

Banach spaces with a supershrinking basis

by

GINÉS LÓPEZ (Granada)

Abstract. We prove that a Banach space X with a supershrinking basis (a special type of shrinking basis) without c_0 copies is somewhat reflexive (every infinite-dimensional subspace contains an infinite-dimensional reflexive subspace). Furthermore, applying the c_0 -theorem by Rosenthal, it is proved that X contains order-one quasireflexive subspaces if X is not reflexive. Also, we obtain a characterization of the usual basis in c_0 .

1. Introduction. We use standard Banach space facts and terminology. Let us just recall that a basis $\{e_n\}$ in a Banach space X is called *shrinking* iff $X^* = \overline{\lim}\{f_n : n \in \mathbb{N}\}$, where $\{f_n\}$ is the sequence of biorthogonal functionals.

With a separation argument, it is easy to see that $\{e_n\}$ is shrinking iff $\{x^{**} \in X^{**} : x^{**}(f_n) = 0 \ \forall n \in \mathbb{N}\} \subset X$.

We will say that $\{e_n\}$ is supershrinking iff

$$(N_X =) \{x^{**} \in X^{**} : \lim_n x^{**}(f_n) = 0\} \subset X.$$

In fact, if the basis $\{e_n\}$ is seminormalized, one can replace the above inclusion by equality. Also, it is possible give a definition only in terms of the basis: a shrinking basis $\{e_n\}$ is supershrinking provided whenever scalars $\{c_n\}$ satisfy $\lim_n c_n = 0$ and $\sup_n \|\sum_{k=1}^n c_k e_k\|$ is finite, then $\sum_n c_n e_n$ converges in the norm topology.

In [4], it was proved that the Radon-Nikodym and Krein-Milman properties are equivalent in Banach spaces with a supershrinking basis. Also, the supershrinking bases are used in [6] to prove that every Banach space with the point of continuity property and separable dual is somewhat order-one quasireflexive (every non-reflexive subspace contains an order-one quasireflexive subspace). A Banach space is order-one quasireflexive if it has codimension one in its bidual.

¹⁹⁹¹ Mathematics Subject Classification: Primary 46B03. Supported by D.G.E.S. Project No. 96-1406.

Examples of Banach spaces with a supershrinking basis are the reflexive spaces with basis, c_0 , J (the James space) and the natural predual of JT (the James tree space) (see [4]). In a similar way, it can be seen that the natural predual of JT_{∞} has a supershrinking basis (see Th. IV.2 in [2]).

The aim of this note is to study the structure of Banach spaces with a supershrinking basis. Our main results are the following:

THEOREM A. Let X be a Banach space with a normalized and shrinking basis $\{e_n\}$, and associated functionals $\{f_n\}$, without infinite-dimensional reflexive subspaces. Then the following are equivalent:

- (i) $\{e_n\}$ is supershrinking.
- (ii) N_X is separable.
- (iii) A w-closed and bounded subset K of X is w-compact whenever $\lim_{n} f_n(k) = 0$ uniformly in $k \in K$.
- (iv) A closed and bounded subset K of X is compact whenever $\lim_n f_n(k)$ = 0 uniformly in $k \in K$.
 - (v) $\{e_n\}$ is equivalent to the usual basis of c_0 .

THEOREM B. Let X be a non-reflexive Banach space with a normalized supershrinking basis $\{e_n\}$ and associated functionals $\{f_n\}$, without subspaces isomorphic to c_0 . Then X contains order-one quasireflexive subspaces. In fact, every non-reflexive subspace contains an order-one quasireflexive subspace.

Main results. We begin by recalling some concepts and known results. A basic sequence $\{x_n\}$ in a Banach space X is said to be *strongly summing* (s.s.) if $\{x_n\}$ is weakly Cauchy and

$$\sum_{n} c_n$$
 converges whenever $\sup_{n} \left\| \sum_{k=1}^{n} c_k x_k \right\| < \infty$.

The usual basis of c_0 is the basis of unit vectors denoted by $\{b_n\}$, and the summing basis of c_0 is $\{\sum_{i=1}^n b_i\}_n$.

THEOREM ([5], c_0 -Rosenthal). Let X be a Banach space and $\{x_n\}$ a weakly Cauchy and not weakly convergent sequence in X. Then $\{x_n\}$ has either a strongly summing basic subsequence or a convex basic block equivalent to the summing basis of c_0 .

THEOREM ([1], Elton). Let $\{x_n\}$ be a normalized and weakly null sequence in a Banach space, without subsequences equivalent to the usual basis of c_0 . Then $\{x_n\}$ has a basic subsequence $\{x'_n\}$ such that $\lim_n \|\sum_{k=1}^n c_i y_i\| = \infty$ for every subsequence $\{y_n\}$ of $\{x'_n\}$ and for every $\{c_n\} \notin c_0$.

Our first result characterizes the equality $N_X = X$.

THEOREM 1. Let X be a Banach space with a normalized and shrinking basis $\{e_n\}$ and associated functionals $\{f_n\}$. Then the following are equivalent:

- (i) $N_X \neq X$.
- (ii) There is a non-reflexive subspace Y of X with $\lim_n ||f_n|_Y||_{Y^*} = 0$.
- (iii) There is a bounded and non-relatively weakly compact subset K of X such that $\lim_{k \in K} f_n(k) = 0$.

Proof. (i) \Rightarrow (ii). Let $x_0^{**} \in N_X \setminus X$. Then the sequence $\{z_n\} = \{\sum_{k=1}^n x_0^{**}(f_k)e_k\}_n$ is weakly Cauchy and not weakly convergent. In fact, it converges to x_0^{**} in X^{**} , for the weak-* topology.

By applying the c_0 -Rosenthal Theorem, either there is an increasing $\sigma: \mathbb{N} \to \mathbb{N}$ such that $\{z_{\sigma(n)}\}$ is a basic strongly summing sequence, or $\{z_n\}$ has a convex basic block equivalent to the summing basis. In the first case we set $y_n = \sum_{k=1}^{\sigma(n)} x_0^{**}(f_k)e_k$ for $n \in \mathbb{N}$.

Assume, without loss of generality, that $x_0^{**}(f_n) \neq 0$ for every $n \in \mathbb{N}$.

We put $Y = \overline{\lim} \{y_n : n \in \mathbb{N}\}$ and let $\{g_n\}$ be the sequence of associated functionals of $\{y_n\}$. Then

$$g_n = \frac{f_{\sigma(n)|Y}}{x_0^{**}(f_{\sigma(n)})} - \frac{f_{\sigma(n+1)|Y}}{x_0^{**}(f_{\sigma(n+1)})} \quad \forall n \in \mathbb{N}.$$

Furthermore, $x_0^{**} \in Y^{**}$. So, Y is not reflexive.

If $y^{**} \in Y^{**}$, then $\sup_n \|\sum_{k=1}^n y^{**}(g_k)y_k\| < \infty$ and so the series $\sum_n y^{**}(g_n)$ converges since $\{y_n\}$ is strongly summing. But

$$\sum_{n=1}^{N} y^{**}(g_n) = \frac{y^{**}(f_{\sigma(1)|Y})}{x_0^{**}(f_{\sigma(1)})} - \frac{y^{**}(f_{\sigma(N+1)|Y})}{x_0^{**}(f_{\sigma(N+1)})} \quad \forall N \in \mathbb{N}.$$

Hence, the following limit exists for every $y^{**} \in Y^{**}$:

(1)
$$\lim_{n\to\infty} \frac{y^{**}(f_{\sigma(n)|Y})}{x_0^{**}(f_{\sigma(n)})}.$$

Let $v_n = \sum_{k=\sigma(n-1)+1}^{\sigma(n)} x_0^{**}(f_k)e_k$ for $n \in \mathbb{N}$ ($\sigma(0) = 0$). Then $Y = \overline{\lim}\{v_n : n \in \mathbb{N}\}$ and $\{v_n\}$ is a basic block of $\{e_n\}$, so it is a shrinking basis of Y. Let $\{h_n\}$ be the sequence of associated functionals of $\{v_n\}$. Then $h_n = f_{k|Y}/x_0^{**}(f_k)$ whenever $\sigma(n-1)+1 \leq k \leq \sigma(n)$ and $x_0^{**}(f_k) \neq 0$. But $\sup_n \|h_n\| < \infty$ by (1). So, $\lim_n \|f_n|_Y\|_{Y^*} = 0$, and Y is non-reflexive since $x_0^{**} \in Y^{**}$.

Now, assume that $\{z_n\}$ has a convex basic block equivalent to the summing basis. Then there is an increasing $\sigma: \mathbb{N} \to \mathbb{N}$ and a sequence $\{\lambda_n\}$ of positive real numbers with $\sum_{k=\sigma(n-1)+1}^{\sigma(n)} \lambda_k = 1$ for every $n \in \mathbb{N}$ such that $v_n = \sum_{k=\sigma(n-1)+1}^{\sigma(n)} \lambda_k z_k$ is equivalent to the summing basis.

Let $Y = \overline{\lim}\{v_n : n \in \mathbb{N}\}$ and let $\{g_n\}$ be the sequence of associated functionals of $\{v_n\}$. Then

(2)
$$\lambda_k g_n = \frac{f_{k|Y}}{x_0^{**}(f_k)} - \frac{f_{k+1|Y}}{x_0^{**}(f_{k+1})}$$
 whenever $\sigma(n-1) + 1 \le k \le \sigma(n)$.

Therefore $M_1 = \sup_n \|g_n\| < \infty$.

Let $y_1 = v_1$ and $y_n = v_n - v_{n-1}$ for $n \ge 2$. Then $\{y_n\}$ is a basis of Y equivalent to the usual basis of c_0 , and

$$y_n = \sum_{k=\sigma(n-1)+1}^{\sigma(n)} \lambda_k z_k - \sum_{k=\sigma(n-2)+1}^{\sigma(n-1)} \lambda_k z_k \quad \forall n \ge 2.$$

Let $\{h_n\}$ be the sequence of associated functionals of $\{y_n\}$. Then $h_n = f_{\sigma(n-1)+1|Y}/x_0^{**}(f_{\sigma(n-1)+1})$ for every $n \in \mathbb{N}$ and $M_2 = \sup_n ||h_n||$ is finite. By (2), we obtain

$$\frac{f_{k+1|Y}}{x_0^{**}(f_{k+1})} = \frac{f_{k|Y}}{x_0^{**}(f_k)} - \lambda_k g_n \quad \text{whenever } \sigma(n-1) + 1 \le k \le \sigma(n).$$

Inductively, we have

$$\frac{f_{k|Y}}{x_0^{**}(f_k)} = h_n - g_n \sum_{i=\sigma(n-1)+1}^{k-1} \lambda_i \quad \text{whenever } \sigma(n-1) + 2 \le k \le \sigma(n) + 1.$$

So, $||f_{k|Y}/x_0^{**}(f_k)||_{Y^*} \le M_2 + M_1$ for every $k \in \mathbb{N}$ and hence $\lim_{n \to \infty} ||f_{n|Y}||_{Y^*} = 0$.

(ii) \Rightarrow (iii). This is clear, by considering $K = B_V$.

(iii) \Rightarrow (i). Let $k^{**} \in \overline{K}^{w^*} \setminus K$. Then $k^{**} \in X^{**} \setminus X$ and $\lim_n k^{**}(f_n) = 0$, since $\lim_n \sup_{k \in K} f_n(k) = 0$. So, $y^{**} \in N_X \setminus X$ and $N_X \neq X$.

To prove Theorem A we need the following lemmas:

LEMMA 2. Let X a Banach space with a normalized basis $\{e_n\}$ and let $y_p = \sum_{n=1}^{\infty} a_n^p e_n$ for every $p \in \mathbb{N}$ be a sequence in X such that $\lim_k a_n^k = 0$ uniformly in $n \in \mathbb{N}$ and $||y_p|| \ge 1$ for every $p \in \mathbb{N}$. Then there is a basic subsequence $\{y_{\tau(p)}\}$ of $\{y_p\}$ equivalent to a basic block $v_n = \sum_{k=\sigma(n-1)+1}^{\sigma(n)} \lambda_k e_k$ for every $n \in \mathbb{N}$ such that $\inf_n ||v_n|| > 0$ and $\lim_k \lambda_k = 0$.

Proof (analogous to Prop. 1.a.11 of [3]). Let us see that for every $\varepsilon > 0$ and $p \in \mathbb{N}$ there is $k_p \in \mathbb{N}$ such that $\|\sum_{n=1}^p a_n^{k_p} e_n\| < \varepsilon$.

If $\varepsilon > 0$ and $p \in \mathbb{N}$, then there is $k_0 \in \mathbb{N}$ such that $|a_n^k| < \varepsilon/p$ whenever $k \geq k_0$ and $1 \leq n \leq p$. Then

$$\Big\| \sum_{n=1}^p a_n^k e_n \Big\| \le \sum_{n=1}^p |a_n^k| < \varepsilon \quad \forall k \ge k_0.$$

Hence it suffices to put $k_p = k \ge k_0$.

Now, we construct $\{y_{\tau(p)}\}$ and $\{v_n\}$ inductively. Put $\tau(1) = 1$ and $y_1 = \sum_{n=1}^{\infty} a_n^1 e_n$.

Let $p_1 \in \mathbb{N}$ be such that $||y_1 - v_1|| < \frac{1}{4}M$, where $v_1 = \sum_{n=1}^{p_1} a_n^1 e_n$ and M is the basic constant of $\{e_n\}$.

Let $\tau(2) \in \mathbb{N}$ be such that $\tau(2) > \tau(1)$ and $\|\sum_{n=1}^{p_1} a_n^{\tau(2)} e_n\| < \frac{1}{2} \frac{1}{4^2} M$ and let $p_2 \in \mathbb{N}$ with $p_2 > p_1$ and $\|\sum_{n=p_2+1}^{\infty} a_n^{\tau(2)} e_n\| < \frac{1}{2} \frac{1}{4^2} M$.

Then $||y_{\tau(2)} - v_2|| < \frac{1}{4^2}M$, where $v_2 = \sum_{n=p_1+1}^{p_2} a_n^{\tau(2)} e_n$. In this way we obtain a basic block $\{v_n\}$ equivalent to $\{y_{\tau(n)}\}$. So,

In this way we obtain a basic block $\{v_n\}$ equivalent to $\{y_{\tau(n)}\}$. So $\inf_n ||v_n|| > 0$.

Furthermore, if $v_n = \sum_{k=\sigma(n-1)+1}^{\sigma(n)} \lambda_k e_k$ for every $n \in \mathbb{N}$, then $\lambda_k = a_k^{\tau(n)}$ whenever $\sigma(n-1) + 1 \le k \le \sigma(n)$.

So, $\lim_k \lambda_k = 0$, since $\lim_k a_n^k = 0$ uniformly in $n \in \mathbb{N}$.

LEMMA 3. Let X be a Banach space with a seminormalized supershrinking basis $\{e_n\}$. If X does not contain infinite-dimensional reflexive subspaces, then $\{e_n\}$ is equivalent to the usual basis of c_0 .

Proof. Let $\{f_n\}$ be the sequence of biorthogonal functionals. Assume that $\{e_n\}$ is not equivalent to the usual basis $\{b_n\}$ of c_0 . We put

$$X_0 = \Big\{ \{a_n\} \in \mathbb{R}^{\mathbb{N}} : \sum_n a_n e_n \text{ converges in } X \Big\}.$$

Then X_0 is a subspace of c_0 , non-closed in general. Define $T: X_0 \to X$ by

$$T(\{a_n\}) = \sum_{n=1}^{\infty} a_n e_n \quad \forall \{a_n\} \in X_0.$$

Then T is linear and bijective. Furthermore, $T^{-1}(x) = \{f_n(x)\}_n$ for every $x \in X$. If $n \in \mathbb{N}$ and $x \in X$ we obtain

$$|f_n(x)| \le M||f_n(x)e_n|| = M||P_n(x) - P_{n-1}(x)|| \le 2KM||x||,$$

where $||e_n|| \ge 1/M > 0$ for all $n \in \mathbb{N}$, K is the basic constant and $\{P_n\}$ is the sequence of the projections of the basis.

Thus, T^{-1} is continuous. But $T(b_n) = e_n$ for all $n \in \mathbb{N}$, so T is not continuous, that is, we can assume that for every $k \in \mathbb{N}$ there is $\{a_n^k\} \subset X_0$ such that $\lim_k a_n^k = 0$ uniformly in $n \in \mathbb{N}$ and $\|\sum_{n=1}^{\infty} a_n^k e_n\| \ge 1$ for every $k \in \mathbb{N}$.

If we set $y_p = \sum_{n=1}^{\infty} a_n^p e_n$ for every $p \in \mathbb{N}$, we can apply Lemma 2 to obtain a basic block $\{v_n\}$ with $\inf_n \|v_n\| > 0$ and $\lim_k \lambda_k = 0$, where $v_n = \sum_{k=\sigma(n-1)+1}^{\sigma(n)} \lambda_k e_k$ for every $n \in \mathbb{N}$.

We put $Y = \overline{\lim} \{v_n : n \in \mathbb{N}\}$. Then Y is not reflexive and $\lim_{n \to \infty} ||f_{n|Y}||_{Y^*} = 0$, since $\lim_k \lambda_k = 0$.

By Theorem 1, we conclude that $N_X \neq X$.

Proof of Theorem A. The equivalence between (i) and (iii) is general and it is proved in Theorem 1. The implications (i) \Rightarrow (ii), (v) \Rightarrow (iv) and (iv) \Rightarrow (iii) are clear, and the implication (i) \Rightarrow (v) is Lemma 3.

For (ii) \Rightarrow (i), assume that $\{e_n\}$ is not supershrinking, so $N_X \neq X$. By Theorem 1, there is a non-reflexive subspace Y of X such that $Y^{**} \subset N_X$. Now, by Theorem 1.b.14 of [3], Y^{**} is not separable, since X does not contain infinite-dimensional reflexive subspaces. Then N_X is not separable.

Before proving Theorem B, we show what happens if one assumes the equality $N_X = X$ without c_0 copies.

PROPOSITION 3. Let X be a Banach space with a normalized basis $\{e_n\}$ without subspaces isomorphic to c_0 and assume that $N_X = X$. Then

- (i) Every infinite-dimensional subspace of X contains an infinite-dimensional reflexive subspace, that is, X is somewhat reflexive.
- (ii) Every subsequence of $\{e_n\}$ has a further subsequence whose closed linear span is a reflexive subspace.

Proof. (i) Let Y be an infinite-dimensional subspace of X. Then by Proposition 1.a.11 of [3], there is a basic sequence $\{y_n\}$ in Y equivalent to a seminormalized basic block $v_n = \sum_{k=\sigma(n-1)+1}^{\sigma(n)} \lambda_k e_k$ for every $n \in \mathbb{N}$, with $\{\lambda_k\}$ bounded.

As X does not contain c_0 copies, there is $\{t_n\} \subset c_0$ such that $\sum_n t_n v_n$ is not convergent.

Then there is $\varepsilon > 0$ and natural numbers $p_1 < q_1 < \ldots < p_n < q_n < \ldots$ such that $\|\sum_{k=p_n}^{q_n} t_n v_n\| \ge \varepsilon$ for every $n \in \mathbb{N}$.

In this way, we obtain a basic block

$$w_n = \sum_{k=\tau(n-1)+1}^{\tau(n)} \alpha_k e_k = \sum_{k=p_n}^{q_n} t_k v_k \quad \forall n \in \mathbb{N},$$

with $\inf_n ||w_n|| > 0$ and $\lim_k \alpha_k = 0$.

Let $Z = \overline{\lim} \{ w_n : n \in \mathbb{N} \}$. Then $\lim_{n \to \infty} \| f_{n|Z} \|_{Z^*} = 0$, since $\lim_k \alpha_k = 0$. So, Z is a reflexive subspace isomorphic to a subspace of Y, by Theorem 1.

(ii) It is clear that it suffices to prove that $\{e_n\}$ has a subsequence whose closed linear span is a reflexive subspace.

For this, we apply the Elton Theorem to obtain a basic subsequence $\{e_{\sigma(n)}\}$ of $\{e_n\}$ such that

$$\lim_{k} \left\| \sum_{i=1}^{k} a_{i} e_{\sigma(i)} \right\| = \infty \quad \forall \{a_{i}\} \notin c_{0}.$$

We put $Y = \overline{\lim} \{e_{\sigma(n)} : n \in \mathbb{N}\}$. To see that Y is reflexive it suffices to prove that $\{e_{\sigma(n)}\}$ is a boundedly complete basic sequence in Y. (Observe that the assumption $N_X = X$ implies that $\{e_n\}$ is shrinking.)

Let $\{\lambda_n\} \subset \mathbb{R}$ be such that $\sup_n \|\sum_{k=1}^n \lambda_k e_{\sigma(k)}\| < \infty$. Then $\{\lambda_n\} \in c_0$ and so $\sum_n \lambda_n e_{\sigma(n)}$ converges, that is, Y is reflexive.

LEMMA 4. Let X be a Banach space with a normalized basis $\{e_n\}$ and associated functionals $\{f_n\}$ such that $N_X = X$. If $v_n = \sum_{k=\sigma(n-1)+1}^{\sigma(n)} \lambda_k e_k$ is a basic block of $\{e_n\}$ with $\{\lambda_n\}$ bounded and $Y = \overline{\lim}\{v_n : n \in \mathbb{N}\}$, then $N_Y = Y$.

Proof. Let $\{g_n\}$ be the sequence of associated functionals of $\{v_n\}$. Then $f_k = \lambda_k g_n$ whenever $\sigma(n-1) + 1 \le k \le \sigma(n)$.

If $y^{**} \in Y^{**}$ with $\lim_n y^{**}(g_n) = 0$ then $\lim_n y^{**}(f_n) = 0$, since $\{\lambda_n\}$ is bounded. So, $y^{**} \in N_X = X$ and $N_Y = Y$.

Proof of Theorem B. Let Z be a non-reflexive subspace of X. Then, by Proposition 1.a.11 of [3], it is possible to find a basic sequence $\{z_n\}$ in Z which is weakly Cauchy, not weakly convergent, and whose difference sequence $\{z_{n+1}-z_n\}$ is equivalent to a seminormalized block basis of $\{e_n\}$. The subspace generated by the sequence $\{z_{n+1}-z_n\}$ is non-reflexive and satisfies the same hypotheses as X, by Lemma 4, so it is sufficient to see that X contains an order-one quasireflexive subspace if X is not reflexive.

So, assume that X is not reflexive and let $x_0^{**} \in X^{**} \setminus X$. Now, the sequence $\{\sum_{k=1}^n x_0^{**}(f_k)e_k\}_n$ is weakly Cauchy and not weakly convergent. By the c_0 -Rosenthal Theorem we find $\sigma: \mathbb{N} \to \mathbb{N}$ increasing such that the sequence

$$y_n = \sum_{k=1}^{\sigma(n)} x_0^{**}(f_k)e_k$$

is basic and strongly summing. We put $Y = \overline{\lim}\{y_n : n \in \mathbb{N}\}$. We can suppose that $x_0^{**}(f_{\sigma(n)}) \neq 0$ for all $n \in \mathbb{N}$.

Let $\{g_n\}$ be the sequence of associated functionals of $\{y_n\}$. Then

$$g_n = \frac{f_{\sigma(n)|Y}}{x_0^{**}(f_{\sigma(n)})} - \frac{f_{\sigma(n+1)|Y}}{x_0^{**}(f_{\sigma(n+1)})} \quad \forall n \in \mathbb{N}.$$

If $y^{**} \in Y^{**}$ then $\sup_n \|\sum_{k=1}^n y^{**}(g_k)y_k\| < \infty$. So, the series $\sum_n y^{**}(g_n)$ converges. Therefore, the following limit exists, for every $y^{**} \in Y^{**}$:

(3)
$$\lim_{n \to \infty} \frac{y^{**}(f_{\sigma(n)})}{x_0^{**}(f_{\sigma(n)})}.$$

We put $v_n = \sum_{k=\sigma(n-1)+1}^{\sigma(n)} x_0^{**}(f_k)e_k$ and $h_n = f_{\sigma(n)}/x_0^{**}(f_{\sigma(n)})$ for every $n \in \mathbb{N}$. Hence $\{v_n\}$ is a shrinking basis of Y with associated functionals $\{h_n\}$.

G. López

36

STUDIA MATHEMATICA 132 (1) (1999)

Finally, we define $\phi: Y^{**} \to \mathbb{R}$ by $\phi(y^{**}) = \lim_n y^{**}(h_n)$. By (3), we have $\phi \in Y^{***}$. Now, by applying Lemma 4,

$$Y^{**} = \operatorname{Ker} \phi \oplus \langle x_0^{**} \rangle = N_Y \oplus \langle x_0^{**} \rangle = Y \oplus \langle x_0^{**} \rangle.$$

Thus Y is an order-one quasireflexive subspace.

Remark. With an analogous proof, the conclusion of Theorem B is also true if we suppose that $\dim(N_X/X) < \infty$ instead of $N_X = X$.

Acknowledgements. This work was done while the author visited University Paris VI for a research stay. I want to thank Professor G. Godefroy for his invitation and his kindness during this stay. Also, I wish to thank Professor E. Odell for his indications concerning Proposition 3(ii). Finally, I want to thank the referee for his addition to the proof of Theorem B.

References

- J. Diestel, Sequences and Series in Banach Spaces, Springer, 1984.
- [2] N. Ghoussoub and B. Maurey, G_{δ} -embeddings in Hilbert space, J. Funct. Anal. 61 (1985), 72–97.
- [3] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Ergeb. Math. Grenzgeb. 92, Springer, 1977.
- [4] G. López and J. F. Mena, RNP and KMP are equivalent for some Banach spaces with shrinking basis, Studia Math. 118 (1996), 11-17.
- [5] H. Rosenthal, A subsequence principle characterizing Banach spaces containing c₀, Bull. Amer. Math. Soc. 30 (1994), 227-233.
- [6] —, Boundedly complete weak-Cauchy sequences in Banach spaces, preprint.

Departamento de Análisis Matemático Facultad de Ciencias Universidad de Granada 18071 Granada, Spain E-mail: glopezp@goliat.ugr.es

> Received June 30, 1997 Revised version May 11, 1998 (3911)

A spectral theory for locally compact abelian groups of automorphisms of commutative Banach algebras

by

SEN-ZHONG HUANG (Jena and Rostock)

Abstract. Let \mathcal{A} be a commutative Banach algebra with Gelfand space $\Delta(\mathcal{A})$. Denote by $\operatorname{Aut}(\mathcal{A})$ the group of all continuous automorphisms of \mathcal{A} . Consider a $\sigma(\mathcal{A},\Delta(\mathcal{A}))$ -continuous group representation $\alpha:G\to\operatorname{Aut}(\mathcal{A})$ of a locally compact abelian group G by automorphisms of \mathcal{A} . For each $a\in\mathcal{A}$ and $\varphi\in\Delta(\mathcal{A})$, the function $\varphi_a(t):=\varphi(\alpha_t a)$ $(t\in G)$ is in the space C(G) of all continuous and bounded functions on G. The weak-star spectrum $\sigma_{w^*}(\varphi_a)$ is defined as a closed subset of the dual group \widehat{G} of G. For $\varphi\in\Delta(\mathcal{A})$ we define Λ^α_φ to be the union of all sets $\sigma_{w^*}(\varphi_a)$ where $a\in\mathcal{A}$, and Λ_α to be the closure of the union of all sets Λ^α_φ where $\varphi\in\Delta(\mathcal{A})$, and call Λ_α the unitary spectrum of α .

Starting by showing that the closure of $\Lambda^{\alpha}_{\varphi}$ (for fixed $\varphi \in \Delta(A)$) is a subsemigroup of \widehat{G} we characterize the structure properties of the group representation α such as norm continuity, growth and existence of non-trivial invariant subspaces through its unitary spectrum Λ_{α} .

For an automorphism T of a semisimple commutative Banach algebra $\mathcal A$ we consider the group representation $\mathbf T:\mathbb Z\to \operatorname{Aut}(\mathcal A)$ defined by $\mathbf T_n:=T^n$ for all $n\in\mathbb Z$. It is shown that $A_{\mathbf T}=\sigma(T)\cap\mathbb T$, where $\sigma(T)$ is the spectrum of T and $\mathbb T$ is the unit circle. From this fact we give an easy proof of the Kamowitz–Scheinberg theorem which asserts that the spectrum $\sigma(T)$ either contains $\mathbb T$ or is a finite union of finite subgroups of $\mathbb T$.

Introduction. Let \mathcal{A} be a commutative Banach algebra with Gelfand space $\Delta(\mathcal{A})$ (i.e., the space of regular maximal ideals of \mathcal{A}). Denote by $\operatorname{Aut}(\mathcal{A})$ the group of all continuous automorphisms of \mathcal{A} . For an automorphism T on \mathcal{A} we consider the group representation $\mathbf{T}: \mathbb{Z} \to \operatorname{Aut}(\mathcal{A})$ given by $\mathbf{T}_n := T^n$ for all $n \in \mathbb{Z}$. For each $a \in \mathcal{A}$ and $\varphi \in \Delta(\mathcal{A})$ the function $\varphi_a(n) := \varphi(T^n a)$ $(n \in \mathbb{Z})$ belongs to the space $C(\mathbb{Z})$ of all continuous and bounded functions on the group \mathbb{Z} . The weak-star spectrum $\sigma_{w^*}(\varphi_a)$ of φ_a , as a closed subset of the unit circle \mathbb{T} , is defined in the classical way (see [14] or [20]). Note that \mathbb{T} is the dual group of \mathbb{Z} .

¹⁹⁹¹ Mathematics Subject Classification: Primary 46J05, 47A10; Secondary 43A22, 47A11.

Key words and phrases: automorphism, group representation, spectral analysis.