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Strong continuity of semigroup homomorphisms
by
BOLIS BASIT and A, J. PRYDE (Clayton, Vic.)

Abstract. Let J be an abelian topological semigroup and €' a subset of a Banach
space X. Let L{X) be the space of bounded linear operators on X and Lip(C) the space
of Lipschitz functions f : ¢ — . We exhibit a large class of semigroups J for which
every weakly continuous semigroup homomorphism T : J — L{X) is necessarily strongly
continuous. Similar results are obtained for weakly continuous homomorphisms 7' : J —
Lip(C) and for strongly meagurable homomorphisms T : J — L(X).

1. Introduction. Throughout this note J will denote an abelian topo-
logical semigroup and C a subset of a Banach space X. We consider homo-
morphisms T': J — F(C) where F(C) is a semigroup under composition of
functions f : € — €. In particular, we will take F(C) = G, the space of all
functions f : ¢ — €, F(C) = Lip(C), the subsemigroup of C consisting of
Lipschitz functions, and, with C' = X, F(C) = L(X), the space of bounded

. linear operators on X.

A homomorphism T : J— F(C) is called weakly continuous if (T'(-)(x), v)
is continuous for each z € C and ¢ € X*. It is called strongly continuous if
T{)(x) is continuous for each x € C.

Such homomorphisms have recently been considered by the authors in
[2]. The results therein generalized previous work by Goldstein [6] and others
who considered contractive representations T : [0,00) — L(X). In the latter
case, it is well known that weak continuity of T is equivalent to strong
continuity. Sce for example [7, p. 305] and [10, p. 233].

It is therefore natural to ask

QuUESTION 1.1, Is every weakly continuous homomorphismT + J — F(C)
strongly continuous?

The following example shows that for certain semigroups J the answer
is negative.
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FixAMPLE 1.2. (a) Let J = [1,00) and let X be a separable Hilbert space
with orthonormal basis {e; : j € N}. For k € N define g : [0, 1] — X by

gk;(t) = 2tek+1 if 0 S t _<_ 1/2,
gr{t) = (1~ A)ektn + Alrinr
n n+1
ft=(01- ~— | where 0< A< landn €N,
ift=1 )\)(n+1>+)\(n+2)were <A<lan
gk(1)=0
Then define g: J — X by

Q(t)zgn(n(n—l—l)( +__2 >
—

and g(t) =0 if ¢ = 2. Finally, define T': J — L{X) b
T(t)(z) = (m,e1)9(D).

Note that the sequence (e,,) converges weakly to 0 in X but not strongly.
Moreover, T($)T(s){z) = T'(¢+ s)(z) = 0 for all s,£ € J. It follows that T is
a contractive representation which is weakly continuous on J and strongly
continuous except on the set {2} U {2 — 1/(n+1) :n &€ N}.

(b} Note that the concrete choice of a map g : J — {e;}- in (a) is not
important, but essential are its properties:

-1-§ t L2 - where n € N,
n

(i) g is weakly continuous and vanishing on [2,00),
(ii) g is not strongly continuous.

Using an orthonormal decomposition {el}‘L =X, & Xy ... into infinite-
dimensional subspaces one can similarly construct g = 3 ey 98: 95 () € X,
with property (i) such that every rational ¢ € {1, 2] is a point of discontinuity
of g in the strong topology.

In this note we obtain classes of semigroups J for which the answer to
Question 1.1 is affirmative for the codomains L(X) and Lip{C'). The proofs
are based on the following proposition which is an immediate consequence
of Namioka [8, Theorem 4.1].

PROPOSITION 1.3. Let J be locally compact Hausdorff and T : J ~ C¢
weakly continuous. Then for every x € C there is a dense Gy set Ay in J
such that T'(-)(z) is continuous on A,.

REMARK 1.4. Proposition 1.3 remains valid for the more general case
of o-well a-favourable topological spaces J as defined in Christensen {3]. In
this case we use [3, Theorem 1] in place of [8, Theorem 4.1].

icm

Strong condinuily of semigroup homomorphisms 73

ReMark 1.5. Denote the set of neighbourhoods of an element ¢ in J
by N(t). Let T : J — Lip(C') be a weakly continuous homomorphism, let
z € C, and choose A, as in Proposition 1.3, If there exists a € A, such that
t+N(a) SNt +a) forall £ € J, then T(-)(z) is continuous on a + J.

Proof. Let ¢ € J and let s > 0 be a Lipschitz constant for T'(¢). Given
e > 0, choose a neighbourhood U of @ such that ||T(h)(z) ~ T(a)(z)|| < £/x
whenever b € U, Then | T + h){z) — T(t + a)(z)|] < ¢ for all h € U. Since
t+ U & N(t+a) we are finished.

It follows from Remark 1.5 that if T° : [1,00) — Lip{C) is a weakly
continuoud homomorphism, then T is strongly continuous on (2, 00). Ex-
ample 1.2 shows that the conclusions of Proposition 1.3 and Remark 1.5
cannot be greatly improved without additional restrictions on J. In particu-
lar, we will require that J has a unit 0. These regtrictions are introduced in
Section 2 and our results for weakly continuous homomorphisms are in Sec-
tion 3. Finally, in Section 4 we discuss strong continuity for homomorphisms
T:J = L(X) which are only assumed to be locally strongly measurable
and locally bounded.

2. Restrictions on semigroups. Throughout this section J will de-
note an abelian topological semigroup with unit 0. Consider the following
condition.

(2.1)  For each neighbourhood U of 0 in J, for each t & J, and for each
neighbourhood V' of t, there exists s € V such that s +U is a
netghbourheood of t.

This condition is satisfied, for exarople, by the additive subsemigroups of
R? defined by Ji = [0,00), Jo = {(2,¥) : ly| € #, 0 < = < co}, and by any
topological group G. On the other band, J3 = {(z,¥) : |[y| £ 2*, 0 <z < o}
and Jy = [0, 1JU {(z,7) : [y Sz —1, 1 € & < oo} do not satisfy (2.1).

In our next two conditions we will require that J be a topological sub-
space of an abelian topological group G. We will denote this by J C &. The
interior of J in & will be denated by J°, Congider:

(2.2)  J € G and cach neighbourhood of 0 in J coniains an open subset
of G.

This condition is satisfied by Jy, J2, G and J3, but not by Jy4. Moreover,
if J € G and J° # 0 then (2.1) implies (2.2). Finally, consider:

(2.3) J C @ and for ecach t € J° and each dense subset A of J° there
exigls s € J such thatt — s € A.

Note that (2.3) is satisfied by all of Ji, Ja, G, J3 and Jy. Moreover,
(2.2) implies (2.3). Indeed, let t € J° and let A be a dense subset of J°.
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So there is an open neighbourhood W of 0 in G such that W = —W and
t+ W C J. By (2.2) there is an open subset U/ of G such that U C W N J.
As A is dense in J°, there exists h € U N A. Hence s =t — h € J and (2.3)
follows.

8. Weakly continuous homomorphisms. For representations we have
the following.

THEOREM 3.1. Let J be o locally compact Hausdorff abelian unital topo-
logicel semigroup satisfying condition (2.1). Every weakly continuous homo-
morphism T : J — L(X) is strongly continuous.

Proof. Let o € X. By Proposition 1.3, T(-)z is continuous on a dense
Gs-set A, in J.

First we prove continuity of T'(-)z at 0. Let V' be a compact neighbour-
hood of 0 in J. Since T is weakly continuous, T(V)y is weakly compact
for all y € X. By the uniform boundedness theorem T(V') is bounded. Let
& = sup,ey || T(t)]| and set M = co{T(t)x : t € A.}. The weak and norm
closures of M coincide, so z € M. Given £ > 0, choose y € M such that
ly — 2|l <e/(26+2). Soy = 37, ¢; T{ay)x for some a; € Az and ¢; >0
with 370, ¢j = L. As T(-)z is continuous at each a;, there is a neighbour-
hood U of 0 such that ||T'(h + aj)z — T'(a;)z|| < €/2 for all h € U. Hence

IT(h)e — l| < |T(h)e — T(Ry| + TRy - v + ly - |
<+ m)lle—yl+ | 3670+ a5)z - Tla)al| < e
i=1

for all h € U NV. Hence T'(-)x is continuous at 0.

Now let ¢t € J\ {0}. Let V be a compact neighbourhood of ¢. Define
& = sup,cy || T(t)||. For € > 0 choose a neighbourhood U of 0 such that
|T(h)s — =)l < e/(2x+1) for all A € U. By (2.1) there exists & € V such
that s + 7 is a neighbourhood of {. Hence, for all w € s + U,

T (w)z - T(O)z]| < |T(w)z - T(s)zl +[|T(s)z ~ T(¢)e
< HTEINT (wo)z — o] + |l — T{to)2l] < &

where w = s -+wyp, t = s+t for wg,te € U. So T'(\)z is continuous at + and
the proof is complete.

Datry and Muraz [4] obtained Theorem 3.1 under the additional as-
sumption that J is a group. Basit and Pryde [1] also obtained this result for
groups, but without the assumption that J is abelian. '

The dual representation of a homomorphism T : J —
momorphism T% : J — L{X*) defined by {z,T*(t)y) =
z€ X, p & X* and t € J. We immediately have

L(X) is the ho-
(T'(t)z, ) for all
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CoroLLARY 3.2. Let J be a locally compact Hausdorff abelian unital
topological semigroup selisfying condition (2.1). If T : J — L{X) is a
strongly (or weakly) continuous homomorphism and X s reflezive then
7% o J — L{X*} 15 strongly continuous.

For non-linear operator semigroups we have

THEOREM 3.3, Let J be a unital subsemnigroup sotisfying condition (2.3)
of a locally compact Hausdorff abelian topological group G. Let C be a subset
of o Banach spuce X. Bvery weakly continuous homomorphism T+ J —
Lip(C) s strongly continuous on J°.

Proof. Let z € €. By Proposition 1.3, T(-)z is continuous on a dense
gubsct Ay of J°. Let t € J° By (2.3) there exist s € J and h € A,
such that ¢ = g + h. Let & > 0 be a Lipschitz constant for T'(s). For each
g > (} there is an open neighbourhood U of A in G such that 7 C J° and
[T (u){z) = T(h)(@)|| < &/x for all u € U. Now s+ U is a neighbourhood of
tin J and for v = s +u € U we have

[T (v)(@) = TE) )| = |T(s + u)(z) — T(s + h)(@)
< &[Tu){z) - TR) ()] <&
Hence T'(-)(x) is continuous at t as claimed.

COROLLARY 3.4. Let G be o locally compact Hausdorff abelion fopolog-
ical group and C' a subset of a Banach space X. Every weokly continuous
homororphism T : G — Lip(C) is strongly continuous.

4. Strongly measurable homomorphisms. In this section J is a
closed unital subsemigroup of a locally compact abelian topological group
G equipped with Haar measure . By L% (J, X) we denote the Banach space
of strongly measurable functions g : J — X for which |lg(-}|lx € L*°(J);
by xv the characteristic function of a set V; and by L{2.(J, X) the space of
functions g : J — X for which gxv € L°°(J, X)) for all compact subsets V
of J. :

Dunford [5, Theorem] proved that every strongly measurable and locally
bounded homomorphism T : [0, 00) — L{X) is strongly continuous from the
right on (0, 00). In generalizing this result, we will assume that T : J —
L(X) is locally strongly measurable and locally bounded. By this we mean
T( e € Lo (J, X) for every @ € X. With the above assumptions on J we
have

LEMMA 4.1. If g & L5, (J, X) then
lim § llg(s -+ h) — g(s)| du(s) = 0
A0 i
for each compact subset K of J.



76 B. Basit and A. J. Pryde

Proof. Extending g by 0 outside J we reduce the lemma to the case
J = G. I W is a relatively compact subset of G then

Jim, (S} lxw (s + h) = xw ()| du(s) = 0.

See for example {9, 1.1.5]. It follows that
m § (s + k) = 3 (s)]| duls) = 0

li

h—0 b
for each step function ¥ = Zj\; Xw, ©j, where ¢; € X and W; is relatively
compact in G- Given a compact subset K of G and g € L5 (G, X), let V
be a compact neighbourhood of 0. Then g is strongly measurable on the
compact set K -+ V. So there is a sequence of step functions 1h; convergent
p-a.e, to g on K + V. By Fatou’s lemma,

{ las +h) — g(s)l| dys(s) < iminf | apy(s +h) = (@)l dpu(s)
K K
for each h € V. The result follows.

THEOREM 4.2. Let J be a closed unital subsemigroup satisfying (2.2) of a
locally compact Hausdorff abelian topological group G. If the homomorphism
T :J — L(X) is locally strongly measurable on J and locally bounded, then
T is strongly continuous on J°.

Proof Lett € J° and z € X. Choose compact neighbourhoods U, ¥V
of Oin @ suchthat V-V C Uand t+U C J. Let K =V nJ° Then
t+V — K C Jand by (2.2}, p(K) > 0. Since T is strongly measurable and
locally bounded, T(\)z is Bochner integrable on K. Set « = sup,cx [ T'(s)|l
and let € > 0. By Lemma 4.1 there is a neighbourhood W of 0 in G such
that W C V and

eu(K)

TG+ - Tla)el dule) < S5

for all h € W. Hence, for h € W,

T ( + h)z ~ T(t)a|| = H%H {(T()T(t+ h - 8)e = T(s)T(t -~ s)a:)dg,a(s)‘
K
< @ fng |T(s + h)a — T'(s)z|| du{s) < &.

So T'(-)z is continuous on J°.

This theorem is also proved in Hille and Phillips [7, Theorem 10.10.1]
for the special case J =R = {t = (f1,...,t,) € R* : £; > 0for 1 < § < n}.
Note that if the homomorphism T' : RZ — L(X) is strongly continuous at
0 then each of the sets {T'(t)z : z € X, t € R} \ {0}, t; = 0 for j # k},

icm

Strong continuity of semigroup homomorphismas 77

where 1 < k < n, is dense in X, Hille and Phillips also show that this last
condition, together with strong measurability and local boundedness, implies
strong continuity of T at ¢ and hence on all of R} [7, Theorem 10.10.2].

REMARK 4.3. A homomorphism T': J — Lip(C') is nonezpansive if
1T - T ()| < lly—2| foralily,zeCandallted

More generally, a homoworphism T @ J — Lip{C) is locally uniformly
Lipschitz-valued if for each compact K ¢ J,

1T (y) ~TE)(2)] < klly—=2] forally,ze C, allt € K and some & > 0.

Theorem 4.2 remaing valid, with the same proof, for a homomorphism T :
J -+ Lip(C) which is locally strongly measurable on J and locally uniformly
Lipschitz-valued.

The following example shows that J° cannot be replaced by J in Theo-
rem 4.2.

ExamMpPLE 4.4. Let J = [0,00) and let X be a separable Hilbert space.
Let g1 @ [0,1] — X be as defined in Example 1.2(a). Define g : J — X
by g(t) = g1(1 — ) if 0 €1 < 1 and g(t) = 0 for ¢ > 1. Then g is weakly
continuous on J, continuous on J°, discontinuous at 0, uniformly continuous
on ¢+ J for each ¢ > 0, and bounded. Let B(J, X) be the Banach space of
all bounded functions f:J — X and let ¥ be the smallest closed subspace
of B(J, X) containing all the translates g;. Here t € J and gi(s) = g(s -+ ¢)
for s € J. Define T2 J — L(Y) by T(8)gt = geqs. f f €Y and £ € J° then
f, is uniformly continuous on J, which means T(-}f is continuous at ¢. It
follows that T' is strongly measurable on J and strengly continuous on J°.
However, T' is neither strongly continuous at 0 nor, by Theorem 3.1, weakly
continuous at 0.

Acknowledgements. The authors thank the referee for drawing their
attention to Example 1.2(b) and for his critical remarks.
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Lower bounds for Schrédinger operators in H'(R)

by
RONAN POULIQUEN (Brest)

Abstract. We prove ftrace inequalities of type |u'||%a -+ Yiez Eilu(a)* > Alul%e

where u € H(R), under sultable hypotheses on the sequences {a;} ez and {k;} jez, With
the first sequence increasing and the second bounded.

Introduction. In 1989, R. Strichartz proved (see [Str]) that for an in-
creasing real sequence {a;}jez unbounded from above and below and such
that, for all j in Z, aju1 — a; < 8 where (8 is a fixed positive constant, the
following inequality holds in H*(R):

1/2
& Lo+ VBT an) " 2 flsa
JEZ

This result enables usg to define operators such as —A + )‘ZJEZ 5% with
X > 8/3, where 84, i8 the Dirac measure at aj, as unbounded selfadjoint
operators in L2(R), using a theorem of [Re-Si]. This theorem (see [Re-5il,
Th. VIIL15) states that a unique selfadjoint operator can be associated
with every lower semibounded and closed gquadratic form. Indeed, the form
|22 -+ A Y ez [wlag)|? is lower semibounded (as sketched at the end of
the Introduction) and closed (as shown in [Pou]). In order to give a sense to
more general operators, using the same theorem, we prove the corresponding
trace inequalities.

The aim of this paper is to present inequalities similar to (1), with a
family {k;}jen of weights attached to the points a;. The improvement is
that wo allow the ky’s to take negative values and tend to 0 at infinity under
suitable hypotheses on the quotient |ky/ (a5 — a5)-

In Soetion 1, we provide the following generalizations of (1):

(1) (@ >0) (Vue BR) ol + D Il lulan)i® = Mallullze,
jes
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