Strong continuity of semigroup homomorphisms

by

BOLIS BASIT and A. J. FRYDE (Clayton, Vic.)

Abstract. Let \(J \) be an abelian topological semigroup and \(C \) a subset of a Banach space \(X \). Let \(L(X) \) be the space of bounded linear operators on \(X \) and \(\text{Lip}(C) \) the space of Lipschitz functions \(f : C \rightarrow C \). We exhibit a large class of semigroups \(J \) for which every weakly continuous semigroup homomorphism \(T : J \rightarrow L(X) \) is necessarily strongly continuous. Similar results are obtained for weakly continuous homomorphisms \(T : J \rightarrow \text{Lip}(C) \) and for strongly measurable homomorphisms \(T : J \rightarrow L(X) \).

1. Introduction. Throughout this note \(J \) will denote an abelian topological semigroup and \(C \) a subset of a Banach space \(X \). We consider homomorphisms \(T : J \rightarrow F(C) \) where \(F(C) \) is a semigroup under composition of functions \(f : C \rightarrow C \). In particular, we will take \(F(C) = C^C \), the space of all functions \(f : C \rightarrow C \), \(F(C) = \text{Lip}(C) \), the subsemigroup of \(C^C \) consisting of Lipschitz functions, and, with \(C = X \), \(F(C) = L(X) \), the space of bounded linear operators on \(X \).

A homomorphism \(T : J \rightarrow F(C) \) is called weakly continuous if \((T(\cdot))(x), \varphi \) is continuous for each \(x \in C \) and \(\varphi \in X^* \). It is called strongly continuous if \(T(\cdot)(x) \) is continuous for each \(x \in C \).

Such homomorphisms have recently been considered by the authors in [2]. The results therein generalized previous work by Goldstein [6] and others who considered contractive representations \(T : [0, \infty) \rightarrow L(X) \). In the latter case, it is well known that weak continuity of \(T \) is equivalent to strong continuity. See for example [7, p. 308] and [10, p. 233].

It is therefore natural to ask

QUESTION 1.1. Is every weakly continuous homomorphism \(T : J \rightarrow F(C) \) strongly continuous?

The following example shows that for certain semigroups \(J \) the answer is negative.

1991 *Mathematics Subject Classification*: Primary 22A25; Secondary 47D03.

Key words and phrases: representation, semigroup homomorphism, weak continuity, strong continuity, Lipschitz map.
EXAMPLE 1.2. (a) Let $J = [1, \infty)$ and let X be a separable Hilbert space with orthonormal basis $\{e_j : j \in \mathbb{N}\}$. For $k \in \mathbb{N}$ define $g_k : [0, 1] \to X$ by

\[
g_k(t) = \begin{cases} 2te_k & \text{if } 0 \leq t \leq 1/2, \\ (1 - \lambda)e_k + \lambda e_{k+1} & \text{if } t = (1 - \lambda)\left(\frac{n}{n+1}\right) + \lambda\left(\frac{n+1}{n+2}\right), \text{ where } 0 \leq \lambda \leq 1 \text{ and } n \in \mathbb{N}, \\ g_k(1) = 0. & \end{cases}
\]

Then define $g : J \to X$ by

\[
g(t) = g_n\left(n(n+1)\left(t + \frac{1}{n} - 2\right)\right)
\]

if $2 - \frac{1}{n} \leq t \leq 2 - \frac{1}{n+1}$, where $n \in \mathbb{N}$, and $g(t) = 0$ if $t \geq 2$. Finally, define $T : J \to L(X)$ by

\[
T(t)(x) = (x, e_1)g(t).
\]

Note that the sequence (e_n) converges weakly to 0 in X but not strongly. Moreover, $T(t)T(s)(x) = T((t+s))(x) = 0$ for all $s, t \in J$. It follows that T is a contractive representation which is weakly continuous on J and strongly continuous except on the set $\{2 - 1/(n+1) : n \in \mathbb{N}\}$.

(b) Note that the concrete choice of a map $g : J \to \{e_1\}^\perp$ in (a) is not important, but essential are its properties:

(i) g is weakly continuous and vanishing on $[2, \infty)$,

(ii) g is not strongly continuous.

Using an orthonormal decomposition $\{e_1\}^\perp = X_1 \oplus X_2 \oplus \ldots$ into infinite-dimensional subspaces one can similarly construct $g = \sum_{k=1}^\infty g_k$, $g_k(t) \in X_k$, with property (i) such that every rational $t \in [1, 2]$ is a point of discontinuity of g in the strong topology.

In this note we obtain classes of semigroups J for which the answer to Question 1.1 is affirmative for the codomains $L(X)$ and $\text{Lip}(C)$. The proofs are based on the following proposition which is an immediate consequence of Namioka [8, Theorem 4.1].

PROPOSITION 1.3. Let J be locally compact Hausdorff and $T : J \to OC$ weakly continuous. Then for every $x \in C$ there is a dense G_δ set A_x in J such that $T(\cdot)(x)$ is continuous on A_x.

REMARK 1.4. Proposition 1.3 remains valid for the more general case of σ-well α-favorable topological spaces J as defined in Christensen [9]. In this case we use [3, Theorem 1] in place of [8, Theorem 4.1].

REMARK 1.5. Denote the set of neighborhoods of an element t in J by $N(t)$. Let $T : J \to \text{Lip}(C)$ be a weakly continuous homomorphism, let $x \in C$, and choose A_x as in Proposition 1.3. If there exists $a \in A_x$ such that $t + N(a) \subseteq N(t + a)$ for all $t \in J$, then $T(\cdot)(a)$ is continuous on $a + J$.

Proof. Let $\varepsilon > 0$ and let $k > 0$ be a Lipschitz constant for $T(t)$. Given $\varepsilon > 0$, choose a neighborhood U of a such that $||T(h)(x) - T(a)(x)|| < \varepsilon/k$ whenever $h \in U$. Then $||T(t + h)(x) - T(t + a)(x)|| < \varepsilon$ for all $h \in U$. Since $t + U \in N(t + a)$ we are finished.

It follows from Remark 1.5 that if $T : [1, \infty) \to \text{Lip}(C)$ is a weakly continuous homomorphism, then T is strongly continuous on $(2, \infty)$. Example 1.2 shows that the conclusions of Proposition 1.3 and Remark 1.5 cannot be greatly improved without additional restrictions on J. In particular, we will require that J has a unit 0. These restrictions are introduced in Section 2 and our results for weakly continuous homomorphisms are in Section 3. Finally, in Section 4 we discuss strong continuity for homomorphisms $T : J \to L(X)$ which are only assumed to be locally strongly measurable and locally bounded.

2. Restrictions on semigroups. Throughout this section J will denote an abelian topological semigroup with unit 0. Consider the following conditions:

(2.1) For each neighborhood U of 0 in J, for each $t \in J$, and for each neighborhood V of t, there exists $s \in V$ such that $s + U$ is a neighborhood of t.

This condition is satisfied, for example, by the additive subsemigroups of \mathbb{R}^2 defined by $J_1 = [0, \infty)$, $J_2 = \{(x, y) : |y| \leq x, 0 \leq x < \infty\}$, and by any topological group G. On the other hand, $J_3 = \{(x, y) : |y| \leq x^2, 0 \leq x < \infty\}$ and $J_4 = [0, 1] \cup \{(x, y) : |y| \leq x - 1, 1 \leq x < \infty\}$ do not satisfy (2.1).

In our next two conditions we will require that J be a topological subspace of an abelian topological group G. We will denote this by $J \subseteq G$. The interior of J in G will be denoted by J^o. Consider:

(2.2) $J \subseteq G$ and each neighborhood of 0 in J contains an open subset of G.

This condition is satisfied by J_1, J_2, G, and J_3, but not by J_4. Moreover, if $J \subseteq G$ and $J^o \neq \emptyset$ then (2.1) implies (2.2). Finally, consider:

(2.3) $J \subseteq G$ and for each $t \in J^o$ and each dense subset A of J^o there exists $s \in J$ such that $t - s \in A$.

Note that (2.3) is satisfied by all of J_1, J_2, G, J_3, and J_4. Moreover, (2.2) implies (2.3). Indeed, let $t \in J^o$ and let A be a dense subset of J^o. This completes the proof of the following theorem:
So there is an open neighbourhood W of 0 in G such that $W = -W$ and $t + W \subseteq J$. By (2.2) there is an open subset U of G such that $U \subseteq W \cap J$. As A is dense in J^0, there exists $h \in U \cap A$. Hence $s = t - h \in J$ and (2.3) follows.

3. Weakly continuous homomorphisms. For representations we have the following.

Theorem 3.1. Let J be a locally compact Hausdorff abelian unital topological semigroup satisfying condition (2.1). Every weakly continuous homomorphism $T : J \to L(X)$ is strongly continuous.

Proof. Let $x \in X$. By Proposition 1.3, $T(\cdot)x$ is continuous on a dense G_{δ}-set A_x in J.

First we prove continuity of $T(\cdot)x$ at 0. Let V be a compact neighbourhood of 0 in J. Since T is weakly continuous, $T(V)x$ is weakly compact for all $x \in X$. By the uniform boundedness theorem $T(V)$ is bounded. Let $\kappa = \sup_{t \in V} \|T(t)\|$ and set $M = \text{co}\{T(t)x : t \in A_x\}$. The weak and norm closures of M coincide, so $x \in M$. Given $\varepsilon > 0$, choose $y \in M$ such that $\|y - z\| < \varepsilon/(2\kappa + 2)$. So $y = \sum_{j=1}^m c_j T(a_j)x$ for some $a_j \in A_x$ and $c_j > 0$ with $\sum_{j=1}^m c_j = 1$. As $T(\cdot)x$ is continuous at each a_j, there is a neighbourhood U of 0 such that $\|T(t + a_j)x - T(a_j)x\| < \varepsilon/2$ for all $t \in U$. Hence

$$\|T(t)x - x\| \leq \|T(t)x - T(h)y\| + \|T(h)y - y\| + |y - z| \leq (1 + \kappa)\|z - y\| + \left\| \sum_{j=1}^m c_j (T(t + a_j)x - T(a_j)x) \right\| < \varepsilon$$

for all $h \in U \cap V$. Hence $T(\cdot)x$ is continuous at 0.

Now let $t \in J \setminus \{0\}$. Let V be a compact neighbourhood of t. Define $\kappa = \sup_{t \in V} \|T(t)\|$. For $\varepsilon > 0$ choose a neighbourhood U of 0 such that $\|T(t)x - x\| < \varepsilon/(2\kappa + 1)$ for all $t \in U$. By (2.1) there exists $s \in V$ such that $s + U$ is a neighbourhood of t. Hence, for all $w \in s + U$,

$$\|T(w)x - T(t)x\| \leq \|T(w)x - T(s)x\| + \|T(s)x - T(t)x\| \leq \|T(s)||T(w)x - x| + \|x - T(w)x\| < \varepsilon$$

where $w = s + w_0$, $t = s + t_0$ for $w_0, t_0 \in U$. So $T(\cdot)x$ is continuous at t and the proof is complete.

Darty and Muraz [4] obtained Theorem 3.1 under the additional assumption that J is a group. Baas and Pryde [1] also obtained this result for groups, but without the assumption that J is abelian.

The dual representation of a homomorphism $T : J \to L(X)$ is the homomorphism $T^* : J \to L(X^*)$ defined by $\langle T(t)x, \varphi \rangle = (T(t)x, \varphi)$ for all $x \in X$, $\varphi \in X^*$ and $t \in J$. We immediately have

Corollary 3.2. Let J be a locally compact Hausdorff abelian unital topological semigroup satisfying condition (2.1). If $T : J \to L(X)$ is a strongly (or weakly) continuous homomorphism and X is reflexive then $T^* : J \to L(X^*)$ is strongly continuous.

For non-linear operator semigroups we have

Theorem 3.3. Let J be a unital semigroup satisfying condition (2.3) of a locally compact Hausdorff abelian topological group G. Let C be a subset of a Banach space X. Every weakly continuous homomorphism $T : J \to Lip(C)$ is strongly continuous on J^0.

Proof. Let $x \in C$. By Proposition 1.3, $T(\cdot)x$ is continuous on a dense subset A_x of J^0. Let $t \in J^0$. By (2.3) there exist $s \in J$ and $h \in A_x$ such that $t = s + h$. Let $\kappa > 0$ be a Lipschitz constant for $T(s)$. For each $\varepsilon > 0$ there is an open neighbourhood U of h in G such that $U \subseteq J^0$ and $\|T(u)(x) - T(h)(x)\| < \varepsilon/\kappa$ for all $u \in U$. Now $s + U$ is a neighbourhood of t in J and for $u = s + u \in U$ we have

$$\|T(u)(x) - T(t)(x)\| = \|T(s + u)(x) - T(s + h)(x)\| \leq \kappa \|T(u)(x) - T(h)(x)\| < \varepsilon.$$

Hence $T(\cdot)x$ is continuous at t as claimed.

Corollary 3.4. Let G be a locally compact Hausdorff abelian topological group and C a subset of a Banach space X. Every weakly continuous homomorphism $T : G \to Lip(C)$ is strongly continuous.

4. Strongly measurable homomorphisms. In this section J is a closed unital subsemigroup of a locally compact abelian topological group G equipped with Haar measure μ. By $L^\infty(J, X)$ we denote the Banach space of strongly measurable functions $g : J \to X$ for which $\|g(x)\|_X \in L^\infty(J)$; by X_V the characteristic function of a set V; and by $L^\infty(J, X)$ the space of functions $g : J \to X$ for which $g x_V \in L^\infty(J, X)$ for all compact subsets V of J.

Dunford [5, Theorem] proved that every strongly measurable and locally bounded homomorphism $T : [0, \infty) \to L(X)$ is strongly continuous from the right on $(0, \infty)$. In generalizing this result, we will assume that $T : J \to L(X)$ is locally strongly measurable and locally bounded. By this we mean $T(\cdot)x \in L^\infty(J, X)$ for every $x \in X$. With the above assumptions on J we have

Lemma 4.1. If $g \in L^\infty_{loc}(J, X)$ then

$$\lim_{h \to 0} \int_X \|g(s + h) - g(s)\| d\mu(s) = 0$$

for each compact subset K of J.
Proof. Extending g by 0 outside J we reduce the lemma to the case $J = G$. If W is a relatively compact subset of G then
\[
\lim_{h \to 0} \int_G |\chi_W(s + h) - \chi_W(s)| \, d\mu(s) = 0.
\]
See for example [9, 1.1.5]. It follows that
\[
\lim_{h \to 0} \int_G \|\psi(s + h) - \psi(s)\| \, d\mu(s) = 0
\]
for each step function $\psi = \sum_{j=1}^N \lambda_j \chi_{x_j}$, where $x_j \in X$ and W_j is relatively compact in G. Given a compact subset K of G and $g \in L^\infty_{qs}(G, X)$, let V be a compact neighbourhood of 0. Then g is strongly measurable on the compact set $K + V$. So there is a sequence of step functions ψ_j convergent μ-a.e. to g on $K + V$. By Fatou’s lemma,
\[
\int_K g(s + h) - g(s) \, d\mu(s) \leq \liminf_{j \to \infty} \int_K \psi_j(s + h) - \psi_j(s) \, d\mu(s)
\]
for each $h \in V$. The result follows.

THEOREM 4.2. Let J be a closed unital subsemigroup satisfying (2.2) of a locally compact Hausdorff abelian topological group G. If the homomorphism $T : J \to L(X)$ is locally strongly measurable on J and locally bounded, then T is strongly continuous on J^0.

Proof. Let $t \in J^0$ and $z \in X$. Choose compact neighbourhoods U, V of 0 in G such that $V - V \subseteq U$ and $t + U \subseteq J$. Let $K = V \cap J^0$. Then $t + V - K \subseteq J$ and by (2.2), $\mu(K) > 0$. Since T is strongly measurable and locally bounded, $T(\cdot)x$ is Bochner integrable on K. Set $\kappa = \sup_{s \in K} \|T(s)x\|$ and let $\varepsilon > 0$. By Lemma 4.1 there is a neighbourhood W of 0 in G such that $W \subseteq V$ and
\[
\int_{t - K} \|T(s + h)x - T(s)x\| \, d\mu(s) < \frac{\varepsilon \mu(K)}{\kappa + 1}
\]
for all $h \in W$. Hence, for $h \in W$,
\[
\|T(t + h)x - T(t)x\| = \frac{1}{\mu(K)} \int_{t - K} \|T(s)[T(t + h - s)x - T(t - s)x]d\mu(s)\|
\]
\[
\leq \frac{\kappa}{\mu(K)} \int_{t - K} \|T(s + h)x - T(s)x\| \, d\mu(s) < \varepsilon.
\]
So $T(\cdot)x$ is continuous on J^0.

This theorem is also proved in Hille and Phillips [7, Theorem 10.10.1] for the special case $J = \mathbb{R}^n_+ = \{t = (t_1, \ldots, t_n) \in \mathbb{R}^n: t_j \geq 0 \text{ for } 1 \leq j \leq n\}$. Note that if the homomorphism $T : \mathbb{R}^n_+ \to L(X)$ is strongly continuous at 0 then each of the sets $\{T(t)x : x \in X, \ t \in \mathbb{R}^n_+ \setminus \{0\}, t_j = 0 \text{ for } j \neq k\}$, where $1 \leq k \leq n$, is dense in X. Hille and Phillips also show that this last condition, together with strong measurability and local boundedness, implies strong continuity of T at 0 and hence on all of \mathbb{R}^n_+ [7, Theorem 10.10.2].

Remark 4.3. A homomorphism $T : J \to \text{Lip}(C)$ is nonexpansive if
\[
\|T(t)(y) - T(t)(z)\| \leq \|y - z\| \quad \text{for all } y, z \in C \text{ and all } t \in J.
\]
More generally, a homomorphism $T : J \to \text{Lip}(C)$ is locally uniformly Lipschitz-valued if for each compact $K \subseteq J$,
\[
\|T(t)(y) - T(t)(z)\| \leq \kappa \|y - z\| \quad \text{for all } y, z \in C, \text{ all } t \in K \text{ and some } \kappa > 0.
\]
Theorem 4.2 remains valid, with the same proof, for a homomorphism $T : J \to \text{Lip}(C)$ which is locally strongly measurable on J and locally uniformly Lipschitz-valued.

The following example shows that J^0 cannot be replaced by J in Theorem 4.2.

Example 4.4. Let $J = [0, \infty)$ and let X be a separable Hilbert space. Let $g_1 : [0, 1] \to X$ be as defined in Example 1.2(a). Define $g : J \to X$ by $g(t) = g_1(1 - t)$ if $0 \leq t \leq 1$ and $g(t) = 0$ for $t > 1$. Then g is weakly continuous on J, continuous on J^0, discontinuous at 0, uniformly continuous on $t + J$ for each $t > 0$, and bounded. Let $B(J, X)$ be the Banach space of all bounded functions $f : J \to X$ and let Y be the smallest closed subspace of $B(J, X)$ containing all the translates g_t. Here $t \in J$ and $g_t(s) = g(s + t)$ for $s \in J$. Define $T : J \to L(Y)$ by $T(s)g_t = g_{t+s}$. If $f \in Y$ and $t \in J^0$ then f_t is uniformly continuous on J, which means $T(\cdot)f$ is continuous at t. It follows that T is strongly measurable on J and strongly continuous on J^0. However, T is neither strongly continuous at 0 nor, by Theorem 3.1, weakly continuous at 0.

Acknowledgements. The authors thank the referee for drawing their attention to Example 1.2(b) and for his critical remarks.

References.

Lower bounds for Schrödinger operators in $H^1(\mathbb{R})$

by

RONAN POULIQUEN (Brest)

Abstract. We prove trace inequalities of type $\|u\|_{L^2}^2 + \sum_{j \in \mathbb{Z}} k_j |w(a_j)|^2 \geq \lambda \|u\|_{L^2}^2$
where $u \in H^1(\mathbb{R})$, under suitable hypotheses on the sequences $(a_j)_{j \in \mathbb{Z}}$ and $(k_j)_{j \in \mathbb{Z}}$, with
the first sequence increasing and the second bounded.

Introduction. In 1989, R. Strichartz proved (see [Str]) that for an increasing real sequence $(a_j)_{j \in \mathbb{Z}}$ unbounded from above and below and such that, for all j in \mathbb{Z}, $a_{j+1} - a_j < \beta$ where β is a fixed positive constant, the following inequality holds in $H^1(\mathbb{R})$:

$$\frac{\beta}{\sqrt{8}} \|u\|_{L^2}^2 + \sqrt{\beta} \left(\sum_{j \in \mathbb{Z}} |w(a_j)|^2 \right)^{1/2} \geq \|u\|_{L^2}.$$

(1)

This result enables us to define operators such as $-\Delta + \lambda \sum_{j \in \mathbb{Z}} \delta_{a_j}$ with
$\lambda > 8/\beta$, where δ_{a_j} is the Dirac measure at a_j, as unbounded selfadjoint
operators in $L^2(\mathbb{R})$, using a theorem of [Re-Si]. This theorem (see [Re-Si],
Th. VIII.15) states that a unique selfadjoint operator can be associated with
every lower semibounded and closed quadratic form. Indeed, the form $\|u\|_{L^2}^2 + \lambda \sum_{j \in \mathbb{Z}} |w(a_j)|^2$
is lower semibounded (as sketched at the end of
the Introduction) and closed (as shown in [Pou]). In order to give a sense to
more general operators, using the same theorem, we prove the corresponding
trace inequalities.

The aim of this paper is to present inequalities similar to (1), with a
family $(k_j)_{j \in \mathbb{Z}}$ of weights attached to the points a_j. The improvement
is that we allow the k_j's to take negative values and tend to 0 at infinity under
suitable hypotheses on the quotient $|k_j|/(a_{j+1} - a_j)$.

In Section 1, we provide the following generalizations of (1):

$$(1') \quad (\exists \lambda_1 > 0) \quad (\forall u \in H^1(\mathbb{R})) \quad \|u\|_{L^2}^2 + \sum_{j \in \mathbb{Z}} |k_j| \cdot |w(a_j)|^2 \geq \lambda_1 \|u\|_{L^2}^2,$$