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On operators satisfying the Rockland condition
by
WALDEMAR HEBISCH (Wroctaw)

Ahbstract. Let ¢ be a homogeneous Lie group. We prove that for every closed, ho-
mogeneous subset I of G* which is invariant under the coadjoint action, there exists a
regular kernel P such that P goes to 0 in any representation from I’ and P satisfies the
Rockland condition outside I'. We prove a subelliptic estimate as an application.

Introduction. The purpose of this paper is to construct operators which
satisfy the Rockland condition in a given set I" of representations, and are
equal to 0 outside I'. Rockland operators satisfy remarkable subelliptic es-
timates ([11], [7], [9], [10], [14]; see also [15]) making them a good substitute
for elliptic operators on homogeneous groups. Christ &t al. [2] gave a calcu-
lus for paendodifferential operators on homogeneous groups: the formulas for
products and adjoints and criteria for existence of left or right parametrices
(generalizing results of [8]). However, one should note that the great flexibil-
ity of the classical calculus of pseudodifferential operators is in large part due
to the ease of constructing scalar functions (cutoffs and partitions of unity).
In the homogeneous group case we want to pre-specify operators in a set of
representations and still have regular kernels; this is not straightforward, in
fact not always possible. Qur kernels may serve as cutoffs on spectral side
(for the spatial cutoffs one simply uses multiplications with smooth func-
tions). The conditions we impose seem to be necessary. We present also a
sitmple application in which we derive some LP estimates.

Acknowledgements. I would like to thank Jean Nourrigat for valuable
suggestions.

Preliminaries. We consider a homogeneous group &, that is, a nilpotent
Lie group equipped with a fawily of automorphisms (dilations) {ds }iso0 such
that &:d, = 8, and for all z € G we have §;z — ¢ ast — (. The reader may
wish to consult [6] (our definition is a bit more general). We identify G with
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its Lie algebra via the exponential map, and write 0 instead of . With our
identification all 4; become linear maps.

As det(8;) must be a power of ¢ there exists a number ¢ > 0 such that
for all bounded measurable 4 C G,

6 A] = 9| A];
this @ is called the homogeneous dimension of G. More generally, one can
take £ to be discrete, that is, consider a dilation operator I such that
Dz s eas k — o
A distribution 7" on G is said to be a kernel of order r € Cif T coincides

with a locally finite measure away from the origin, and is homogeneous of
degree —r — {J, that is,

(f 0be, T) =17(f,T)

for all f € C'°(G) and ¢ > 0. We extend the action of dilations to distribu-
tions by the formula

(£,6.7) = (fod,T).
Then 7" is a kernel of order + Uf for all £ > 0,

61T = irT.

A kernel is called regular if it coincides with a smooth function away
from the origin.

In the sequel we will identify right-invariant vector fields on G with distui-
butions supported in {0}. More precisely, there is one-to-one correspondence
between right-invariant differential operators and distributions supported in
{0}. To get the identification we write .

(X, f) = X f(0).

Then X f = X * f, and for the left-invariant field X corresponding to X we
have X f = f* X. We also note that dilating a vector field as an element of
the Lie algebra and as a distribution gives the same result.

For a unitary representation 7 of G on a Hilbert space H and a kernel 7
of order r with R(r) > 0, the operator (") is defined ou the space €' (r)
of smooth vectors for © by

(9, 7(T)f) = (¢34, T)
where ¢¢4(x) = (g, 7(z)}f). An equivalent definition is
T(T)f =T %44 (e)

where ¥¢(z) = m(z)f. This definition also makes sense for uniformly
bounded representations on Banach spaces. If R(r) < 0 the situation is
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mors tricky. For a regular kernel T one may find h € C%°(@) such that

Tf=> 275 (h)* f.
k

For r = ( one must have Sh = 0 (otherwise T" would not be a distribution),
and the Cotlar-Stein lemuma shows that the sum defining 7" is strongly con-
vergent in any unitary representation of G' to a bounded: operator.

IfR(r) < 0 then T defines an unbounded operator on L2(G) (to see that
T is densely defined cf. {2]). The {ollowing lemama. shows that the problem
is caused by the trivial representation,

LeMMA 1. Let G be a homogeneous nilpotent Lie group, w be a nonlrivial
irreducible unitary representation of G and h be a Schwartz class function
on G. Then for any m there is a continuous seminorm Cp, () such that
(8t (ADI| S O (R)(1+ )™

Proof. We fix a scalar product (so also a norm |- |) on the Lie algebra
of . Note that there exists o > 0 such that if X is an element of the Lie
algebra of G then |dy-1(X)| < C(14¢t)* for t > 1. Let X; span the Lie
algebra of G. Put L = Y, X?. It is known that L is invertible in =. So

ide = ) # (X)) w(Xp)w(L) ™) = n(X;) B

where E; = 7(X;)n(L)~" are bounded operators in 7. Next, we write

m(8e(h)) = m(3(R)) Y m(X5)Ey = D m(8ulhx 642 (X;))) By
Inductively, for any natural i,
w(Gp(h) = D w(Se(h* 612 (Xj0) x . % 643 (X)) By . By
50
[ (@A) € Crmax [|m(de(h* Gpmz (Kj,) # .. % G2 (X, 1))l
< Crmax||hx §p=1 (XY # .00 % 80 (X)) 22
< €y max Gyl - (X - |di=s (X3)| < C'(R,D(L + £,
which gives the claim.
If we put
Vi = {f € Lip{@) N C®(G — {0} : Ypeop (o-(op) Mg t°¢6:f =0
uniforrmly with all derivatives}

then 1 is a locally convex metrizable vector space and the Schwartz class
functions are dense in Vi. For 0 > R(r) > —s regular kernels of order r are
in V; and (1.1) shows that 7 has a (unique) extension from the Schwartz
class to V.
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Main results. Let m; for | € G* be the representation associated with [
according to the Kirillov theory (cf. [13]).

THEOREM 2. Let G be a homogeneous Lie group with dilations {8:} >0,
and I be o closed subset of G such that Ad*(G)I C I' and 61" C I' for all
t > 0. For every a > 0 there exists a regular kernel P of order o such that for
all 1 € T we have m;(P) = 0 and for all 1 € I' the operator m(P) is positive
definite and injective on its domain. For every 0 > a > —@) there exists o
kernel satisfying the above conditions, ezcept forl = 0. Moreover, there is a
Schwartz class function H on G such that for oll | € I' we hove m(H) =0
and for all 1 ¢ I" the operator m(H) is positive definite and injective.

Proof. It is enough to prove the theorem only for - < « < 0 and
small o > 0. Indeed, taking a sufficiently high power of P we get « as large
as we wish, without destroying other properties of P. Morcover, we only
need to prove the last claim, that is, to construct a Schwartz class function
H such that for all I € I" we have m(H) = 0 and for all {  I" the operator
mi(H) is positive definite and injective. If we have such a function and e is

small enough, then
o0

d
p=\t5H il
0 t
gives us a regular kernel of order a having the required properties. Indeed,
0isin I' so { H = 0. Moreover, there is ag > 0 such that for all 0 < ¢ < 1
we have {6,z < t*|z|. Fix a ¢ € C°(GF). For 0 <t < 1 we have

|(,d:H)| = ‘(175— qb(O),(StHN < Ot

so if & < ap, then

T s dt
§ t (¢: 5tH) T

is absolutely convergent. Changing variables in the integral above, one eagily
checks that P is homogeneous of degree —« — . Smoothness of P off {0}
is clear. Also, if o > 0, it is easy to check that

=(P) St“"w(c‘itH)%E
0

and that the right hand side defines a closed injective operator (we compute
the integral applying the function under the integral to a vector; the domain
is the set of all vectors for which the integral is convergent). For o < 0 we
get the same conclusion using Lemma, 1 (condition o > —@Q is used to prove
that P is a regular kernel).

We are going to build H. Let us recall that by [1] the set I' = {m : | € I'}
is closed in the Fell topology of the space of representations. Fix p & I'. Then
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AL*(G)IN ¢ I' implies 7, ¢ I'. By the definition of the Fell topology and
density of CZ°(@) in C*(G), there exists a function F' € C°(G) such that
|mp(F)} =1 and |m(F)|| < 1/10 forallle I
Replacing F' by F~ * F' we may assume that F is positive definite. Choose
¢ € CP(R) such that ¢(1) = 1, ¢ > 0 and supp(p) C [1/10,2]. By the

gpectral theorem we have

dmp(F)) # 0 while ¢(m(F))=0 foralllel.
Using functional calculus, as for example in [12], we show that there exists
a Schwartz class function R on G such that (as a convolution operator on
LA() R = (7). Approximating ¢ by polynomials we see that ¢(m (F)) =
m(42) for all . We also note that the set of o such that «(R) % 0 is open
(by definition).

To swmmarize, we constructed R such that m{R) = 0 for all 7 € I', the
set Up = {m(R) # 0} is open and 7, € Ug. Since the Fell topology has a
countable base, there exists a sequence {R; }4ewn such that the complement of
I is the union of U R~ Therefore, putting S = % a;R; where a; are positive
and small enough for 5 to be a Schwartz class function, we see that #(.5) = 0
for all 7 in I, and 7(8) # 0 on the complement of I".

To finish the proof we need the following lemmma:

LuMMA 3. If = is an irreducible unitory representation of G, the sequence
{g:}jen ds dense in G, f € LYG), n{f) # 0, m(f) = 0, and the sequence
{e;}ien 45 positive and summable, then

S IOIC L

(where 8y, is the convolution operator with unit mass at g;) is injective.

Proof Suppose that, on the contrary, A is not injective. Then there
exists a nonzero ¥ such that

(Av,v) = 3 es(m (8, ) £)m(8y, )0,0) = O,
hence for each 7,
(e () 28y, Yo, (£ P (8g, 0) == 0,
or simply
w(£) {8y, = 0.
Since s irreducible, the closed lnear span of 7(dg, Jv gives the whole space,
0 7w(f)M? = 0. As 7(f) is nonzero this gives a contradiction.

Choosing ¢; = exp(~J — |g;|) and applying Lemma 3 we conclude that
H =y ¢d;-1586,
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is a Schwartz class function such that the operator w(H) is injective for =
in the complement of I", and #(H) = 0 for  in I, which ends the proof of
Theorem 2.

REMARK. If P is a regular kernel of order a and I' = {l : m(P) = 0},
then Ad* ()" c I, §,I" ¢ I for all ¢t > 0 and I' is closed. More precisely, if
R(a) < 0, then I'—{0} is closed in G*—{0}. The first condition is clear. I'is
invariant under dilations because P is homogeneous. To see that I'is closed
assume first that R(a) > 0. Let ¢, be an approximate unit in ' consisting
of ¢ functions. Then ¢y, * P € L* so Iy = {I : (¢ * P) = 0} is closed.
As I' = (N, I3, we see that I is closed. If R(e) < 0, then we compose P
with a kernel R such that m;(R) is injective on smooth vectors for all | 55 0
and P * R has order with positive real part.

An application. As an application of our construction we give an ex-
tension to LP of a theorem by J. Nourrigat ([14], Théoréme 1.3). We need
somne setup to state the theorem. Let £2 be a measure space with measure .
Assume G acts on §2 preserving the measure. Let ¢ : G x 2 — C be a
(measurable) cocycle for this action, that is, |¢| = 1 and for all g1,9, € G
and all z € {2,

d’(glg% E) = '-75(9'1, w)d)(g2: gi—lw)’
Then the formula

n(9)f(z) = $(g9,2) (g™ )

gives a continuous representation of G which acts by isometries on LP((2),
1 € p < oo (on L™ we get isometries, but the action is only weak-%
continuous). We say that 7 is a cocycle representation. The set C*°{x) of
smooth vectors is defined as usual {of course it may depend on p). Note that
m(CR(G))(L* N L) is dense in C™(7) so we may do all the caloulations
on the common core. We also note that the usual construction of m; gives a
cocycle representation so we may consider m; as representations on LF. Lot
us alse sketch the proof of the following well-known lemma:

LEMMA 4. If Wis a regular kernel of order o, R(cx) = 0 and W gives
a bounded operator on L*(G) then W gives a bounded operator on IF(G),
1 <p<eo.

REMARK. In fact, a regular kernel W of order o with R(er) = 0 is always
bounded on L2,

Proof (of Lemma 4). This follows from [3], Chapitre III, Théoréme
(2.4). G equipped with a homogeneous norm is a space of homogeneous
type. One may easily verify that in {3] the assumption that the kernel A is
in L2 is only used to prove that the operator 7' is associated with the kernel,
that is, Tf(x) = { K{z,y)f(y) dy for = not in the support of f.
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An alternative approach is to regularize W. We fix ¢ € C2°(G) such that
{# = 1 and we write ¢ = §,¢. One may check that for the regularized kernels
Wi = (dr — ¢h-1) ¥ W the assumptions of [3], Chapitre III, Théoréme (2.4),
hold with bounds independent of the regularization (and limy_, o Wi f = W f

for fin LP(G), 1 < p < o00). This approach shows that the transference
principle is applicable to W,

TuporkM b, Let G be a homogeneous Lie group with dilations {8 }i>0,
and I' be a closed subset of G* such that Ad*(GYI C I’ and §,I" < I' for
all £ > 0. Let o be o cocycle representation of G such that all irreducible
componenty of w are of the form m with{ € I'. Let R be a regular kernel of
order oo with R(c) > 0 such that for alll € I', 1 # 0, the operator m(R) is
injective on the C% vectors of w;. Then for every 1 < p < oo, every positive
integer & and every kernel A of order 8, where 0 < R(3) < kR(a), there
exists Oppoa Such that

Vicomm  IIm(A)Fflle < Cppalllf e + Iw(R)* fllzs)-

If R 48 of ovder v and 0 < o < @, then there ewists a regular kernel B of
vrder — such that

Yier-{oVreomm) m(B)m(R)f = f.

Proof Firgt, assume that k = 1 and § = a. Let § be a regular kernel
of order 2R () given by Theorem 2. We put

T=8+R'R.

Then 77 is a regular kernel of order 2R(a) and the image of T in any non-
trivial representation of G is injective on the smooth vectors. We are going
to construct the inverse of T. There exists an injective positive definite op-
erator P on L2%(G) such that for s > —@Q the operator P*® is given by a
regular kernel of order s, and for small ¢ > 0, P° generates a semigroup
of symmetric probability measures (see [2], Theorem 6.1, and [7]). Choose
sp < Q and m € N such that som = 2R{a). Put V = P* and U = V~™T.
One easily checks that U is given by a regular kernel of order 0 and that
the image of U in any nontrivial irreducible unitary representation of & is
injective on the smooth vectors, so (by 2], Theorem 6.2) U is left-invertible
on LA(¢¥) and the inverse is given by a regular kernel U1

Now the last elaim follows if we notice that U~ 'W~="R* is a regular
kernel of order —ex for R{w) < @ and that

w(U WV R w(R) f = w(U ) (V) w (R (R) £
= (U Nw(V Y (D) f = n(UTV- ) f = f.

Also the operator AT~ R" is given by the regular kernel W = AU —ly—m R
of order 0. The operator obtained from W is bounded on LF (G’) (by Lem-
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ma 4) so by the transference principle [4] the image of W in 7 is bounded
on LP(r). Hence

7(A)f = w(Ayr UV ) f = w(A)m(U e (V) (S + R*R)
= n(A)r (U a(V )"0 (R )m(R)
=7({AUYV ™ R*)x(R)f = n(W)n(R)f
and
(A £ < [l (W[ (R)F-
If R(3) = R(a), then
= (A) 7Y < Clln(PPYf)| £ CIPP2loiay, Loyl (P*) S| < C (| (R)FY.

Here ||PP=%||1n(g) 1o(c) is finite by Lemma. 4.
If # < « then we note that A(1 + P2)~? is convolution with an IL!
function (this follows from estimates in [5]) so

[AfII < CliL+ PEFI < CUNFY + IREN)-
If ¥ > 1 we simply replace R by RF,
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