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Banach spaces with a supershrinking basis
by
GINES LOPEZ (Granada)

Abstract. We prove that a Banach space X with a supershrinking basis (a special
type of shrinking basis) without ¢y copies is somewhat reflexive (every infinite-dimensional
subspace contains an infinite-dimensional reflexive subspace). Furthermore, applying the
co-theorem by Rosenthal, it is proved that X contains order-one quasireflexive subspaces
if X is not reflexive. Also, we obtain a characterization of the usual basis in ep.

1. Introduction. We use standard Banach space facts and terminology.
Let us just recall that a basis {e,} in a Banach space X is called shrink-
ing iff X* = ln{f, : n € N}, where {f,} is the sequence of biorthogonal
functionals.

With a separation argument, it is easy to see that {e,} is shrinking iff
{z** e X™* :a™*(fn) =0VneN} c X.

We will say that {e,} is supershrinking iff

(Nx =) {z™ € X** : mz™ (f,) = 0} C X.

In fact, if the basis {e,} is seminormalized, one can replace the above in-
clusion by equality. Also, it is possible give a definition only in terms of the
basis: a shrinking basis {e,} is supershrinking provided whenever scalars
{cn} satisfy lim, ¢, = 0 and sup,, || Sop_; ckexl| is finite, then 3 cnen con-
verges in the norm topology.

In [4], it was proved that the Radon-Nikodym and Krein-Milman prop-
erties are equivalent in Banach spaces with a supershrinking basis. Also, the
supershrinking bases are used in [§] to prove that every Banach space with
the point of continuity property and separable dual is somewhat order-one
quasireflexive (every non-reflexive subspace contains an order-one quasire-
flexive subspace). A Banach space is order-one quasireflezive if it has codi-
mension one in its bidual.
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Examples of Banach spaces with a supershrinking basis are the reflexive
spaces with basis, ¢y, J (the James space) and the natural predual of JT
(the James tree space) (see [4]). In a similar way, it can be seen that the
natural predual of JT, has a supershrinking basis (see Th. IV.2 in [2]).

The aim of this note is to study the structure of Banach spaces with a
supershrinking basis. Our main results are the following:

THEOREM A. Let X be a Banach space with a normalized and shrink-
ing basis {en}, and associated functionals { f, }, without infinite-dimensional
reflerive subspaces. Then the following are equivalent:

(i) {en} is supershrinking.
(i) Nx is separable.
(iii) A w-closed and bounded subset K of X is w-compact whenever
lim,, fu(k) = 0 uniformly in k € K.
(iv) A closed and bounded subset K of X is compact whenever limy, fr (k)
= 0 wniformiy in k € K.
(v) {en} is eguivalent to the usual basis of cp.

THEOREM B. Let X be o non-reflexive Banach space with a normalized
supershrinking basis {en} and associated functionals { f.}, without subspaces
isomorphic to co. Then X contains order-one quasireflexive subspaces. In
fact, every non-reflexive subspace contains an order-one guosireflerive sub-
space.

Main results. We begin by recalling some concepts and known results.
A hasic sequence {z,} in a Banach space X is said to be strongly sum-

ming (s.s.) if {z,} is weakly Cauchy and

E ¢, converges whenever

e

The usual busis of ¢y is the basis of unit vectors denoted by {b,}, and the
summing basis of cg is {371 bin.

THEOREM ([5], co-Rosenthal). Let X be a Banach space and {z,} a
weakly Cauchy and not weakly convergent sequence in X. Then {z,} has

either a strongly summing basic subsequence or a conves basic block equiva-
lent to the summing basis of ¢p.

TuEOREM ([1], Elton). Let {z,} be a normalized and weakly null se-
quence in o Banach space, without subsequences equivalent to the usual basis
of co. Then {zn} has a basic subsequence {z),} such that lim, | 3 r_; eivil|
= oo for every subsequence {yn} of {xl,} and for every {cn} & co.

Our first result characterizes the equality Ny = X,
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THEOREM 1. Let X be a Banach space with a normalized and shrinking

basis {en} and associated functionals {f,}. Then the following are equiva-
lent:

1) Nx #X.
(ii) There is a non-reflexive subspace Y of X with limy, ||fv |ly- = 0.
(iii) There is a bounded and non-relatively weakly compact subset K of
X such thot lim, sup,.x fn(k) = 0.

Proof. (i)=-(ii). Let z3* € Nx \ X. Then the sequence {z,} =
{¥ %1 24 (Fr)ex }n is weakly Cauchy and not weakly convergent. In fact, it
converges to z3* in X**, for the weak-* topology.

By applying the c¢p-Rosenthal Theorem, either there is an increasing
o : N — N such that {z,(,)} is a basic strongly summing sequence, or {z,}
has a convex basic block equivalent to the summing basis. In the first case
we set gy, = zf_nl) o5 {(fr)er for n € N.

Assume, without loss of generality, that z{*(fn) # 0 for every n € N.

We put Y = lin{yy, : n € N} and let {g.} be the sequence of associated
functionals of {yn}. Then

Tomily  Jensn)y
‘TE* (fa(n)) 33* (fa(n+1))
Purthermore, 5™ € Y™**, So, Y is not reflexive.

If y** € Y**, then sup, || 3 5o ¥™(gx)yr] < oo and so the series
Yon U™ (gn) converges since {yn} is strongly summing. But

Vne N,

gn =

N *k L]
Zy** ) = y *£f0(1)|3f) Y *Efcr(N+1)|Y) YN €N
z§* (fo1y) Zo (fcr(N+1))

Hence, the following limit exists for every ™™ € Y**:

Y (fomy)
(1) TE-EI;O ms*(fu'(n)) ‘

Let vn, = EZ(TB(R 141 28" (fi)ex for n € N (9(0) = 0). Then ¥ = in{v, :
n € N} and {v,} is a basic block of {en}, so it is a shrinking basis of Y
Let {hn} be the sequence of associated functionals of {vn} Then hp
Frjv /25" (fr) whenever o(n—1) +1 < k < o(n) and 23 *(fe) # 0. But
supn Anll < o0 by (1). So, limy, |j fojyiy- =0, and ¥ is non—reﬂexwe since

E Y**

Now, assume that {z,} has a convex basic block equivalent to the sum-
ming basis. Then there is an 1ncreasmg o : N — N and a sequence {A,} of

positive real numbers with Zk-—cr[n 1)+1 Ar = 1 for every n € N such that

= }: k_a(n +1 Ax2x i8 equivajent to the summing basis.
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Let ¥ = lin{u, : n € N} and let {g,.} be the sequence of associated
functionals of {v,}. Then

its Soty
20 e = S B ()
Therefore My = sup, |[gn| < oo.
Let ¢y = v1 and y, = vp — Un_1 for n > 2. Then {y,} is a hasis of ¥
eguivalent to the usual basis of ¢y, and

whenever ¢(n— 1)+ 1 £ k < o(n).

o{n) a{n—1)
Yn = Z ApZr —~ Z Apzy  Wn> 2
k=o(n—-1)+1 k=o(n~—2)+1

Let {hn} be the sequence of associated functionals of {y,}. Then h, =
Fotn—1)+1¥ /28" (fa(n-1y+1) for every n € N and My = sup,, [[hs] is finite.
By (2), we obtain
feviy  fuy
o3 (Fer1) =57 (fe)

Inductively, we have

— Argn  Whenever o(n — 1) +1 <k < o(n).

Ty =
= fp — E A h -D+2Lk<a(n)+ 1.
25" (fi) gni:a(n—l)-l—l whenever ol =122k <o)+

So, || fujv /25" (fi)| v+ < Ma+M; for every k € N and hence limp oo || fujr || v+
=0.

(ii)=-(iii). This is clear, by considering K = By.

(if)=(i). Let k** ¢ K~ \ K. Then k** € X**\ X and lim, k**(f,) = 0,
since limy, sUpgex frn(k) =0. S0, y¥™* € Nx\ X and Nx # X. m

To prove Theorem A we need the following lemmas:

LEMMA 2. Let X a Banach space with a normalized basis {e,} cmd let
Yp = En,_l ahen for every p € N be a sequence in X such that limy, af = 0
uniformly inn € N and ||yp|| > 1 for every p € N, Then there is a basic sub-
sequence {Yr(p)} of {yp} equivalent to a basic block v,, =
for every n € N such that inf, ||v,|| > 0 and lirag Mg = 0.

Proof (analogous to Prop. 1.a.11 of [3]). Let us see that for every £ > 0
and p € N there is k, € N such that | 7 _, al?e,| < =.

If £> 0 and p € N, then there is ky € N such that |o| < ¢/p whenever
k2 Fkpand 1 <n <p. Then

p P
” Zaﬁen” < Z lakl <& Yk > k.
=1 n=l

Hence it suffices to put k, = k > k.

Zf:ng(n—l)wi-l Ak
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mNOW, we construct {y-(,} and {v,} inductively. Put (1) = 1 and y; =
Yome1 Gnen.

Let p1 € N be such that |ly; — v1|| < $M, where v; = 52 ale, and
M is the basic constant of {e,}.

Let 7(2) € N be such that (2} > 7(1) and || a;@ enl < 25 M
and let py € N with py > p1 and | 300,44 an® enH <z 1 =M.

Then ||y, — v2|| < 3 M, where vy = faip + a;(z) en.

In this way we obta.ln a basic block {v,} equivalent to {y,¢n)}. So,
infy, ffun|] > 0.

Furthermore, if v, = kaa (n—1)+1
whenever o(n— 1} + 1 < k < o(n).

So, limy, A = 0, since lim;, afi =0 uniformly n neN. =

Axei for every n € N, then A\ = a;(n)

LemMa 3. Let X be a Banach space with a seminormalized supershrinking
basts {en}. If X does not contain infinite-dimensional reflezive subspaces,
then {e,} is equivalent to the usual basis of cg.

Proof. Let {f,} be the sequence of biorthogonal functionals. Assume
that {e,} is not equivalent to the usnal basis {b,} of ¢g. We put

Xo = {{an} e RN Z GnEn COBVErges in X}.
T

Then X is a subspace of ¢, non-closed in general. Define T : Xy — X by

T({on}) = i ane,  V{an} € Xu.

n=1
Then 7T is linear and bijective. Furthermore, T !(z) = {fn(z)}, for every

ze€ X.IfneNand z € X we obtain
| fn(2)| < M| fa(z)enll = M||Pa(z) — Pa-a(2)]] < 2K M ||z,

where |ley| = 1/M > 0 for all n € N, K is the basic constant and {P,} is
the sequence of the projections of the basis.

Thus, T~ is continuous. But T(b,) = ¢, for all n € N, so T is not
continuous, that 1s we can assume that for every & € N there is {a?} < X,
such that limy a® = 0 uniformly in n € N and || 2o aken|| = 1 for every
ke N _

If we set gy, = Zf,’;laﬁen for every p € N, we can apply Lemma 2
to obtain a basic block {v,} with inf, ||va| > 0 and limg Ay = 0, where
Uy = Ek s (n—1)+1 Arey for every n e N,

We put ¥ =lin{v,, : n € N}. Then Y is not reflexive and lim, .o an|y [|y+
= 0, since limy Ay, = 0.
By Theorem 1, we conclude that Nx # X. =
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Proof of Theorem A. The equivalence between (i) and (iii) is general and
it is proved in Theorem 1. The implications (i)=>(ii), (v)=-(iv) and (iv)=>(iii)
are clear, and the implication (i)=+(v) is Lemma 3.

For (ii)=>(i), assume that {e,} is not supershrinking, so Nx # X. By
Theorem 1, there is a non-reflexive subspace ¥ of X such that ¥ C Nyx.
Now, by Theorem 1.b.14 of [3], ¥"** is not separable, since X does not contain
infinite-dimensional reflexive subspaces. Then Nx is not separable.

Before proving Theorem B, we show what happens if one assumes the
equality Ny = X without ¢q copies.

PROPOSITION 3. Let X be a Banach space with a normalized basis {e,}
without subspaces isomorphic to ¢y and assume that Ny = X. Then

(i) Bvery infinite-dimensional subspoce of X contatns an infinite-dimen-
sitonal reflexive subspace, that is, X is somewhat reflexive.

(it) Buery subsequence of {e,} has a further subsequence whose closed
linear span is a reflexive subspace.

Proof. (i} Let ¥ be an infinite-dimensional subspace of X. Then by
Proposition 1.a.11 of [3], there is a basic sequence {y,} in Y equivalent to
a seminormalized basic block v, = Z:f_:r)( 1)1 kex for every n € N, with
{2} bounded.

As X does not contain ¢ copies, there is {t,} C ¢ such that 3~ £,u,
is not convergent.

Then there is € > 0 and natural numbers p; < g1 < ... <Ppp < G < ...
such that || 3037 tntn|| 2 & for every n € N,

In this way, we obtain a basic block

T(n) n
Wy = Z Qe = Z thty Yn € N,
k=r{n—1)4+1 kez=p.,
with infr, [[wn] > 0 and Hmy ap = 0.

Let Z = lin{wy, : n € N}. Then lim, oo | friz| 2+ = 0, since limy c = 0.
So, 7 is a reflexive subspace isomorphic to a subspace of Y, by Theorem 1.

(i) It is clear that it suffices to prove that {e,} has a subsequence whose
closed linear span is a reflexive subspace.

For this, we apply the Elton Theorem to obtain a basic subsequence
{es(n)} of {€n} such that

k
ol o
i=1

Weput Y = Iﬂl{e,(n) :n € N}, To see that Y is reflexive it suffices to prove
that {e,(ny} is a boundedly complete basic sequence in Y. (Observe that
the assumption Ny = X implies that {e,} is shrinking.)

=oc V{a;} & co.
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Let {A\n} C R be such that sup,, || 3% Areoqr)l| < oo. Then {A,} € co
and so > An€q(n) converges, that is, ¥ is reflexive. u

LemMA 4. Let X be o Banach space with o normalized basis {e,} and

associated functionals {f,} such that Nx = X. If v, = Zfﬁ(n_l)ﬂ Apes

is a basic block of {e,} with {\,} bounded and Y = In{v, : n € N}, then
Ny =Y.

Proof. Let {g,} be the sequence of associated functionals of {v,}. Then
fe = Akgn whenever o(n - 1) + 1 < k < o(n).

If y** € Y™* with lim, y**(gn) = 0 then lim, y™**(fn) = 0, since {A,} is
bounded. So, y** e Ny =X and Ny =Y. u

Proof of Theorem B. Let Z be a non-reflexive subspace of X. Then,
by Proposition 1.a.11 of [3], it is possible to find a basic sequence {z,} in
Z which is weakly Cauchy, not weakly convergent, and whose difference
sequence {z,11 — 2.} i equivalent to a seminormalized block basis of {e,}.
The subspace generated by the sequence {zp41 — 2.} is non-reflexive and
satisfies the same hypotheses as X, by Lemma 4, so it is sufficient to see
that X contains an order-one quasireflexive subspace if X is not reflexive.

So, assume that X is not reflexive and let z§* € X** \ X. Now, the
sequence {3 p. 26" (fr)er}n is weakly Cauchy and not weakly convergent.
By the cp-Rosenthal Theorem we find ¢ : N — N increasing such that the
sequence

o (n)

un = ) 25 (fr)en
k=1

is basic and strongly summing. We put ¥ = lin{y,, : n € N}. We can suppose
that o3*(fue(n)) # 0 for alln € N.
Let {g,,} be the sequence of associated functionals of {y,}. Then

fo(n)¥ Fanrn)y
n = —0> - = Y& N.
for (far(n)) g (fa(n+1))
If y** € Y** then supy, || Soper ¥ (91)Ux]| < 0o. So, the series 3 v**(gn)
converges. Therefore, the following limit exists, for every y* € ¥Y™*:
y**(fo'(n))

(3)

We put v, = Z:(:"J)(ndl)ﬂ 23" (fe)ew and hy = fon)/2g* (Foin)) for every
n € N. Hence {v,} is a shrinking basis of ¥ with associated functionals

{Pn}-
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Finally, we define ¢ : Y** — R by ¢o(y**) = lim, y**(h,). By (3), we
have ¢ € Y***. Now, by applying Lemma. 4,

Y™ = Kerg @ {zp*) = Ny @ (23") =Y ® {&3).
Thus Y is an order-one quasireflexive subspace. »

ReEMARK. With an analogous proof, the conclusion of Thecrem B is also
true if we suppose that dim(Nx/X) < oo instead of Ny = X.
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A spectral theory for locally compact abelian groups of
automorphisms of commutative Banach algebras

by
SEN-ZHONG HUANG (Jena and Rostock)

Abstract. Let A be a commutative Banach algebra with Gelfand space A{A). De-
note by Aut(A} the group of all continuous automorphisms of 4. Consider a o{A4, A(A)}-
continuous group representation ¢ : G — Aut{A4) of a locally compact abelian group G
by automorphisms of A. For each a € A and v € A(A), the function @.(t) = ploua)
(t € @) is in the space C(G) of all continuous and bounded functions on G. The weak-star
spectrum oy« (i2q) is defined as a closed subset of the dual group GoftG. Forpe A(A)
we define Ag to be the union of all sets oy~ (¢g) where a € A, and A to be the clo-
sure of the union of all sets A7 where v € A(A), and call Ay the unitary spectrum
of ¢,

Starting by showing that the closure of A3 (for fixed ¢ € A(A)) is a subsemigroup
of & we characterize the structure properties of the group representation « such as norm
continuity, growth and existence of non-trivial invariant subspaces through its unitary
spectrum. Ae.

For an automorphism T of a semisimple commutative Banach algebra A we consider
the group representation T : Z — Aut(A) defined by Ty := T for all n € Z. It is shown
that Ay = o(T') NT, where o(T) is the spectrum of T and T is the unit circle. From this
fact we give an easy proof of the Kamowitz—Scheinberg theorem which asserts that the
spectrum o(7") either contains T or is a finite union of finite subgroups of T.

Introduction. Let A be a commutative Banach algebra with Gelfand
space A{A) (i.e., the space of regular maximal ideals of 4). Denote by
Aut(A) the group of all continuous automorphisms of A. For an automor-
phism T on A we consider the group representation T : Z — Aut(A) given
by T, := T" for all n € Z For each o € A and ¢ € A(A) the function
wa(n) == (T"a) (n € Z) belongs to the space C(Z) of all continuous and
bounded functions on the group Z. The weak-star spectrum oy (@,) of g,
as a closed subset of the unit circle T, is defined in the classical way (see
[14] or [20]). Note that T is the dual group of Z.
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