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Finally, we define ¢ : Y** — R by ¢o(y**) = lim, y**(h,). By (3), we
have ¢ € Y***. Now, by applying Lemma. 4,

Y™ = Kerg @ {zp*) = Ny @ (23") =Y ® {&3).
Thus Y is an order-one quasireflexive subspace. »

ReEMARK. With an analogous proof, the conclusion of Thecrem B is also
true if we suppose that dim(Nx/X) < oo instead of Ny = X.

Acknowledgements. This work was done while the author visited Uni-
versity Paris VI for a research stay. I want to thank Professor G. Godefroy
for his invitation and his kindness during this stay. Alsc, I wish to thank
Professor E. Odell for his indications concerning Proposition 3(ii). Finally,
I want to thank the referee for his addition to the proof of Theorem B.

References

[1] J. Diestel, Sequences and Series in Banach Spaces, Springer, 1984,

[2] N. Ghoussoub and B. Maurey, Gs-embeddings in Hilbert space, J. Funct. Anal,
61 (1985), 72-97.

[3] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Frgeb. Math,
Grenzgeb. 92, Springer, 1977,

4] G.Lépes and J. F. Mena, RNP and KMP are equivalent for some Banach spaces
with shripking basis, Studia Math. 118 (1996), 11-17.

[5] H.Rosenthal, A subsequence principle characterizing Banach spaces containing g,
Bull. Amer. Math. Soc. 30 {1094), 227-233.

[6] —, Boundedly complete weak-Cauchy sequences in Banach spaces, preprint.

Departamento de Anélisis Matematico
Facultad de Ciencias

Universidad de Granada

18071 Granada, Spain

E-mail: glopezp@goliat.ugr.es

Recetved June 30, 1997 {3911)
Revised version May 11, 1998

icm

STUDIA MATHEMATICA 132 (1) (1999)

A spectral theory for locally compact abelian groups of
automorphisms of commutative Banach algebras

by
SEN-ZHONG HUANG (Jena and Rostock)

Abstract. Let A be a commutative Banach algebra with Gelfand space A{A). De-
note by Aut(A} the group of all continuous automorphisms of 4. Consider a o{A4, A(A)}-
continuous group representation ¢ : G — Aut{A4) of a locally compact abelian group G
by automorphisms of A. For each a € A and v € A(A), the function @.(t) = ploua)
(t € @) is in the space C(G) of all continuous and bounded functions on G. The weak-star
spectrum oy« (i2q) is defined as a closed subset of the dual group GoftG. Forpe A(A)
we define Ag to be the union of all sets oy~ (¢g) where a € A, and A to be the clo-
sure of the union of all sets A7 where v € A(A), and call Ay the unitary spectrum
of ¢,

Starting by showing that the closure of A3 (for fixed ¢ € A(A)) is a subsemigroup
of & we characterize the structure properties of the group representation « such as norm
continuity, growth and existence of non-trivial invariant subspaces through its unitary
spectrum. Ae.

For an automorphism T of a semisimple commutative Banach algebra A we consider
the group representation T : Z — Aut(A) defined by Ty := T for all n € Z. It is shown
that Ay = o(T') NT, where o(T) is the spectrum of T and T is the unit circle. From this
fact we give an easy proof of the Kamowitz—Scheinberg theorem which asserts that the
spectrum o(7") either contains T or is a finite union of finite subgroups of T.

Introduction. Let A be a commutative Banach algebra with Gelfand
space A{A) (i.e., the space of regular maximal ideals of 4). Denote by
Aut(A) the group of all continuous automorphisms of A. For an automor-
phism T on A we consider the group representation T : Z — Aut(A) given
by T, := T" for all n € Z For each o € A and ¢ € A(A) the function
wa(n) == (T"a) (n € Z) belongs to the space C(Z) of all continuous and
bounded functions on the group Z. The weak-star spectrum oy (@,) of g,
as a closed subset of the unit circle T, is defined in the classical way (see
[14] or [20]). Note that T is the dual group of Z.
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Fix ¢ € A(A). Define AT to be the union of all ou+{p,) where o runs
through A. As will be shown in Proposition 2.4, the closure of AE (for fixed
v € A(A)) is a subgroup of T. We define Ay to be the closure of the union of
all sets Ag, where ¢ rmns throngh A{A), and call Ay the unitary spectrum
of the group representation T. The relation of the unitary spectrum of T
and the spectrum o(T) of the generator T is as follows: If A is semisimple,
then Ap = o(T)NT. From this fact the Kamowitz—Scheinberg theorem [13]
follows: Either o(T") contains T or ¢(T') is a finite union of finite subgroups
of T. The present proof gains in interest if one realizes that no deep result
is needed besides the properties of weak-star spectrum,

In replacing Z by a locally compact abelian (LCA) group G we consider
a o(A, A{A))-continuous group representation o : G — Aut(A) of G by
automorphisms of 4. We define the spectral sets A% and the unitary spec-
trum A, in a similar way. Owr aim is to characterize the properties of the
group representation ¢ through its unitary spectrum A,. The advantage of
using A, lies in the fact (Proposition 2.2) that the closure of /lg {for fixed

p € A(A)) is a closed subsemigroup of the dual group & of G.
The organization of the paper is as follows.
In Section 1 we recall some facts of harmonic analysis.

In Section 2 we define three spectral notions: A%, A,(a) and Ag. Their
properties are studied. The main results are Proposition 2.4 and Theo-
rem 2.5, :

In Section 3 we study two special cases: G = Z and G = R. The resuit
for G = Z is Theorem 3.2 which has the above cited Kamowitz—Scheinberg
theorem as consequence (Corollary 3.3). One of the results for G = R (Corol-
lary 3.5) says that if D is a closed derivation on a semisimple commutative
Banach algebra .A that generates a strongly continucus group of automor-
phisms, then the boundedness of ¢(D) N R implies that D = 0. This result
helps understand the fact that the zero operator is the unique bounded
derivation on a semisimple commutative Banach algebra.

The topic of Section 4 is the so-called “Spectral Mapping Theorem” and
applications of our spectral theory. Consider a (A, A(A))-continuous group
representation o 1 G — Aut(A). By a “Spectral Mapping Theorem” we
mean a result which describes the spectral set o(ay) N'T of an automorphism
oy through the unitary spectrum A,. The main result is Theorem 4.2 that
has a consequence (Corollary 4.3) saying that o(a) N'T = {v(t) : v € Aa}
for all ¢ € G' whenever the Banach algebra A is semisimple. More appli-
cations of Theorem 4.2 to a group representation o : G — Aut(A) are
given in Theorems 4.4 and 4.5, and Corollary 4.6. Theorem 4.4 describes
the concrete structure of & if the unitary spectrum A, contains only finitely
many elements. Theorem 4.5 says that the compactness of A, implies the

icm

Spectral theory for groups of autornorphisms 39

norm continuity of ¢ and Corollary 4.6 further asserts that if the group G
is connected then a representation o whose unitary spectrum is compact is
trivial, i.e., oy = I for all t € G. Also, we deal with the problem of existence
of a non-trivial closed subspace (resp. subalgebra) of A which is invariant
under all operators . The result in Corollary 4.9 gives a positive answer to
this problem, while Proposition 4.12(i} ensures the existence of a non-trivial
invariant subalgebra for c if the unitary spectrum A, is not a subsemigroup
of G.

A spectral theory for group representations « : G — Aut{A) where
either the group G is assumed to be locally compact but non-commutative
or the Banach algebra .4 is non-commutative wounld better match the scope
of the recent topic “Non-commutative Geometry” suggested by A. Connes
[7]. However, building such a spectral theory is a very difficult task. Our
theory might provide a sample.

2. Preliminaries. As prerequisites, the reader is expected to be famil-
iar with the basic facts of harmonic analysis on LCA groups and Banach
algebras; we use [10], [21], [16] and [17} as basic references for these topics.

In the sequel G denotes a LCA group with identity 0. Let L1{G) and
M({G) be the corresponding group algebra and measure algebra on G (see
[10]). Recall from [17] that the hull of a set I C L*(G) is defined as

h(I):={yeG: fv)=0foral fel}.
For each closed subset A C G we define two ideals in LMG):
k(A) := {f € L*(G) : F vanishes on A},
§(A) = {f € L}(@) : f vanishes in a neighbourhood of A}.

It is clear that j(A) C k(A4). A closed subset A of G is called a spectral
set if j{A) is norm dense in k{A). In the following theorem we collect some
standard facts of harmonic analysis on LCA groups which are needed for our
present purpoges. The assertion (i) is referred to as “Tanberian theorem”
[17, Theorem 37A, p. 148] and (ii) is a special case of [17, Theorem 25D,
p. 84]. The proof of (ili) depends heavily on the fact that L*(G) satisfies
Ditkin’s condition (see {17, Theorem 37C, p. 151]).

ToaeoreM 1.1. Let G be a LCA group with dual group G. Then:
(1) Let I be an ideal of L*(G). Then, h(I) = 0 if and only if I is dense
in LYG).
(i) Let A be a closed subset of G. If I is a closed ideal of L*(G) such
that h{I) = A, then j(A4) C I C k(4).
(ili) If A is o closed subset of G whose boundary A is scattered, then A
is a spectral set.
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Let L* (&) be the dual of L'(G) and C(G) be the space of all bounded
continuous functions on G. For 4 € &, define e, € C(G) by e,{t) = (t)
(t € @). For h € L=(G) let [h] be the subspace spanned by all translates of h,
and let [A],» be the w*-closure of [h]. The weak-star spectrum of b € L™ (G),
denoted by gyw(h), is defined to be (see [20] and compare [14])

oue(B) = {7 € G: ey € [Wur}-
To find & more useful description of weak-star spectrum we need one
more spectral notion from [11] (cf. [2]).
Recall that a function w : G — [1,00) on a LCA group G is called a

weight if it is locally bounded, Borel measurable and subimnultiplicative in
the sense that

L<w(s+1t) Lw(s)w(t) foralsted.

The Beurling algebra LL(G) corresponding to a weight w on G is the sub-
algebra of L!(G) defined by

IL(G) = {f € IHE) i [fllu := | IFB)lw(t) dt < oo}.
G
The subalgebra M, (G) of M{G) is defined by

Mo (G) = {ue M(G): lullo = § wt)dlpl(®) < oo .
G
It follows from Lebesgue’s decomposition theorem that LL(G) is an ideal in
M, (G). The weight w is called non-quasianalytic (for short, n.q.a.) if

Zl—c}g(';——yl—t)<oo for allt € G.

=1
It is proved by Domar [8, Theorem 2.11] that w is a2 non-quasianalytic weight
if and only if the Beurling algebra L1 (@) is a regular Banach algebra. Also, it
is shown in [8] that if L (G) is a regular Beurling algebra then A(LL(G)) =
G and the Gelfand transform on LL(@) is the usual Fourier transform.

For a (complex) Banach space X, let £(X) be the Banach space of
all bounded linear operators on X. A non-quasianalytic representation of
M,{(G) on X is a continuous algebra homomorphism & from M, (G) into
L(X), where w is a non-quasianalytic weight, i.c., # satisfics

(1) Ppsw = $,P, for all p,v € M, (G); and

(i) &5, = Ix, where dp is the Dirac measure at the identity 0 of G and
Ix ig the identity operator on X.

For a n.q.a. representation & : M, (G) -+ £(X) we denote by &, (resp.
Py) the image of the Dirac measure §; at ¢ € G (resp. the function f ¢
LL{@)) under &. It is clear that & : LL(G) — £(X) is a continuous algebra
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hornomorphism and & : G — L{X) is a group homomorphism; for the latter
no continuity condition is assumed. Let o be a topology on X. We say € is
o-continuous if the group representation @ : G — £(X) is continuous with.
respect to the topology o. A systematic spectral theory for n.q.a. represen-
tations has been developed recently by the author in [11] which is based
on and extends previous theory of Arveson [2]. Below we collect some facts
from [2] and [11] which are needed for our present purposes.
Let & : M,(G) — L{X) be a n.q.a. representation. The set

Is:={f € LL(G) : &; = 0}
is a closed ideal in L1 (G). The spectrum Sp(®) of & is then defined as the
hull of Is:
Sp(@) :={ye G: fly)=0forall f € I}.
For z € X, let I, := {f € LL(G) : $¢(z) = 0}. The local spectrum Spg(z)
is defined as the hull of I;:
Sps(z) ={y € G- f(fy) =0forall fel,}

The spectral subspace X?(A) corresponding to a closed subset A C G is
defined by ‘
X%(A) :={z € X : Spg(z) C 4}.

A n.q.a. representation ¢ : M, (G) — L(X) is called non-degenerate if

the kernel
Xg:={z € X :8¢(z) =0 for all f € LL(G)}

is trivial, i.e., Xo = {0}. It is shown in [11] (cf. [2, Prop. 1.4]) that all
weakly continuous and w*-continuous representations are non-degenerate.
We have the following results corresponding to Corollary 1.2.7 and Thecrem
3.1.1 of [11]. The second assertion is referred to as “Spectral Decomposition
Thecrem?”.

THEOREM 1.2. Let & : M, (G) — L(X) be a non-degenerate n.q.a. Tep-
resentation. Then:

(i) For all u € M, (G) such that supp 1i N Sp(P) = 0 one has &, = 0.

(i) If Sp(®#) = E U F, where E is compact and F s closed such that
ENF =0, then there exists a bounded projection P € {&;: f € LL(G)}
such that _

Sp(acPy=E and Sp(ac(l—P))=F,

where o P (resp. @o{l —P)) denotes the restriction of o to the a-invariant
subspace PX (resp. (I — P)X).

Now, let R be the right translation group representation of G en the
group algebra LY{G) given by

Raf() == f('_"ﬁ): teG.
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1t is a standard fact that R is a strongly continucus and isometric group rep-
resentation. It extends to a representation of M (G) on L' (G) by convolution
operators:

Ruf =pxf forall (u, f) € M(G) x L}(G).

The dual of R, denoted by £, is a w*-continuous representation of M({G)
on L°(G). We have

(E,J‘b,f) = (thMf> = (h, ji % f)
for all (f,h) € L*(G) x L*°(@) and u € M(G). It is easily seen that the
function L¢h with f € L}G) and h € L™ (@) is uniformly continuous and
satisfies
(1) Lih(ty = S F(&)h{s+t)ds forallte G

o

For h € L°°(() we define the specirum of h, denoted by Sp{h), to be the
local spectrum of A with respect to L:

Sp(h) :=8ps(h)={y € G: Lih =0, f € LY{G) = f(v) = 0}.

ProrosiTION 1.3. (i) gy« (R) = Sp(h) for h € L™(G). Hence, for a
closed subset 2 of G,

gun(h) € Q2 & (b, f) = | F(O)A()dE= 0 Vf € 5(2).
G

(ii) Let h € L™®(G). Then oy« (k) = 0 if and only if h is the zero vector.

(ifi) Let h € L*(G) be such that Sp(h) = {vx : 1 < k < n}. Then there
exist ¢1,...,cn € C such that h =3 7_, cxeq,.

(iv) ow=(g - h) C guw+(g) + cw= (R} for g,h € L®(G).

Proof. (i) The identity o,+(h) = Sp(h} has been established in [11,
§3.2], while its consequence follows from the definition of Sp(h) combined
with the representation of L;h given in (1) and the translation invariance
of the ideal 7((2).

(ii)-(iv) can be proved using Theorem 1.1(i), (iii) (see [20, pp. 141-142)]
for more details). m

2. The spectral sets AZ, A,(e) and A,. For a commutative Banach
algebra A we denote by A{A) the structure space of A, and by Aut(A) the
group of all continuous algebra automorphisms on A. We begin with the
following definition.

DEFINITION 2.1. By an a-dynamical system we mean a triple {4, G, &},
where A is a commutative Banach algebra, G a LCA group and o : G —
Aut(A) a a(A, A(A))-continuous group representation. More precisely, the
mapping o has the following properties:
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(1) os1e = Qg0 for all 5,2 € G,
(ii) for each pair (a,¢) € Ax A(A) the function ¢, (t) := p(xa) (t € G)
is continuous.

Given an a-dynamical system {A, G, a}, let ¢ € A(A). Since af A(A) C
A(A), we find that |lef@|| <1 for all t € G and thus
loa(t)| = l(afw,a) < lla]|  for alla € A.

Therefore, the functions @, are in C(G) and their w*-spectra oy«(p.) are
closed subsets of G (see Section 1). Let

A% = | | o {pa).
agA
PropoSITION 2.2, Let {A,G,a} be an a-dynamical system. Let
A(A). Then: :

(i) Let v e @ Ify € A, then there exists a met (aq) C A such that

w .
Wad i 6.7,, %e.y

lim | f()p(ewaa) dt = Fy)  for all f € L}(G).
e,
Conversely, if there ezists a net (ag) C A such that @, =, ey, theny € -./-lg.
(i) The closure A_g is o closed subsemigroup of G.

Proof. (i} Let v € AZ. Then v € gy~ () for some a € A, e, ey €

[©a]w=- Therefore, there exists a net (hg) C [pg) such that hy 2 ey. Bach
ha € [p,] can be written as

hg = Z bi L1, 90,
i€
where J; is a finite subset of N, {b; : 7 € Jg} C Cand {t; : j € Jg} C G.
Let f € L*(G). Then by (1) we have

(ha, £) = Lsha(0) = D b | F(Opalt + ) dt

jeJg @G

=Y b | Ft)plonen,@) dt = § F(t)p(onaa) di,
G

jede G
where ag =3 ;. bjas,a € A. It follows that

S Fo(oaq) dt — (e, £ = F(7).

G

Thus, for the net (ag) C A we have ., — e,



44 5-Z. Huang

For the converse part of (i) assume that ., AN ey Let f € j(A2) and
a € A. Then o,-(p,) € A2 and thus by Propesition 1.3(1), {f, @) = 0.
This implies in particular that

F(7) = lim(f, pa,) = 0.

Hence, v € h{j (./1 )) = Ag, Az, proving (i).

(ii) It suffices to verlfy that A% + A2 C A%,

To this end, let 7,72 € A3, By (1) we can choose two nets {aq: d &
Dy} and {by : d € D2} in A such that w *limgep, Yo, = €, and w*-
l1mdeD2 Pbg = Eyy- For d = (dl, dz) €Dy xDyletcg = Qdy bdz- Then for all
t € & we have

Peq(t) = (az“paadlbﬂh) = (aI‘Ps ag, ) - <a:9‘9:bd2> = Pay, (t)‘Pbag (t)$
where we use the fact that ajp € A(A) in an obvious way. Let f € j(A3),
Note that o« (¢, d.) C AZ. It follows from Proposition 1.3(i) that

= {pea ) = S f(t)‘Padl (t)(pbn‘.a (t) dt.

G
Hence,

0= Jm, Jm, (e £ = | SO ten @) dt = Flon +0)

It follows that ; + 3 € h(j(AZ)) = A2,

For the sake of clarity we define once again the functions t2q and the
spectral sets A7,

DEFINITION 2.3. Let {A, G, a} be an a-dynamical system. For a € A
and ¢ € A(A) defire p, € C(G) by pa(t) = p(oza) for all t € G and two

subsets of G by
U ow®) and 43:= | ou (o),
PEA(A) be A

An(a) = (

where the bar denotes the closure in &. Define
U 42)
wEA(A)

The closed set A, is called the unitary spectrum of the group representation
o, and Aq(a) is called the local unitary spectrum of o at the point a € A.

It is evident that
= ( U An (a,)) B
acd
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The unitary spectrum of a group representation is an automorphism
invariant. More precisely, if {4, G,a} and {A, G, 5} are two a-dynamical
systems such that there exists U € Aut{A) satisfying

ay=URU™Y foralteq,
then 4, = Ag. Below we give some more properties of this notion.
ProrosITION 2.4. Let {A, G, a} be an a-dynamical system.

(i) Aa is @ cyclic subset of G in the sense that v € Ay = ny € A, for
alln e N
(i) If Ay is compact, then for cach p € A(A) the closure A'—“ is @ compact
subgroup of G. Asa consequence, for each -y € A the closed subsemigroup
N9 is a compact subgroip of G.
(iii) If the Banach algebra A is self-adjoint, then A, is symmetric in the
sense that — Ay = Ag.

Proof. (i) follows from Proposition 2.2(ii). Under the assumption of
(it) each semigroup A_g for each ¢ € A(A) is compact. Since a compact
commutative semigroup is actually a group (see [10, Theorem 9.16, p. 99])
we obtain the assertion of (ii).

Note that the Banach algebra A is self-adjoint if for each € A(A) the
formula #(a) := @(a) (a € A) defines an element ¥ € A(A), where the bar
denotes complex conjugation (see [17, p. 132]). Using the fact that &, = e_,,
for all v € G it is easily verified that Ag = —AZ for each p € A(A). This
proves (iii). m

THEOREM 2.5. Let { A, G, o} be an a-dynamical system. Let 12 be o closed
subset of G and a € A. Then An{a) C 2 if and only if

(%) V ftp(aua)dt =0 for oll f € §(2) and p € A(A).
G .
Hence, the set
A*() :={ae A: Ay(a) C 2}
is an a-invarient closed subspace of A. Moreover, if {2 is a closed subsemi-
group of G, then A*(12) is a closed subalgebra of A. .

Proof. From the definition, A,(a) C 2 if and only oy (cpa) C 12 for
all ¢ € A(A). By Proposition 1.3(i) the latter is equivalent to {p,, f} = 0
for all f & 7(12) and ¢ € A(A). This is just (). The closedness of A%(£2)
follows directly from (*) while its a-invariance follows from the observation
that 9, = (0f¢}e and ofp € A(A) for all £ € G and ¢ € A(A).

To prove the “moreover” part assume (2 to be a closed subsemigroup.
Let a,b € A*(£2). Then for all ¢ € A(A) we have o+ (pq) U oy (05) C 12
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Since
Pab(t) = plow(ab)) = p((asa) (b)) = p{aralp(onb),
we find that ¢.; = @, - ¢s. Hence, by Proposition 1.3(iv),
Top» (‘Pub) OF. ((Pa) + T (‘Pb) C2+ '-Q c

Therefore, ab € A%(f2). m '

The subspace A%(£2)} is called the unitary spectral subspace of « corre-
sponding to the closed subset 2 C G.

The spectral notion of this section should be compared with the one
given in Section 1. To this end, consider an a-dynamical system {A, G, a}.

Assume further that « is weakly continuous. We call & a non-guasionalytic
group representation if there exists a n.q.a. weight w on G such that

loe]| < w(t) forallt e G
It follows from {2, Prop. 1.2] that for each u € M, (@) there exists an
operator &, € L(A) satisfying
{0, P a) = S(Q, epa) du(t)  for all (a,0) € A x A*.
G

The map g+ &, is a continuous algebra homomorphism from M, (G) into
L(A) which extends the group representation o in the sense that &, = oy
for all £ € G. We refer to [11, §1.3] for more details.

Let ¢* be the representation on the dual A* given by

&) = (®,)" for all p € M, (G).
Recall that the local spectrum of & at a € A is defined as
Sps(a) = {y € G: fly)=0for all f & LL(G) with & (a) = 0}.

Analogously, for ¢ € A(A),

Spe- () = {y € G: f{v) =0 for all f € L}(G) with &3(¢) = 0}.

THEOREM 2.6. Let { A, G,a} be an a-dynamical system, where the com-
mutative Banach algebra A is semisimple and the group representation o is
weakly continuous and non-quasianalytic. Letw be a n.q.q. weight on G such
that |joul| < w(t) for all t € G. Let & : M,(G) — L(A) be the extension of
a os above. Then

Ay = Sp(P).
Moreover, for all a € A and ¢ € A(A) we have
Ax(a) =Spgla) and A_g = Spg. (¢).

Proof Since the proof needs some more facts from [11}, we only give
its outline. : :
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Let a € A and ¢ € A(A). Let f € LL(G). Then for all ¢ € G we have
0(@s(aa)) = | 7(s)(cnrea) ds.
G
It follows from (1)} that

w(@p(aza)) = Lrp,(t) forallie G,
where £ is the left translation representation on L®(G). Fix a € A. Let
f € LL(G). Then from the semisimplicity of .4 we find that
Lipa =0V¥p € A(A) & Ps(a) = 0.
It follows from the definition that A.{a) = Spg(a).
Analogously, for ¢ € A(A) and f € LL(G) we have
Di(p) =0 Lrp, =0Va e A

This also implies that Spg. (@) = Zg. Therefore,

50@) = (U 802(0)) = (U 4a(@)) = 4o,

acA atA
The identity A, = Sp(&P) implies that the unitary spectrum A, defined
in this section for a weakly continuous and bounded group representation
o : G — Aut(A) coincides with the usual Arveson spectrum of o (see [2]).

3. Spectrum of automorphisms and derivations. In this section
we study two special cases: G = Z and G = R. As usual, T denotes the unit
circle group. It is standard that Z = T and R = R, where the group duality
is implemented by

z(n) :=z" for all (n,2) € Zx T,
s(t):=e ™ forall (£,s) € R x R
The Fourier transform in L*(Z) and L!(R) is given by
Flay =Y anz", 2€T, f=(an)nez € L'(2),

ned
o0

fle)y = | e™f(t)dt, seR, feL'R).
We denote L1(Z) by I*, and I stands for its dual. The dual of It (R) is
L2 (R).
We need the notion of Carleman spectrum. Let x := (2, )pez € I*™ be a
bounded sequence. Then

2:.0=1 m“zni !Zl <1,

(2) := { —Z‘E__w Tp2, 2| > 1,
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defines a holomorphic function in C\ T. We call X the Carleman transform
of x. A point zg € C is called regular for X if X has a holomorphic extension
in a neighbourhood of zy. The Carleman spectrum o(x) of x is defined as
the complement of the set of all regular points for ¥. Clearly, o(x) C T.

Analogously, the Carleman transform of a function h € L*®(R) is defined
as the two-side Laplace transform

0y §o e n(t) dt, ImA > 0,
W= —{° e?h(t)dt, Tmi<O.

It is a holomorphic function in C\ R. A point Ag € C is called regular for A
if & has a holomorphic extension in a neighbourhood of Xp. The Corleman
spectrum o(h) is the complement of the set of all regular points for k. It is
a closed subset of R.

In general, we have the following spectral relation (see [11, Prop, 4.2.3
and 4.2.4]).

LeEMMA 3.1. The following identities are true:
T (X) = (%)™ for all x €1,
owr (h) = o(h) for all b € L=(R).
Let (A, D(A)) be a closed operator in a Banach space X. The resolvent

set g(A) is the set of all A € C such that the operator Al — A: D(A) — X
is injective and surjective. The complement o(A) := C\ g(4) is called the
spectrum of A. Let R(A, A) := (A — A)71 for A € o(4). It is a holomorphic
function. For o € X, let g4 () be the set of all Ay € C for which there exists
a neighbourhood Uy of Ay and a holomorphic function z(-) : Uy — D(4)
such that _
(A—Dz(A)==z forall AeUp.

Note that there might exist more than one such function satisfying this
identity. If there is exactly one, then the operator A is said to have the
single-valued extension property (SVEP) (see (9] and [5]). Let

aa(z) =C\ palz).

The set ga{x) (resp. c.4(x)) is called the local resolvent set (resp. local spec-
trum) of A at z. We have

ga(z) Co(d) forallze X.

Recall that an isolated point Mg € o(A4) is called a simple pole of the
resolvent if the spectral projection P corresponding to {Ag} satisfies

APz = APz forall z e X.

We refer to [5], {18, Chapter A-III] and [9] for a detailed discussion of
the spectral theory for bounded and unbounded operators. Qur definition
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of local spectrum for any closed operator should be compared with the one
in [9] and [5] defined for operators having SVEP.

THEOREM 3.2. Let A be a commutative Banach algebra and T a con-
tinuous automorphism on A. Let T be the group representation of Z on A
given by

Tp:=T" foralingZ
Then:

(i) Ar(a) C or(a)nT and AT C op-(p)NT for alla € A and p € A(A).
(ii) Ap Co(T)NT.
(iii) Let p € A(A). If or-(w) N'T is a proper subset of T, then there
exists m € N such that T* ™y = .

(iv) Assume A(A) # 0. Then either there exists m ¢ N such that T =
p for all p € A(A) or A D T.

Proof. (i) Let a € A and zp € TN pr(a). Then there exists a neigh-
bourhood Uy of zg and a holomorphic function a() : Uy ' — A such that

(T‘_1 —z)a{z) =a foral ze Uy’

Let ¢ € A(A). We want to compute the Carleman spectrum of , € [°°. If
z € Uy with |z| < 1, then

Falz) = 3 (T - 2)a(2))
n=l

= 32T () - 3 (T a(2) = zp(atz)).
n=1 n=1

Analogously, for z € Uy with |2| > 1 we have &a(2) = 2(a(z)). This im-
plies that &, can be holomorphically extended to U; * by defining &,(z) =
zp{a(z)) for all z € Uy . It follows that Uy No(p,) = B and thus by Lemma
3.1, Up Moyt (po) = @ for all ¢ € A(A). This implies that zo & Ar(a).

The proof of A;f Cop () NT for all ¢ € A(A) is similar.

(ii) follows from (i) combined with the observation that or{a} C o(T)
for all o € A.

(iii) Observe that 71? is a closed subgroup of T (see Proposition 2.4(ii)).
Hence, by (i), Zf C o~ (1) is a proper closed subgroup of T, and thus there
exists m € N such that AT = {z € T: 2™ = 1}. This implies that

Ow (o) S{z6T:2m=1} forallaec A
Fix o € A. It follows from Proposition 1.3(iii} that there exist ¢1,...,¢m € C
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and z1,...,2m € T with 27 = 1 such that
m
waln) = Z:cjz;,-1 for all m € Z.
=1

This implies that

™m m
P(T™a —a) = a(m) —¢a(0) = Y ciaF =Y ¢ = 0.

Therefors, T"™p = .
(iv) Assume that o(T) 2 T. Then

oI NT=g(T)NT#T
Fix ¢ € A(A). Then by (i} we have
AT Cop(p)NT£T.
It follows from Proposition 2.4(ii) that .—A—E is a proper closed subgroup of T.
Therefore, A;f is closed and there exists n, € N such that
AT ={zeT:z" =1}.

Note that Ar C o(T)NT is a proper subset of T and contains each subgroup
AT. Tt follows that

kr :=sup{n, : ¢ € A(A)} < c0.
Thus, for m = kp! we have .
U A7 C{zeT: 2™ =1}
PEALA)
From the proof of (iif) we see that the above spectral condition implies that
T"™p=foral p& A(A). m

COROLLARY 3.3, Let A be a semisimple commutative Banach algebra
and T a continuous automorphism on A. Let T be the group representation
generated by T. Then:

(i) Ax = o(T)NT. Hence, either o(T) 2 T or o(T) is a finite union of
finite subgroups of T. Moreover, in the lafter case there exists m € N such
that T™ = I and bounded projections Py,..., P, on A and 2,...,z, € T
such that

k
T= szPj and o(T)={z;:1<j <k}
i=1
i) If T™ # I for alln € N, then the spectrum o(T) is connected.
(iii) Let a € A. If there emists m € N such that op{a) N'T C {2 € T :
2™ =1}, then T™a = a. :

(i
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Proof. (i) If Ax = T then Theorem 3.2(ii) yields that o(T)NT =T =
Ar. Consider the case Ay # T. Then by Theorem 3.2(iv) there exists m € N
such that T* ™y = ¢ for all ¢ € A(A). It follows from the semisimplicity of
A that T™ = I. Hence, o(T) is a finite subset of T

Write o(T) = {z1,..., 2} We have 2I* =1 for all 1 < j < k. For each j
let F; be the spectral projection corresponding to {z;}. Then P 4. ..+ P, =
I. Fix j. Let 0 # a € P; 4. We have

or(a) € o(Tpa) = {2}
Theorem 3.2(i) shows that Ar(a) C {z;}. Hence, for each ¢ € A(A) there
exists ¢, € C such that p(T™a) = ¢,2} for all n € Z. This implies that
@p(Ta—z;a) = 0 for all o € A(A). By the semisimplicity of A again, Ta = z;a
and thus z; € Ay(a). This establishes the inclusion o{(T) C At and, in fact,
the identity Ar = o(7"). Moreover, we have proved that

k I
T=Y TP =) zPF;
j=1 j=1

(i) The assumption that T™ # I for all n € N implies by (i) that
o(T) 2 T. Hence, if o(T) were not connected, then at least one of the
following sets would be non-empty and disjoint from the rest of o(T):

Up = {lz| <1} Ne(T), Uz:={z]>1}no(T).

By taking 7! in place of T' if necessary, we may assume U; # . Then o (T)
is the disjoint union of Uy and o(T") \ U;. Let P be the spectral projection
corresponding to Uy. Take 0 % o € PA. Then

or(a) C o(Tipa) = Ui
Tt follows from Theorem 3.2(i) that
Ar(a) Cor(e)NTC U NT =4

This implies by Proposition 1.3(if) that ¢, = 0 for all ¢ € A(A) and thus
o = 0 by the semisimplicity of A, a contradiction.

(iii) Let 2 := {z € T : 2™ == 1} and § be the restriction of T to
the subalgebra AT (). Theorem 2.5 shows that Ag C 2. Hence, from the
above proof of (i) we see that 5™ is the identity operator on 4T (f2). Thus
T™a = a, since a € AT ({2} by Theorem 3.2(i). m

REMARK. The assertion (i) of Corollary 3.3 was proved by Kamowitz and
Scheinberg [13] with complex analysis methods. Johnson [12] gave a different
proof using distribution theory. A third proof for A being an abelian C™-
algebra was given by Akemann and Ostrand [1]. Our proof reveals the exact
structure of those automorphisms T such that o(T)NT # T.
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The assertion (i) of Corollary 3.3 has been established by Scheinberg
[22]. Our proof is a little different. It seems that the third result in Corol-
lary 3.3 is new. As seen in Corollary 3.3, the unitary spectrum of an auto-
morphism of a commutative Banach algebra is very simple, but it should
be pointed out that Scheinberg ([22] and [23]) has shown that the struc-
ture of an automorphism outside the unit circle might be rather compli-
cated.

Below we consider the spectral structure of derivations. For this pur-
pose, assume D to be a closed operator in a commutative Banach algebra
A such that —iD generates a strongly continuous one-parameter group of
automorphisms Dy = e "% (¢ € R). Then the definition domain P(D) of D
is a dense subalgebra of 4 and

D(ab) = (Da)b+ a(Db) for all a,b € D(D).

We call D a derivation. Recall that the adjoint of D, denoted by D*, has
the definition domain D{D*) consisting of all z* € .4* such that there exists
y* € A* satisfying

{y*.,a) = (z*,Da) forall a € D(D).
It is known that D(D*) coincides with the set of all £* € A* such that

1
o(A, A)- i < (Dja* ~ ")

exists, and D*z* is just this limit (see [18, p. 16]). The adjoint D* is a
closed operator. Their spectra are related by o(D*) = o(D). The following

Theorem 3.4 and Corollary 3.5 are analogous to Theorem 3.2 and Corol-
lary 3.3.

THEOREM 3.4, Let A be a commutative Banach algebra. Assume thet D
is a derivation on A generating a strongly continuous one-parameter group
of automorphisms Dy := e~ %P (¢t ¢ R). Then:

(i) Ap(a) € op(a) NR and AD C op-{¢) R for all a € A and
w € A(A).

(ii) Ap C o(D)NR.

(iii) Let p € A(A) be such that op. () (R is bounded. Then @ & D(D*)
and D*p = 0.

(iv) If A(A) # 0, then o(D)NR contains o closed subsemigroup of R.

Proof. (i) Let Ay € R\ op(a). Then there exists a neighbourhood Uy of

Ap and a holomorphic function a(-) : Uy — D(D) such that (A — D)a()) =a
for all A € Up. Let ¢ € A(A). To compute the Carleman transform of
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v, € C(R) take A € Uy with ITm A > 0. Then

PalA) = S eMp(Dya) dt = Tei’\ttp(Dt()\ — DYa(N)) dt
0 0

™

= lim J e o(D.() ~ DYa(N)) dt
0

= —i lim (e""p(D,a(})) ~ (X)) = ip(a(A)),

where we have used the following basic fact (see [18, p. 14]):

[eM=#P () —iDYbdt = &"Pp — b for all b & D(D).

0
Analogously, ,{A) = ip{a(A)) for all A € Uy with ImA < 0. This im-
plies that §, can be holomorphically extended to Up by defining Z,{A) :=
ip(a(A)) for all A € Uy. Hence, Uy N oy=(wa) = Ug No{p,) = § by Lemma.-
3.1. Thus Ag ¢ Ap(ae). This proves the inclusion Ap(s) C sp(a). The proof
of AD C op-(p) for all ¢ € A(A) is similar. We omit the details.

(ii) Note that op(e) C o(D) for all a € A. It follows from (i) that
Ag(a) Co(D)NR for all a € A and thus Ap, as the closure of the union of
all Ay(a), is also contained in (D) NR.

(ifi) Since Ig’ is a closed subsemigroup of R, the boundedness of A?
implies that AD = {0}. If a € A, then oy-(w.) € AD = {0}. Applying
Proposition 1.3(iii) to ¢, we find that w(Da) = w(a) for all £ € R This
implies that ¢ € D(D*) and D*p = Q.

(iv) follows from the fact that @ Co(D)NR is a closed subsemigroup
of R. m

CoroLLARY 3.5. Let A be a semisimple commutative Banach algebra.
Assume that D is o derivation in A generating o strongly continuous one-
parameter group of automorphisms Dy = e~ %P (¢t € R). Then:

(1) If o(D)YNR 45 bounded, then D = 0.
(i) If (D) decomposes into disjoint closed subsets E and F' where E 1is
compact, then ENR # @. Hence, all isolated points of o{D) lie in R.
(iii) If Ag € o(D)NR is an isolated point of o(D), then Ay is a stmple
pole of the resolvent.
(iv) Let a € A. If there exist finitely many positive numbers r1,.. .,y
such that

op(a)NR C U re 2z,
k=1
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then
H(I — e~ D)g = (.
k=1

Proof. (i) If o(D) NR is bounded, then Theorem 3.4(ii) shows that Ap
is bounded. Note that for each » € A(A) the spectral set AY C Ap is a
subsemigroup of R (see Proposition 2.4(ii)). It follows that AT € {0} for all
@ € A(A). By Proposition 1.3(iii) again, @, is constant for each ¢ € A(A)
and @ € A. Therefore, p(D:a — a} = 0. By the semisimplicity of .4 we find
that Dia = & for all t € R and a € A. This implies that D =0,

(ii} Let P be the spectral projection corresponding te the compact subset
E. Then

a(Dipa) = E
{see {18, Cor. 3.5, p. 71]). Choose 0 # a € PA. Then op(a) C o(D|pa) = B.
Since A is semisimple and & # 0, we can find ¢ € A(A) such that ¢(a) £ 0.
Therefore, the continuous function ., does not vanish everywhere in R and
thus gy~ (pq) # @ by Proposition 1.3(if). This implies that
0 # ou-{ige) C Apla) Copla)NR=ENR

(iii) Let P be the spectral projection corresponding to {Ag}. Then, as

seen in the proof of (i}, we have

auw{pa) C{M} forallae PA, ¢ A(A).
It follows from Proposition 1.3(iii) that
p(e®PoDlg gy =0 forallteR, a € PA, g A(A).

Apgain, by the semisimplicity of .4 we find that e~ D)g =g for all t € R
and ¢ € PA. This implies that PA C D(D) and Da = Apa for all o € PA.
Hence, Ay is a simple pole of the resolvént.

(iv) Consider the spectral subspace X := {h € L*®(R) : Sp(k) € op{a)n
R}. Let & be the restriction of £ to X. Then Sp(®) C op(a) N R, Theorem
1.2(i) shows that

Lsh=®h=0 forallhe X, f&jlopla)NR).
Consider ¢ € A(A). Then by Theorem 3.2(i) we have
5p(@a) = ow () € Ap(a) Sop(a) NR.
Hence, ¢, € X and thus
Lipa =0 forall fejlopla)NR).

By our assumption, op(a) NR is a closed discrete subset of R = [&. Hence,
it is a spectral set by Theorem 1.1(iii). This implies that

(%) Lipe =0 forall f€k{op(a)nR).
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Let g € LY (G). Consider

fr=gx]](60—38n).
k=1

Then f € LY{G) and for s € R we have
HEEEON | ()
k=1

It follows that f vanishes in op(a)NR and thus by (*) we have 0 = L@, =
Lgh, where b == T[}_ (I — £, ). is a continuous function. The identity
Lgh = 0 for all g € LY(G) implies that k has empty w*-spectrum. Hence,
by Proposition 1.3(ii), & is the zero vector and thus & = 0 by the continuity
of h. In particular, A{0} == 0. By an easy computation we obtain
k]
10) = o( TI(1-Dy)a).
B=1

The semisimplicity of A again yields [T;.., (I —D,, )a = 0. This is the desired
result. m

In Thecrems 3.2 and 3.4 we have established the inclusions Ax(a) C
or(a) or Ap(a) C op(a) for the local spectrum and a similar result for
w0 € A(A). There remains the problem of when equality holds. The following
shows that this is the case under certain growth conditions.

ProrosiTION 3.6. Let A be a semisimple commutative Banach algebra.
Then:

(i) Let T € Aut(A) be such that

o0

) log(1 +{1T"1])

T ne < o

Let T be the group representation generated by T. Then Ar(a) = or(a) and
Eg =ap () for alla € A and ¢ € A(A).

(il) Let D be a derivation in A generating e strongly continuous one-
parameter group of eutomorphisms Dy = ¢~ (t e R). If

o

[ log(1 + || Dy}

T8 di < oo,

then Ap(a) = op(a) and_/l_g =op+(p) for alla € A and p € A(A).
Proof. (i) Consider
wp(n) =1+|T"], neZ
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Our assumption implies that we is a n.q.a. weight. T extends to a continuous
algebra homomorphism & from M, (Z) into £{A). Theorem 2.6 yields that

Arp(a) = Spg(e) and -/IE = Spg. (1)
for all a € A and ¢ € A(A), and it has been proved in [11, Prop. 1.3.8] that
Spg(a) = or(a) and Spg- () = o7+ ().
(ii} Consider
wp(t)i=1+|Dy] forallielR

The strong continuity of D implies the lower semicontinuity of wp and thus
wp is a weight on R, The growth condition implies that wp is & n.q.a. weight.
Hence, D extends to an algebra homomorphism ¥ from M., (R) into £{A).
Theorem 2.6 again yields that

4p(a) =Spy(a) and 4D =Spg.(p)
for all a € A and ¢ € A(A), and by [11, Prop. 1.3.9], Spy(e) = op(a) and
Spg. () = ap(p). =
The growth conditions in Proposition 3.6 are automatically satisfied in
the class of commutative Banach algebras whose spectral norm is equivalent

to the original norm. Recall that the speciral norm of a commutative Banach
algebra A is given by

lla||sp = sup{|p(a)] : v € A(A)} forall a € A

The condition that the spectral norm is equivalent to the original norm on
A is equivalent to the Gelfand representation A of A being a uniformly
closed subalgebra of C(A(A)) or to the existence of a constant K > 0 such
that [a]? < Kjla®|| for all @ € A (see [17, Theorem 24C, p. 77]). Typical
examples are the commutative C*-algebras Co(f2} where (2 is a locally com-
pact Hausdorff topological space, and their uniformly closed subalgebras. A
Banach algebra with this property is semisimple.

Let A be a commutative Banach algebra such that || |jsp & || -||- Let S be
a commutative semigroup and ¢ : § — Aut(A) a semigroup homormorphism.

Then sup{| e : s € 5} < 00. In fact, let s € S. Since afA(A) = A(A), we
have

lrsallep = sup{leie(a)l : ¢ € ALA)} = [|allsy.

Hence, sup{||as|lsp : s € 5} = 1 and the uniform boundedness of e,

follows from the equivalence of the spectral norm and the original norm. In
particular,

sup T < 0o for all T € Aut(A)

and any strongly contmuous one-parameter group of automorphisms of A is
uniformly bounded.
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4. The spectral mapping theorem and applications. As before, we
consider an a-dynamical system {A, G,a}, ie., A is a commutative Banach
algebra, G a LCA group and o : G — Aut{A) a o(A, A(A)}-continuous
group representation. Let H be another LCA group and ¢ : H — G a
continuous group homomerphism. Let §:= a o ¢, i.e.,

Bs i =ags forallse H.
Then 8 is a oA, A{A))-continuous group representation and thus we obtain
an a-dynamical system {A, H,a o ¢}.
The aim of this section is to compute the unitary spectrum of 3 through
the unitary spectrum of a.

‘We need some preliminaries. Note that ¢ induces a group homomorphism
¢:G— H, where for each v € G the i image qbfy e His given by

(2) (¢7)(s) :=v(¢s) forall s € H.

é also induces a continuous algebra homomorphism from Co(G) to Co(H)
through

(pf)(s) = flgs) forallse H, fe Cy(G).
Since the measure algebra M (&) (resp. M (H)) is the dual of the C*-algebra
Co(@) (resp. Co(H)), the algebra homomorphism ¢ : Cy(G) — Co(H) in-
duces a continuous algebra homomorphism ¢ : M(H) —» M(G) through the
following relation:

{bu, Fy = (uof)  for all (f, u) € Co(G) x M(H).

Fix f € C(@) and p € M(H). Let v := ¢u. Given € > 0. Choose a
compact subset K T & such that

| roldvm+
G\K H\$~1(K)
By Urysohn's lemma, {17, p. 6] we can find g € Cp(G) such that 0 < g <1
and g(K) = 1. This implies that f . g € Co(G} and thus

Vr)g(t)y du(t) = | F(os)g(¢s) dus).
H

@

[F(9s)|d|ul{s) < e.

It follows that

§ £y dv(e) - § £(és) duls)|

G H

= | § £0(1 - 9(6) do(t) — | F(o5)(1 = () (o)
@

|f(6s)| dlul(s) <e.

1A

G\K H\¢"1(K)

§ r@ldvie §
Y



icm

58 S8.-Z. Huang

TFhus,

(3) [ fit)deu(t)= | flgs)du(s) forall (f,u) € O(G) x M(H).
G H

Let pe M(H) and v € G. From {2) and (3) we find
du(v) = | ¥(8) dou(t) = | ¥(9s) du(s) = Aley).

H H
Therefore,
(4) du=Tlcd forall uc M(H).
An easy computation yields that
(5) dbs =gy for all s € H.

Now let & : M(G) — L{X) be a representation. The composition & o ¢
yields a representation of M(H) on X. The following “Spectral Mapping
Theorem” in [11, Theorem 1.3.12] (cf. [19, Prop. 8.1.13]) gives an easy way
to compute the spectrum of ¢ o ¢ through the spectrum of ¢.

THEOREM 4.1. Let & : M(G) — L(X) be o non-degenerate representa-
tion and let ¢ : H — G be a continuous group homormorphism. Then
Sp(& 0 ) = $(Sp()),
where the closure is taken in H.

We write £LF (resp. £7) for the w*-continuous left translation represen-
tation of G (resp. H) on L™(G) (resp. on L°°(H)); see Section 1. Let o, ¢
and § be as at the beginning of this section. Let a € A and p € A(A). We
want to prove that

(6) A2 =3(Az) and Tp(a) = p(Aala).

Once (6) is established, we have the following “Spectral Mapping Theorem”
for unitary spectra:

Apop = $(Aa).
To prove (6), fix o € A4 and ¢ € A(A). Consider the functions
Jap(t) = plawa), tE€C; |hay(s)=¢(fa), seH.
Then g4, € O(G) and h,, € C(H). Let

—~

Al V= O (ga,c,a) and Az = ¢(A1).

We want to prove the inclusion

(7) Ty (ha,zp) C A,
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To this end, consider the spectral subspace Y := {h€ L(G) : 0y (h) T A1 }.
Clearly, ga,, € Y. For the restriction & of £& to ¥ we have Sp(&) = 4;.
Applying Theorem 4.1 to ® and ¢ we find that Sp(Pod) = As. Let f € j(Aa).
Then (€ 0 ¢)fg9a,, = 0 by Theorem 1.2(1). Hence, for = ¢f € M(G),

ﬁfga,zp =Pugop = (P 0B)tGaw = 0.
Given £ > 0, choose a compact subset K’ C H such that SH\K |f(8}| ds < e.

Since ¢(K) is compact in & and the function ¢ — @(oa) is continuous, it
is uniformly continuous on ¢{K'). Hence, there exists a neighbourhood U of
0 in G such that |U| < oo and

(8) sup sup |p(aogsa — agsa)l < €
tel se K

Set F := |U|7'xy € LYG). Then £$,, 00, = £5L8g., = 0. Since
Fxp € LYG), the function LE, ga,, is uniformly continuous and thus
LGLE ga,o(0) = 0. It follows from (1) that

0= Cgﬂsga,tp(o) = S F(t) S Jo, (8 + 1) dpu(s) dt
G G

= | F(t) | plowrpon)f(s)dsdt  (by (3))
e H
= S F(s %S (ctsqps0r) dt ds (by Fubini’s Theorem} -
H
= S Flsyplagsa)ds + I + I,
"
where
| = ’ S f(s)—}—- S Pl patt — Qgs0) dt ds
H\K Ul
<2ial | |f(s)lds < 2¢]lall,
HA\K
|Ia] == ‘ S f(s)—l— S ©(0t46s0 — agpsa) dt ds
i Uy
<ef[f(s)lds  (by (8)).
K

Here in the estimate of |I;| we have used in an obvious way the fact that
le(ara)| < |le| for all ¢ € G. It follows that

|| 7(s)p(eg,0) ds| < 2eljal] + ¢l Fl.
H
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Thus, we have proved that for all f € j{4z),
| #()ha(s)ds = | fs)plassa)ds =0
)4 H

By Proposition 1.3(i) this implies (7). From this we obtain part of (6):

45 Co(42) and A5(a) € $(4a(a)).

To show the converse inclusions, we note that ha,a;p = Raya,p for all

t € G. Assume f € L*(H) to be such that
(9) L hoore = LY haya =0 forallt €G.
Fix t € G. Then by (1) we have

0= ‘C?haaa;‘w(o) = S f(s)ploirgsa) ds.

H

Let 1= ¢f € M(G). Then (3) gives

S Gaye(8 +t) du(s) = S F{s)p(airgsa) ds = 0.
G H

This implies that £Z g, = 0. Let F € L'(@). Then F * u € L*(G) and

Preplop = LIFE ga,e = 0. By the definition of aww(ga o) we find that
F+p & k(oy-(ga ‘P)) for all F € I* (G) Therefore, fi vanishes on oo+ (ga,e)-

Let 7 € 0w (Gayp)- By (4) we have f($y) = fi(y) = 0. Thus,

(10) £ € b(@(owr (Gasp)))-

We are now in a position to finish the proof of (6). Assume f € L*(H)
to be such. that L;Iha,¢ = 0 for all ¢y € A(A). Then f satisfies (9) for all
1 € A(A) and thus by (10),

Fro02( U #low(oas)) = 8(dula)).

PEA(A)

This implies by the definition of 4 (a) that Agfa) 2 2 ¢(Aq(a))-

Analogously, let f € L'(H) be such that £ Fhye =0forallbe A Then
f satisfies (9} for all b € A and thus by (10),

702 (U dow gb,‘p))) = 3(Az).

e A

This implies that A5 D 55(/19‘;) Therefore, we have established (6) as well as
the following result.

THEOREM 4.2. Let {A, G,a} be an a-dynamical system. Let H be a LCA
group and ¢ : H — G a continuous group homomorphism. Then the a-
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dynamical system {A, H a0 ¢} satisfies

Aaop = $(4a).
Moreaver, for all a € A and p € A(A),

Aaoe(a) = $(dala)) and AT = 3(45).

Theorem 4.2 has several important applications. Corollary 4.3 below
says that the unitary spectrum A, is large enough to determine the unitary
spectrum o(e:) N'T of each automorphism o. Theorem 4.4 gives an exact
representation for those group representations whose unitary spectrum con-
tains only finitely many elements. Theorem 4.5 and Corollary 4.6 concern
continuity and growth of group representations whose unitary spectrum is
compact. Corollary 4.7 describes the unitary specirum of a representation
in a more intrinsic way.

COROLLARY 4.3. Let {A, G, o} be an a-dynamical system with A semi-
sitnple. Then for eacht € G,
ola)NT = {~v({) : v € Aa}.
Moreover, if the operator oy satisfies the growth condition

T log(1 + [|ane )

T n2 < 00,

ncz
then for all a € A and ¢ € A(A),
oo, (@) ={7(t) : v € dala)} and oay(p) ={7(t) : v € 43}
Proof Fix t € G and consider the group homomorphism ¢ : Z — G
given by ¢n = nf for all n € Z. Let v € G. Then for all n € Z,

dv(n) = v(gn) = v(nt) = v(&)".

It follows that $7 = «(t). Let T := o, and T be the group representation
generated by T'. 'We have

T'Tb = T“ = Qipg — aqu. = (Oﬂ 0¢)n,
Hence, T = o o ¢ and by Theorem 4.2,

Ar = §(Aa) = {7(#) : v € 4a}-
On the other hand, by Corollary 3.3 we have o{T)NT = Ay. This is the
first assertion.

Further, if the operator T' = o satisfies the given growth condition then
Proposition 3.6(i) yields that or(a) = Ax(a) and or-{g) = AT foralla € A
and ¢ € A(A). By Theorem 4.2 we see that Ar(a) (resp. Ag‘) is the closure
of {v(t) : v € Ax(a)} {resp. {¥(t) : v € A3}). This proves the “moreover”
part. m
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TuEOREM 4.4. Let {A, G,a} be an a-dynamical system with A semi-

simple. If the unitary spectrum A, conteins only finitely many elements,

o« = {7 : 1 <k < n} say, then there exist bounded projections Pr,..., P,
on A such thaot

k{1
o= (t)Py forallteG.

Proof. Let t € G. By Theorem 4.2 we have
ola) NT = {y(t): 1 <k <n}.
It follows from Corollary 3.3(i) that of* = I for some ny € N. This implies
that

(11) sup |lens|| < o0 forallt € G
neL

On the other hand, let G4 be G with discrete topology. The identity
mapping id : Gqa — G is a continuous group homomorphism. We have
1dfy = forallye G. The composition 3 := aoid : Gg — Aut{A) is
norm continuous and (11) implies that it is a n.q.a. group representation.
Let

w(t): =1+ |lasl|, teG,
and let @ : M,(Ga) — L(A) be the algebra representation generated by
B. By Theorem 2.6, Sp(®) = Ag. Applying Theorem 1.2(ii) to & we obtain
bounded projections Fi,..., P, on A such that P, + ...+ P, = I and
Sp(PoPy)={vw} fork=1...,n
Fix k. Consider a € P A. Then, by Theorem 2.6 again,

(12) Ap{a) = Spg(a) € Sp(@ o Fy) = {vi}.
Let ¢ € A(A). Consider

h{t) := @(Bia) = p{aya), te Gq.
Then h € L*((Gq) and by (12) the weak-star spectrum of h is contained
in {v}. Proposition 1.3(iii) yields c, € C such that A(f) == c,v(t) for
all t € Gg. Hence, p(ata — w(t)a) = 0 for all t € Gy and ¢ € A(A).
Thus a;a = yw(t)a for all t € G by the semisimplicity of A. Therefore,
0e: Py = . (¢) Py. This implies that

T
=> w({t)P, forallteG. w
THEOREM 4.5. Let {A, @, a} be an a-dynomical system with A semi-

simple. If the unitary spectrum Ay is compact, then the group represen-
tation o 1 G — Aut(A) 4s norm continuous, i.e., limy g |l — I|| = 0.
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Furthermore, if A, is compact and scattered, then for each t € G there ex-
ists ny € N such thot ot = I. Hence, in this case o is o norm continuous
n.g.o. group representation. Moreover, { f(t)a:di = 0 for all f € k(As)
such that {4 | ()] ] ce] dt < oo.

Proof. Let U be a neighbourhood of 0 in G such that U is compact. It

suffices to prove
lim ey ~ I|] = 0.
tetl, t—0

To this end, let 71 be the closed subgroup of & generated by U. By the
Basic Structure Theorem [10, Theorem 9.8, p. 90] there exist m,n > 0 and’
a compact group K such that G is isomorphic to H = R™ x Z" x K. Let
¢ : H — (1 be the corresponding group isomorphism, and 3 := a0 ¢. By
Theorem 4.2 the unitary spectrum Ag is equal to the closure of qu)( @) N .
Thus, Ag is compact since A, is. Consider the group injections ¢; : R™ — H,
¢ : Z" — H and ¢3 : K — H. Then B o ¢o is already norm continuous,
since Z" is discrete. By Theorem 4.2,

Ao, = d1{dg) and  Agog, = ¢3(4g).

Since Ag is compact, so are both Agsy, and Ageys,. Note that Agoy, is the
closure of the union of closed subsemigroups of R™ = R™. This implies
that Ageg, = {0} and thus (8o ¢;)y = I for all ¢ € R™ by Theorem 4.4.
Thus, [ o ¢y is norm continucus. Note that K is discrete. It follows that the
compact and discrete set Agog, contains at most finitely many elements.
Hence, by Theorem 4.4 again, 8 o @3 is alsc norm continuous. In conclusion,
# itself and the subrepresentation o : G — Aut(.A) are norm continuous.

Assume further that A, is scattered. Let £ € G. Then, by a result of [15,
p. 30|, the compact set {y(t) : v € Ay} is countable. Hence, Corollary 4.3
shows that o(a: )NT = {7(t) : v € Aa} is countable. It follows from Corollary
3.3(i) that o™ = I for some n; € N. This implies that £2() = 1 + {ja||
(t € @) is a continuous n.q.a. weight on G. Let f € LL(G) with F=0on
Ay. Let a € A and ¢ € A(A). Since the scattered set A, is a spectral set
(see Theorem 1.1(iii)), by Theorem 1.2(i) we have Ly, = 0. Note that by
(L)

0= Ls9a(0) = | F)plesa) dt = (i, ( | H)eutt)a),
e &) B

and the semisimplicity of A yields {, f(t)as dt = 0. »

In the proof of Theorem 4.5 we have seen that group representations
of B™ on a semisimple Banach algebra whose unitary spectrum is compact
are trivial. More generally, the following result holds. Recall from [10, Cor.
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24.19, p. 383] that a LCA group & is connected if and only if its dual group
G does not contain any proper closed subgroup.

COROLLARY 4.8. Let {A, G, a} be an a-dynamical system with A semi-
simple and G connected. If Ay is compact, then ay =1 for allt € G.

Proof. It suffices to prove that A, = {0}. Once this is established, the
result follows from Theorem 4.4. If there were 0 % v € Ay, then Proposition
2.4(ii) implies that H := - N is a compact subgroup of G. Clearly, H ¢ G.
This contradicts the above cited criterion of connectedness of 7. m

The following gives an alternative description of unitary spectrum and
local unitary spectrum.

COROLLARY 4.7. Let {A, G, a} be an a-dynamical system with A semi-
simple. Let kero := {t € G : oy = I'}. Then AL = ker o, where AX denotes
the annihilator of Ay in G. Moreover, for alla € A and ¢ € A(A),

do(a)t ={teG:ma=a} and (AZY"={tecG:afp =4}
Proof. First we establish that
Aga)t ={t€G:ata=a} forallac A

To thisend, fixa € Aand t € G. Let ¢ : Z — G be the group homomorphism
defined by ¢n = nt (n € Z). Let T := a4 and T be the representation
generated by 7. We have T = « o ¢. It follows from Theorem 4.2 that

(13) Ar(e) = ¢(4a(a)).
Ift € AL, then Ay(a) = {1}. This implies that a belongs to the T-invariant
closed subalgebra B := A" ({1}). Hence, A5 = {1}. From Corollary 3.3(ii)
we see that Lo = a, i.e., ara = a.

Conversely, assume oo = a. Then Ayx(a) = {1}. Hence, by (13) we have
(t) = 1 for all v € A.(a), thus ¢ € A,(a)*. From this we immediately
derive that AL = ker a.

The result for ¢ is proved similarly. =

It is a general problem as to when a commutative class of operators on
a Banach space has a non-trivial invariant closed subspace. In the following
we tackle the corresponding problem of when a group representation o :
G — Aut(A) has a non-trivial unitary spectral subspace.

THEOREM 4.8. Let {A,G,a} be on a~dg}namical system with A semai-
simple. If there exists ¢ € G such that the automorphism oy has a non-trivial
unitary spectral subspace, then so does o itself.

Proof. Let T := ;. Consider the group homomorphism ¢ : Z — G
given by ¢n := nt for all n € Z Then T = a o ¢ is the representation
generated by T'. The assumption implies that there exists 0 # a & A such
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that Ar{a) # Ar. We need to show that A,(a) # Ao, If Ag(a) were Aq,
then by Theorem 4.2 we would have

Ar(a) = {y(t): 7 € Aa(a)} = {7(t) : 7 € 4a} = Ar-

This is a contradiction. =

COROLLARY 4.9. Let {A, G, a} be a non-trivial a-dynamical system with
A semisimple. Assume that there exist t € G and 0 # a € A such that
ar £ I and

Z log(1 + [|antall) < oo,

2
nEZ I+n

Then o has o non-trivial unitary spectral subspace.

For the proof we need an auxiliary result of Atzmon [3, Lemma 2.1].

LEMMA 4.10. Let (w(n))nez be a sequence of positive numbers such that
there exists K > (0 satisfying

1<wn) and K 'wn) <wn+1) < Kw(n) for all n € 7.
Assume further that

e <o

neZ
Then for every 0 < 8y < 01 < 2m there exists a sequence 0 # f = (fn)nez C
C such that

> falwin) < oo

nez
and the support of the function

. Flz) = Z faz", z€T,

net
is contained in the arc {z € T : 6y < argz < 61}.
Proof of Corollary 4.9.1f Ay{a) # A, then we are done. Assume A, (a) =

Ag. As usual, let T :== oy and T be the representation generated by I'. By
Theorem 4.2,

(14) Ax(a) = {v(to) 1 ¥ € dala)} = {7(to) : 7 € 4a} = Az

Since T s I, Ay (a) = Ay contains more than one point by Corollary 3.3(1).
By Theorem 4.8 we have to show that T' has non-trivial unitary spectral
subspaces.

Consider

w(n)i=1+|T"al| forneZ
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Our growth assumption implies that (w(n)).cz satisfies the condition of

Lemma 4.10. Therefore, there exists 0 # f = (fn)nez € I* such that
D oIl +1T7a]) < 00

nez

and the Fourier transform f{z) := Yonez faz™, 2 €T, satisfies

(15) supp f N Ax(a) # 0 but supp F N Ar(a) # Az(a).

The absolutely convergent series ENEZ Fo.T™a defines an element in A, de-
noted by b. For ¢ € A{A), let

gp(n) == @(T"a) and h,(n):=
Then for all g = (gn)nex €1 and k € Z,

@(T™b) forn € Z.

Zgnhlp(n + k) = Z On Z fm(f?(Tm+n+kG:)
neZ n€L mEL
== Zgn Z fm—n'(yo(Tm+ka) — Z (g * f)m(P(Tm+kG)

nEZ mEZ meh

This implies that Lyhy = Lgupg,, and hence oy« (hy) C supp Fn Ap(a).
Therefore,
{16) Agp(b) = U Ty (hq,)) C supp f N Ax{a).

PEA(A)

If b were zero, then h, = 0 and thus £,g, = 0 for all ¢ € A(A) and
g € I'. This implies that Ar(a) C supp f, contradicting (15). Hence, b 5 0
and by (16), Ar(b) is a proper subset of Ar(a). Hence, A4 (5) # A by (14).
It follows from Theorem 4.8 that T' and o have non-trivial unitary spectral
subspaces. m

A related question is the existence of a non-trivial unitary spectral sub-
space which is itself a Banach algebra. We call an a-dynamical system
{A,G,a} ergodic if there is no a-invariant closed subalgebra besides {0}
and A. The following exarnple justifies the name “ergodic” for this prop-
erty.

ExaMmpLE. Let X be a locally compact Hausdorff space and & be a
LCA group. Assume that G acts continuously on X, ie., there is a group
{r:te G} of continnous homeomorphisms of X such Lh.:mt Tapt = ToTy fOT

all s,% € (¢ and for each ¢ € X the mapping ¢ r+ . is continuous. On the
C*-algebra A = Cp(X) we define

e f(z) = fnz), feCo(X), zeX, ted.
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Then ¢ is a strongly continuous group representation of G by isometries.
It follows from Corollary 4.9 that either « is trivial or & has a non-trivial
unitary spectral subspace.

In ergodic theory the action 7 is called ergodic if there exists no -
invariant closed subset of X besides the empty set and X (see [25]). The
following gives an alternative description of ergodicity:

a is ergodic <3 7 is ergodic.

In fact, if {2 is a 7-invariant, non-empty and proper subset of X, then {f &
Co(X): f =0 on 2} is a non-trivial c-invariant unitary spectral subspace
which is also a subalgebra of Cp{X). Hence, & is not ergodic. Conversely, if
B is an o-invariant closed proper subalgebra of A, then {z € X : f(z) =0
¥f € B} is a non-empty, closed and r-invariant proper subset of X. Thus 7
is not ergodic. This establishes the equivalence of ergodicity of a and 7.

Assume a to be ergodic. Then, by Theorem 2.5, E = A, for each
¢ € A(Cp(X)) = X. But Proposition 2.4(ii) says that each AZ is a closed
subsemigroup of G. Tt follows that A, is a closed subsemigroup of G. On
the other hand, since Cg(X) is self-adjoint, Proposition 2.4(iii) shows that
Ay is a symmetric subset of G. Combining these two facts we see that Ag
is a closed subgroup of G.

In general, the following assertions hold true.

PROPOSITION 4.11. Let { A, G, a} be an ergodic a-dynamical system with
A semisimple. Then:

(i) A3 = Aq for all p € A(A) and hence Ay is a closed subsemigroup
of G.
(ii) If either A is self-adjoint or Ay is compact, then A, is a closed
subgroup of G isomorphic to the dual of G/ker a.
(ii1) If G = Z then Ay = T unless A is isomorphic to C.
(iv) If A is self-adjoint and G = R, then Ap = R unless A is isomorphic
to C.

Proof. (i) follows from Proposition 2.5 which implies that each unitary
spectral subspace A% (A“) is a closed subalgebra of A.

(i) Ay is a group by Prop051t10n 2.4 combined with (i). In Corollary 4.7
we have proved that AL = ker a. It follows from [21, Theorem 2.1.2, p. 35]
that A, is isomorphic to the dual of G/ker .

(iil) It suffices to prove that if A, # T then a; =T and hence A = C,
In fact, if A, # T then by Corollary 3.3(i) we see that o(a1) = A, and
1 € o(a) is an eigenvalue of o Note that B := {a € A: aya = a} is
a NON-Zero, o -invariant closed subalgebra of A. The ergodicity of & yields
B = A and hence o; = I. By the ergodicity again, A = C.
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(iv) Since A is self-adjoint, A, is a closed subgroup of R by (ii). Note
that A, is one of the following sets:

Ay ={0}; Ay =272""-Zforsome A>0; Ao=R

If A, = {0} then by Corollary 4.6 we have o; = [ for all £ € R and thus
A 22 C by the ergodicity of . If Aq = 2wrA™1-Z for some A > 0, then ay =T
by Corollary 4.7. Let r := A/2. Consider

By :={ae A: apa = +a}.

Since B, is an a-invariant closed subalgebra of A, by the ergodicity of o we
have either By = {0} or B,. = A If the first case occurs, then B_ = A and
thus for all a € A,

—a? = a.(a?) = (ar0) - () = a’.
Hence, a® = 0 and thus o = 0 by the semisimplicity. This is impossible. In
conclusion, we have A, = R unless A= C. n

REMARK. Related results about the spectra of ergodic actions can be
found in [24].
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