if the set of all 7-continuous linear
functionals is the same as the set E* of all continuous linear functionals in
the original topology of E. The Mackey-Arens theorem implies that if E is a
topological vector space, then there exists a finest locally convex compatible
topology for B, called in the literature the Mackey topology, and frequently
denoted by (B, B*). Similar assertions are also proved for topological vector
spaces over non-Archimedian fields [14]. In the present paper we study the
question for topological abelian groups.
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