

Strong continuity of semigroup homomorphisms

by

BOLIS BASIT and A. J. PRYDE (Clayton, Vic.)

Abstract. Let J be an abelian topological semigroup and C a subset of a Banach space X. Let L(X) be the space of bounded linear operators on X and $\operatorname{Lip}(C)$ the space of Lipschitz functions $f:C\to C$. We exhibit a large class of semigroups J for which every weakly continuous semigroup homomorphism $T:J\to L(X)$ is necessarily strongly continuous. Similar results are obtained for weakly continuous homomorphisms $T:J\to \operatorname{Lip}(C)$ and for strongly measurable homomorphisms $T:J\to L(X)$.

1. Introduction. Throughout this note J will denote an abelian topological semigroup and C a subset of a Banach space X. We consider homomorphisms $T: J \to F(C)$ where F(C) is a semigroup under composition of functions $f: C \to C$. In particular, we will take $F(C) = C^C$, the space of all functions $f: C \to C$, F(C) = Lip(C), the subsemigroup of C^C consisting of Lipschitz functions, and, with C = X, F(C) = L(X), the space of bounded linear operators on X.

A homomorphism $T: J \to F(C)$ is called weakly continuous if $\langle T(\cdot)(x), \varphi \rangle$ is continuous for each $x \in C$ and $\varphi \in X^*$. It is called strongly continuous if $T(\cdot)(x)$ is continuous for each $x \in C$.

Such homomorphisms have recently been considered by the authors in [2]. The results therein generalized previous work by Goldstein [6] and others who considered contractive representations $T:[0,\infty)\to L(X)$. In the latter case, it is well known that weak continuity of T is equivalent to strong continuity. See for example [7, p. 305] and [10, p. 233].

It is therefore natural to ask

QUESTION 1.1. Is every weakly continuous homomorphism $T: J \to F(C)$ strongly continuous?

The following example shows that for certain semigroups J the answer is negative.

¹⁹⁹¹ Mathematics Subject Classification: Primary 22A25; Secondary 47D03.

Key words and phrases: representation, semigroup homomorphism, weak continuity, strong continuity, Lipschitz map.

72

EXAMPLE 1.2. (a) Let $J = [1, \infty)$ and let X be a separable Hilbert space with orthonormal basis $\{e_j : j \in \mathbb{N}\}$. For $k \in \mathbb{N}$ define $g_k : [0, 1] \to X$ by

$$\begin{split} g_k(t) &= 2te_{k+1} \quad \text{if } 0 \leq t \leq 1/2, \\ g_k(t) &= (1-\lambda)e_{k+n} + \lambda e_{k+n+1} \\ &\quad \text{if } t = (1-\lambda)\bigg(\frac{n}{n+1}\bigg) + \lambda\bigg(\frac{n+1}{n+2}\bigg) \text{ where } 0 \leq \lambda \leq 1 \text{ and } n \in \mathbb{N}, \\ g_k(1) &= 0. \end{split}$$

Then define $g: J \to X$ by

$$g(t)=g_n\bigg(n(n+1)\bigg(t+\frac{1}{n}-2\bigg)\bigg)$$
 if $2-\frac{1}{n}\leq t\leq 2-\frac{1}{n+1}, \text{ where } n\in\mathbb{N},$

and g(t) = 0 if $t \ge 2$. Finally, define $T: J \to L(X)$ by

$$T(t)(x) = \langle x, e_1 \rangle g(t).$$

Note that the sequence (e_n) converges weakly to 0 in X but not strongly. Moreover, T(t)T(s)(x) = T(t+s)(x) = 0 for all $s, t \in J$. It follows that T is a contractive representation which is weakly continuous on J and strongly continuous except on the set $\{2\} \cup \{2-1/(n+1) : n \in \mathbb{N}\}$.

- (b) Note that the concrete choice of a map $g: J \to \{e_1\}^{\perp}$ in (a) is not important, but essential are its properties:
 - (i) g is weakly continuous and vanishing on $[2, \infty)$,
 - (ii) g is not strongly continuous.

Using an orthonormal decomposition $\{e_1\}^{\perp} = X_1 \oplus X_2 \oplus \ldots$ into infinite-dimensional subspaces one can similarly construct $g = \sum_{k=1}^{\infty} g_k$, $g_k(t) \in X_k$, with property (i) such that every rational $t \in [1, 2]$ is a point of discontinuity of g in the strong topology.

In this note we obtain classes of semigroups J for which the answer to Question 1.1 is affirmative for the codomains L(X) and Lip(C). The proofs are based on the following proposition which is an immediate consequence of Namioka [8, Theorem 4.1].

PROPOSITION 1.3. Let J be locally compact Hausdorff and $T: J \to C^C$ weakly continuous. Then for every $x \in C$ there is a dense G_{δ} set A_x in J such that $T(\cdot)(x)$ is continuous on A_x .

REMARK 1.4. Proposition 1.3 remains valid for the more general case of σ -well α -favourable topological spaces J as defined in Christensen [3]. In this case we use [3, Theorem 1] in place of [8, Theorem 4.1].

REMARK 1.5. Denote the set of neighbourhoods of an element t in J by $\mathcal{N}(t)$. Let $T: J \to \text{Lip}(C)$ be a weakly continuous homomorphism, let $x \in C$, and choose A_x as in Proposition 1.3. If there exists $a \in A_x$ such that $t + \mathcal{N}(a) \subset \mathcal{N}(t+a)$ for all $t \in J$, then $T(\cdot)(x)$ is continuous on a + J.

Proof. Let $t \in J$ and let $\kappa > 0$ be a Lipschitz constant for T(t). Given $\varepsilon > 0$, choose a neighbourhood U of a such that $||T(h)(x) - T(a)(x)|| < \varepsilon/\kappa$ whenever $h \in U$. Then $||T(t+h)(x) - T(t+a)(x)|| < \varepsilon$ for all $h \in U$. Since $t+U \in \mathcal{N}(t+a)$ we are finished.

It follows from Remark 1.5 that if $T:[1,\infty)\to \operatorname{Lip}(C)$ is a weakly continuous homomorphism, then T is strongly continuous on $(2,\infty)$. Example 1.2 shows that the conclusions of Proposition 1.3 and Remark 1.5 cannot be greatly improved without additional restrictions on J. In particular, we will require that J has a unit 0. These restrictions are introduced in Section 2 and our results for weakly continuous homomorphisms are in Section 3. Finally, in Section 4 we discuss strong continuity for homomorphisms $T:J\to L(X)$ which are only assumed to be locally strongly measurable and locally bounded.

- 2. Restrictions on semigroups. Throughout this section J will denote an abelian topological semigroup with unit 0. Consider the following condition.
- (2.1) For each neighbourhood U of 0 in J, for each $t \in J$, and for each neighbourhood V of t, there exists $s \in V$ such that s + U is a neighbourhood of t.

This condition is satisfied, for example, by the additive subsemigroups of \mathbb{R}^2 defined by $J_1 = [0, \infty)$, $J_2 = \{(x, y) : |y| \le x, \ 0 \le x < \infty\}$, and by any topological group G. On the other hand, $J_3 = \{(x, y) : |y| \le x^2, \ 0 \le x < \infty\}$ and $J_4 = [0, 1] \cup \{(x, y) : |y| \le x - 1, \ 1 \le x < \infty\}$ do not satisfy (2.1).

In our next two conditions we will require that J be a topological subspace of an abelian topological group G. We will denote this by $J \subseteq G$. The interior of J in G will be denoted by J° . Consider:

(2.2) $J \subseteq G$ and each neighbourhood of 0 in J contains an open subset of G.

This condition is satisfied by J_1, J_2, G and J_3 , but not by J_4 . Moreover, if $J \subseteq G$ and $J^{\circ} \neq \emptyset$ then (2.1) implies (2.2). Finally, consider:

(2.3) $J \subseteq G$ and for each $t \in J^{\circ}$ and each dense subset A of J° there exists $s \in J$ such that $t - s \in A$.

Note that (2.3) is satisfied by all of J_1 , J_2 , G, J_3 and J_4 . Moreover, (2.2) implies (2.3). Indeed, let $t \in J^{\circ}$ and let A be a dense subset of J° .

74

So there is an open neighbourhood W of 0 in G such that W = -W and $t + W \subseteq J$. By (2.2) there is an open subset U of G such that $U \subset W \cap J$. As A is dense in J° , there exists $h \in U \cap A$. Hence $s = t - h \in J$ and (2.3) follows.

3. Weakly continuous homomorphisms. For representations we have the following.

THEOREM 3.1. Let J be a locally compact Hausdorff abelian unital topological semigroup satisfying condition (2.1). Every weakly continuous homomorphism $T: J \to L(X)$ is strongly continuous.

Proof. Let $x \in X$. By Proposition 1.3, $T(\cdot)x$ is continuous on a dense G_{δ} -set A_x in J.

First we prove continuity of $T(\cdot)x$ at 0. Let V be a compact neighbourhood of 0 in J. Since T is weakly continuous, T(V)y is weakly compact for all $y \in X$. By the uniform boundedness theorem T(V) is bounded. Let $\kappa = \sup_{t \in V} \|T(t)\|$ and set $M = \operatorname{co}\{T(t)x : t \in A_x\}$. The weak and norm closures of M coincide, so $x \in \overline{M}$. Given $\varepsilon > 0$, choose $y \in M$ such that $\|y - x\| < \varepsilon/(2\kappa + 2)$. So $y = \sum_{j=1}^m c_j T(a_j)x$ for some $a_j \in A_x$ and $c_j > 0$ with $\sum_{j=1}^m c_j = 1$. As $T(\cdot)x$ is continuous at each a_j , there is a neighbourhood U of 0 such that $\|T(h + a_j)x - T(a_j)x\| < \varepsilon/2$ for all $h \in U$. Hence

$$||T(h)x - x|| \le ||T(h)x - T(h)y|| + ||T(h)y - y|| + ||y - x||$$

$$\le (1 + \kappa)||x - y|| + \left\| \sum_{j=1}^{m} c_j [T(h + a_j)x - T(a_j)x] \right\| < \varepsilon$$

for all $h \in U \cap V$. Hence $T(\cdot)x$ is continuous at 0.

Now let $t \in J \setminus \{0\}$. Let V be a compact neighbourhood of t. Define $\kappa = \sup_{t \in V} \|T(t)\|$. For $\varepsilon > 0$ choose a neighbourhood U of 0 such that $\|T(h)x - x\| < \varepsilon/(2\kappa + 1)$ for all $h \in U$. By (2.1) there exists $s \in V$ such that s + U is a neighbourhood of t. Hence, for all $w \in s + U$,

$$||T(w)x - T(t)x|| \le ||T(w)x - T(s)x|| + ||T(s)x - T(t)x||$$

$$\le ||T(s)||[||T(w_0)x - x|| + ||x - T(t_0)x||] < \varepsilon$$

where $w = s + w_0$, $t = s + t_0$ for $w_0, t_0 \in U$. So $T(\cdot)x$ is continuous at t and the proof is complete.

Datry and Muraz [4] obtained Theorem 3.1 under the additional assumption that J is a group. Basit and Pryde [1] also obtained this result for groups, but without the assumption that J is abelian.

The dual representation of a homomorphism $T: J \to L(X)$ is the homomorphism $T^*: J \to L(X^*)$ defined by $\langle x, T^*(t)\varphi \rangle = \langle T(t)x, \varphi \rangle$ for all $x \in X$, $\varphi \in X^*$ and $t \in J$. We immediately have

COROLLARY 3.2. Let J be a locally compact Hausdorff abelian unital topological semigroup satisfying condition (2.1). If $T: J \to L(X)$ is a strongly (or weakly) continuous homomorphism and X is reflexive then $T^*: J \to L(X^*)$ is strongly continuous.

For non-linear operator semigroups we have

THEOREM 3.3. Let J be a unital subsemigroup satisfying condition (2.3) of a locally compact Hausdorff abelian topological group G. Let C be a subset of a Banach space X. Every weakly continuous homomorphism $T: J \to \text{Lip}(C)$ is strongly continuous on J° .

Proof. Let $x \in C$. By Proposition 1.3, $T(\cdot)x$ is continuous on a dense subset A_x of J° . Let $t \in J^{\circ}$. By (2.3) there exist $s \in J$ and $h \in A_x$ such that t = s + h. Let $\kappa > 0$ be a Lipschitz constant for T(s). For each $\varepsilon > 0$ there is an open neighbourhood U of h in G such that $U \subseteq J^{\circ}$ and $||T(u)(x) - T(h)(x)|| < \varepsilon/\kappa$ for all $u \in U$. Now s + U is a neighbourhood of t in J and for $v = s + u \in U$ we have

$$||T(v)(x) - T(t)(x)|| = ||T(s+u)(x) - T(s+h)(x)|| \le \kappa ||T(u)(x) - T(h)(x)|| < \varepsilon.$$

Hence $T(\cdot)(x)$ is continuous at t as claimed.

COROLLARY 3.4. Let G be a locally compact Hausdorff abelian topological group and C a subset of a Banach space X. Every weakly continuous homomorphism $T: G \to \operatorname{Lip}(C)$ is strongly continuous.

4. Strongly measurable homomorphisms. In this section J is a closed unital subsemigroup of a locally compact abelian topological group G equipped with Haar measure μ . By $L^{\infty}(J,X)$ we denote the Banach space of strongly measurable functions $g: J \to X$ for which $\|g(\cdot)\|_X \in L^{\infty}(J)$; by χ_V the characteristic function of a set V; and by $L^{\infty}_{\text{loc}}(J,X)$ the space of functions $g: J \to X$ for which $g\chi_V \in L^{\infty}(J,X)$ for all compact subsets V of J.

Dunford [5, Theorem] proved that every strongly measurable and locally bounded homomorphism $T:[0,\infty)\to L(X)$ is strongly continuous from the right on $(0,\infty)$. In generalizing this result, we will assume that $T:J\to L(X)$ is locally strongly measurable and locally bounded. By this we mean $T(\cdot)x\in L^\infty_{\mathrm{loc}}(J,X)$ for every $x\in X$. With the above assumptions on J we have

LEMMA 4.1. If $g \in L^{\infty}_{loc}(J,X)$ then

$$\lim_{h \to 0} \int_{K} \|g(s+h) - g(s)\| \, d\mu(s) = 0$$

for each compact subset K of J.

Proof. Extending g by 0 outside J we reduce the lemma to the case J=G. If W is a relatively compact subset of G then

$$\lim_{h\to 0} \int_G |\chi_W(s+h) - \chi_W(s)| \, d\mu(s) = 0.$$

See for example [9, 1.1.5]. It follows that

$$\lim_{h\to 0} \int\limits_G \|\psi(s+h) - \psi(s)\| \, d\mu(s) = 0$$

for each step function $\psi = \sum_{j=1}^{N} \chi_{W_j} x_j$, where $x_j \in X$ and W_j is relatively compact in G. Given a compact subset K of G and $g \in L^{\infty}_{loc}(G,X)$, let V be a compact neighbourhood of 0. Then g is strongly measurable on the compact set K + V. So there is a sequence of step functions ψ_j convergent μ -a.e. to g on K + V. By Fatou's lemma,

$$\int\limits_K \|g(s+h) - g(s)\| d\mu(s) \le \liminf_{j \to \infty} \int\limits_K \|\psi_j(s+h) - \psi_j(x)\| d\mu(s)$$

for each $h \in V$. The result follows.

THEOREM 4.2. Let J be a closed unital subsemigroup satisfying (2.2) of a locally compact Hausdorff abelian topological group G. If the homomorphism $T: J \to L(X)$ is locally strongly measurable on J and locally bounded, then T is strongly continuous on J° .

Proof. Let $t \in J^{\circ}$ and $x \in X$. Choose compact neighbourhoods U, V of 0 in G such that $V - V \subseteq U$ and $t + U \subseteq J$. Let $K = V \cap J^{\circ}$. Then $t + V - K \subseteq J$ and by (2.2), $\mu(K) > 0$. Since T is strongly measurable and locally bounded, $T(\cdot)x$ is Bochner integrable on K. Set $\kappa = \sup_{s \in K} ||T(s)||$ and let $\varepsilon > 0$. By Lemma 4.1 there is a neighbourhood W of 0 in G such that $W \subseteq V$ and

$$\int\limits_{t-K}\|T(s+h)x-T(s)x\|\,d\mu(s)<\frac{\varepsilon\mu(K)}{\kappa+1}$$

for all $h \in W$. Hence, for $h \in W$,

$$\begin{split} \|T(t+h)x - T(t)x\| &= \frac{1}{\mu(K)} \left\| \int\limits_K (T(s)T(t+h-s)x - T(s)T(t-s)x) d\mu(s) \right\| \\ &\leq \frac{\kappa}{\mu(K)} \int\limits_{t-K} \|T(s+h)x - T(s)x\| d\mu(s) < \varepsilon. \end{split}$$

So $T(\cdot)x$ is continuous on J° .

This theorem is also proved in Hille and Phillips [7, Theorem 10.10.1] for the special case $J = \mathbb{R}^n_+ = \{t = (t_1, \dots, t_n) \in \mathbb{R}^n : t_j \geq 0 \text{ for } 1 \leq j \leq n\}$. Note that if the homomorphism $T : \mathbb{R}^n_+ \to L(X)$ is strongly continuous at 0 then each of the sets $\{T(t)x : x \in X, t \in \mathbb{R}^n_+ \setminus \{0\}, t_j = 0 \text{ for } j \neq k\}$,

where $1 \le k \le n$, is dense in X. Hille and Phillips also show that this last condition, together with strong measurability and local boundedness, implies strong continuity of T at 0 and hence on all of \mathbb{R}^n_+ [7, Theorem 10.10.2].

Remark 4.3. A homomorphism $T: J \to \text{Lip}(C)$ is nonexpansive if

$$||T(t)(y) - T(t)(z)|| \le ||y - z||$$
 for all $y, z \in C$ and all $t \in J$.

More generally, a homomorphism $T: J \to \text{Lip}(C)$ is locally uniformly Lipschitz-valued if for each compact $K \subset J$,

 $||T(t)(y) - T(t)(z)|| \le \kappa ||y - z||$ for all $y, z \in C$, all $t \in K$ and some $\kappa > 0$. Theorem 4.2 remains valid, with the same proof, for a homomorphism $T: J \to \text{Lip}(C)$ which is locally strongly measurable on J and locally uniformly Lipschitz-valued.

The following example shows that J° cannot be replaced by J in Theorem 4.2.

EXAMPLE 4.4. Let $J=[0,\infty)$ and let X be a separable Hilbert space. Let $g_1:[0,1]\to X$ be as defined in Example 1.2(a). Define $g:J\to X$ by $g(t)=g_1(1-t)$ if $0\le t\le 1$ and g(t)=0 for t>1. Then g is weakly continuous on J, continuous on J° , discontinuous at 0, uniformly continuous on t+J for each t>0, and bounded. Let B(J,X) be the Banach space of all bounded functions $f:J\to X$ and let Y be the smallest closed subspace of B(J,X) containing all the translates g_t . Here $t\in J$ and $g_t(s)=g(s+t)$ for $s\in J$. Define $T:J\to L(Y)$ by $T(s)g_t=g_{t+s}$. If $f\in Y$ and $t\in J^\circ$ then f_t is uniformly continuous on J, which means $T(\cdot)f$ is continuous at t. It follows that T is strongly measurable on J and strongly continuous on J° . However, T is neither strongly continuous at 0 nor, by Theorem 3.1, weakly continuous at 0.

Acknowledgements. The authors thank the referee for drawing their attention to Example 1.2(b) and for his critical remarks.

References

- B. Basit and A. J. Pryde, Differences of vector-valued functions on topological groups, Proc. Amer. Math. Soc. 124 (1996), 1969-1975.
- [2] -, -, Unitary eigenvalues of semigroup homomorphisms, Monash University Analysis Paper 105, May 1997, 8 pp.
- [3] J. P. R. Christensen, Joint continuity of separately continuous functions, Proc. Amer. Math. Soc. 82 (1981), 455-461.
- [4] C. Datry et G. Muraz, Analyse harmonique dans les modules de Banach I: propriétés générales, Bull. Sci. Math. 119 (1995), 299-337.
- [5] N. Dunford, On one parameter groups of linear transformations, Ann. of Math. 39 (1938), 569-573.

[6] J. A. Goldstein, Extremal properties of contraction semigroups on Hilbert and Banach spaces, Bull. London Math. Soc. 25 (1993), 369-376.

[7] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Publ. 31, Amer. Math. Soc., 1957.

[8] I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515-531

[9] W. Rudin, Fourier Analysis on Groups, Interscience, 1967.

[10] K. Yosida, Functional Analysis, Springer, 1966.

Department of Mathematics Monash University Clayton, Victoria 3168 Australia

78

E-mail: bbasit@vaxc.cc.monash.edu.au ajpryde@vaxc.cc.monash.edu.au

> Received September 16, 1997 (3956) Revised version April 28, 1998

STUDIA MATHEMATICA 132 (1) (1999)

Lower bounds for Schrödinger operators in $H^1(\mathbb{R})$

by

RONAN POULIQUEN (Brest)

Abstract. We prove trace inequalities of type $||u'||_{L^2}^2 + \sum_{j \in \mathbb{Z}} k_j |u(a_j)|^2 \ge \lambda ||u||_{L^2}^2$ where $u \in H^1(\mathbb{R})$, under suitable hypotheses on the sequences $\{a_j\}_{j \in \mathbb{Z}}$ and $\{k_j\}_{j \in \mathbb{Z}}$, with the first sequence increasing and the second bounded.

Introduction. In 1989, R. Strichartz proved (see [Str]) that for an increasing real sequence $\{a_j\}_{j\in\mathbb{Z}}$ unbounded from above and below and such that, for all j in \mathbb{Z} , $a_{j+1}-a_j<\beta$ where β is a fixed positive constant, the following inequality holds in $H^1(\mathbb{R})$:

(1)
$$\frac{\beta}{\sqrt{8}} \|u'\|_{L^2} + \sqrt{\beta} \Big(\sum_{j \in \mathbb{Z}} |u(a_j)|^2 \Big)^{1/2} \ge \|u\|_{L^2}.$$

This result enables us to define operators such as $-\Delta + \lambda \sum_{j \in \mathbb{Z}} \delta_{a_j}$ with $\lambda > 8/\beta$, where δ_{a_j} is the Dirac measure at a_j , as unbounded selfadjoint operators in $L^2(\mathbb{R})$, using a theorem of [Re-Si]. This theorem (see [Re-Si], Th. VIII.15) states that a unique selfadjoint operator can be associated with every lower semibounded and closed quadratic form. Indeed, the form $\|u'\|_{L^2}^2 + \lambda \sum_{j \in \mathbb{Z}} |u(a_j)|^2$ is lower semibounded (as sketched at the end of the Introduction) and closed (as shown in [Pou]). In order to give a sense to more general operators, using the same theorem, we prove the corresponding trace inequalities.

The aim of this paper is to present inequalities similar to (1), with a family $\{k_j\}_{j\in\mathbb{Z}}$ of weights attached to the points a_j . The improvement is that we allow the k_j 's to take negative values and tend to 0 at infinity under suitable hypotheses on the quotient $|k_j|/(a_{j+1}-a_j)$.

In Section 1, we provide the following generalizations of (1):

(1')
$$(\exists \lambda_1 > 0) \ (\forall u \in H^1(\mathbb{R})) \quad \|u'\|_{L^2}^2 + \sum_{j \in \mathbb{Z}} |k_j| \cdot |u(a_j)|^2 \ge \lambda_1 \|u\|_{L^2}^2,$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 35P05, 35P15; Secondary 46N50