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Metric unconditionality and Fourier analysis
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STEFAN NEUWIRTH (Paris)

Abstract. We investigate several aspects of almost 1-unconditionality. We charac-
terize the metric unconditional approximation property (wmap) in terms of “block un-
conditionality”. Then we focus on translation invariant subspaces L% (T) and Cx(T) of
functions on the circle and express block unconditionality as arithmetical conditions on
E. Our work shows that the spaces L% (T), p an even integer, have a singular behaviour
from the almost isometric point of view: property (umap) does not interpolate between
L%(T) and L%"’"z('f['). These arithmetical conditions are used to construct counterexamples
for several natural questions and to investigate the maximal density of such sets E. We
also prove that if & = {ny}r>1 with |ngy,/ng] — oo, then Cg(T) has (umap) and we
get a sharp estimate of the Sidon constant of Hadamard sets. Finally, we touch on the
relationship of metric unconditionality and probability theory.

1. Introduction. We study isometric and almost isometric counterparts
to the following two properties of a separable Banach space ¥:

{ubs) Y is the closed span of an unconditional basic sequence;
{uap) Y admits an unconditional finite-dimensional expansion of the iden-
tity.

We focus on the case of translation invariant spaces of functions on the
torus group T, which will provide us with a bunch of natural examples.
Namely, let E be a subset of Z and X be one of the spaces LP(T) (1 < p < o0)
or C(T). If {e"*},ep is an unconditional basic sequence ((ubs) for short) in
X, then E is known to satisfy strong conditions of lacunarity: E must be
in Rudin’s class A{g), ¢ = pV 2, and a Sidon set respectively. We raise the
following question: what kind of lacunarity is needed to get the following
stronger property:

(umbs)  E is a metric unconditional basic sequence in X: for any £ > 0,
one may lower its unconditionality constant to I 4+ & by removing
a finite set from it.
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In the case of C(T), E is a {wmbs) exactly when E is a Sidon set with
congtant asymptotically 1.

In the same way, call {7}} an approximating sequence (a.s. for short)
for Y if the Ty’s are finite rank cperators that tend strongly to the identity
on Y; if such a sequence exists, then Y has the bounded approximation
property. Denote by ATy, = Ty ~ Tx—1 the difference sequence of 7. Fol-
lowing Rosenthal (see [14, §1]), we then say that ¥ has the unconditional
approximation property ((uap) for short) if it admits an a.s. {T% } such that
for some C,

(1) H zn:}""AT’“HL(y) < C  for all n and scalar Ap with [Ay] = 1.
k=1

By the uniform boundedness principle, (1) just means that > AT,y con-
verges unconditionally for all y € Y. We now ask the following question:
which conditions on £ do yield the corresponding almost isometric prop-
erty, first introduced by Casazza and Kalton [7, §3]:

(umap) The span ¥ = Xg of E in X has metric (uap): for any ¢ > 0,
one may lower the constant C' in (1) to 1 + ¢ by choosing an
appropriate a.s. {T;}.

This has been studied by Li [31} for X = C(T); he obtains remarkably
large examples of such sets E, in particular Hilbert sets, Thus, the second
property seems to be much weaker than the first (although we do not know
whether Cg(T) has (umap) for all (umbs) E in C(T)).

In fact, both problems lead to strong arithmetical conditions on F that
are somewhat complementary to the property of quasi-independence (see
[45, §3]). In order to obtain them, we apply Forelli’s [15, Prop. 2] and
Plotkin's [47, Th. 1.4] techniques in the study of isometric operators on
LP: see Theorem 2.9 and Lemma 7.3. This may be done at once for (umbs).
In the case of (umap), however, we need a more thorough knowledge of its
connection with the structure of E: this is the duty of Theorem 6.2.3. As in
Forelli’s and Plotkin’s results, we find that the spaces X = LP(T") with p an
even integer play a special réle. For instance, they are the only spaces which
admit 1-unconditional basic sequences E C 7 with more than two clements:
see Proposition 2.5.

There is another fruitful point of view: we may consider elements of F as
random variables on the probability space (T, dm). They have uniform dis-
tribution and if they were independent, then our questions would have trivial
answers. In fact, they are strongly dependent: for any %, ¢ Z, Rosenblatt’s
[50] strong mixing coefficient

sup{|m[A N B] - m[Alm[B]| : 4 € o(e*) and B € o(el!*)}
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has its maximum value, 1/4. But lacunarity of B enhances their indepen-
dence in several weaker senses (see [2]). Properties (umap) and (umbs) can
be seen as an expression of almost independence of elements of E in the “ad-
ditive sense”, i.e. when appearing in sums. We show their relationship to the
notions of pseudo-independence (see [42, §4.2]) and almost i.i.d. sequences
(see [1]).

The gist of our results is the following: almost isometric properties for the
spaces Xg in “little” Fourier analysis may be read as a smallness property
of B. They rely in an essential way on the arithmetical structure of E and
distinguish between real and complex properties. In the case of L**(T), n
integer, these arithmetical conditions are finite in number and turn out to be
sufficient, because these spaces have a polynomial norm. Furthermore, the
number of conditions increases with = in that case. In the remaining cases
of LP(T), p not an even integer, and C(T), these arithmetical conditions
are infinitely many and become much more coercive. In particular, if our
properties are satisfied in C(T), then they are satisfied in all LP(T) spaces,
1€ p<oo.

‘We now turn to a detailed discussion of our results: in Section 2, we first
characterize the sets B and spaces X such that E is a 1-(ubs) in X (Prop.
2.5). Then we show how to treat similarly the almost isometric case and ob-
tain a range of arithmetical conditions (Z,,) on E (Th. 2.9). These conditions
turn out to be identical whether one considers real or complex unconditio-
nality; this is surprising and in sharp contrast to what happens when T is
replaced by the Cantor group. They also do not distinguish amongst LP(T)
spaces with p not an even integer and C(T}, but single out LP(T) with p an
even integer: this property does not “interpolate”. This is similar to the phe-
nomenons of equimeasurability {see [29, introduction]) and C*°-smocthness
of norms (see [8, Chapter V]). These facts may also be appreciated from the
point of view of natural renormings of the Hilbert space L% (T).

In Section 3, of purely arithmetical nature, we give many examples of
(umbs) thanks to an investigation of property (I,). As expected with la-
cunary series, number theoretic conditions show up (see especially Prop.
3.2,

In Section 4, we first return to the general case of a separable Banach
space Y and show how to connect (umap) with a simple property of “block
mconditionality™ . Then a skipped blocking technique {see [5]) gives a canon-
ical way to construct an a.s. that realizes (umap) (Th. 4.2.4).

Tn. Section 5, we introduce the p-power approximation property £,-(ap)
and its metric counterpart, £,-(map). It may be described as simply as
(umap). Then we connect £,-(map) with the work of Godefroy, Kalton,
Li and Werner [28], [18] on subspaces of L? which are almost isometric

1o £p.
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Section 6 focuses on (uap) and (umap) in the case of translation in-
variant subspaces Xg. The property of block unconditionality may then be
expressed in terms of “beginning” and “tail” of E: see Theorem 6.2.3.

In Section 7, we proceed as in Section 2 to obtain a range of arithmetical
conditions (J,,) for (umap} and metric unconditional (fdd) (Th. 7.5 and
Prop. 7.7). These conditions are similar to (Z,,}, but arc decidedly weaker:
see Proposition 8.2(i). This time, real and complex unconditionality differ;
again LP(T) spaces with even p are singled out.

In Section 8, we continue the arithmetical investigation begun in Section
3 with property (7,) and obtain many examples for (umap).

However, the main result of Section 9, Theorem 9.3, shows how a rapid
{and optimal) growth condition on E allows avoiding number theory in any
case considered. We therefore get a new class of examples for (wmbs) and
(umap). A sharp estimate of the Sidon constant of Hadamard sets is obtained
as a byproduct (Cor. 9.4).

Section 10 uses combinatorial tools to give some rough information about
the size of sets E that satisfy our arithmetical conditions. In particular, we
answer a question of Li [31]: for X # L%(T), L*(T), the maximal density of
E is zero if X g has (umap) (Prop. 10.2).

Section 11 is an attempt to describe the relationship between these
notions and probabilistic independence. Specifically, the Rademacher and
Steinhaus sequences show the way to a connection between metric uncon-
ditionality and the almost i.i.d. sequences of [1]. We note further that the
arithmetical property (To) of Section 2 is equivalent to Murai’s [42, §4.2]
property of pseudo-independence.

In Section 12, we collect our results on {umbs) and (umap) and conclude
with open questions.

NOTATION AND DEFINITIONS. (T,dm) denotes the compact abelian
group {A € C : |[A| = 1} endowed with its Haar measure dm; m[A] is
the measure of a subset A C T. Let I = {~1,1}. U will denote either the
complex (U = T) or real (U = D) choice of signs. For a real function f on
1, the oscillation of f is

ose f(A) = iggf(k) — Inf f(A).

The dual group {e, : A — A" : n € Z} of T is identified with Z. We write
#[B! for the cardinality of a set B.

For a not necessarily increasing sequence E = {ng}y>1 C Z, let Pg(T)
be the space of trigonometric polynomials spanned by E. Let Xz be the
complex Banach space of those elements of X & {C(T), M(T), LP(T) (1 <
p < 00)} whose Fourier transform vanishes off E.
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Denote by g : Xp — Xg the orthogonal projection onto Xn, . n,3- It
1s given by

Wk(f) = f(nl)em +oT f('n'k)e'nk'
Then the 7 commute. They form an a.s. for Xy if and only if E is a basic
sequence. For a finite or cofinite F C F, np is similarly the orthogonal
projection of Xg onto Xp.

For a given Banach space X, By is the unit ball of X and I denotes the
identity operator on X. For a given sequence {Uy} let AUy = Uy — Ug—1
(where Uj = 0).

The functional notions of (ubs), (umbs) and the unconditionality con-
stants Cp(E) are defined in 2.1. The functional notions of a.s., (uap) and
(umap) are defined in 4.1.1. Properties £;-(ap) and {,-(map) are defined in
5.1.1. The functional property (i) of block unconditionality is defined in
6.2.1. The sets =™ and =7 of arithmetical relations are defined before 2.5.
The arithmetical properties (Z,) of almost independence and (7)) of block
independence are defined in 2.8 and 7.2 respectively. The pairing (£, E) is
defined before 3.1.

Acknowledgments. The author would like to thank Gilles Godefroy
and Daniel Li for many useful conversations. The author is also indebted to
the Department of Mathematics of the University of Missouri-Columbia for
its hospitality during the last part of the work.

2. Metric unconditional basic sequences (umbs). We start with
the definition of metric unconditional basic sequences ({(umbs) for short).

DrrmrTioN 2.1. Let EC Z and X = LP(T) (1 < p < oo} or X = C(T)
(p = 00).
(i) E is an unconditional basic sequence (ubs) in X if there is a constant
C such that

(2) ” q;g)\q@qeq”p < C“ g}aqeq”p

for all finite G C E, a, € C and scalar A\, with |Ag| = 1. We write CJ (resp.
CE(E)) for the infimum of such €' with complex (resp. real) A,.

(ii) E is a complez (resp. real} metric unconditional basic sequence
(umbs) in X if for each & > 0 there is a finite set F' such that C5(E \ F)
(resp. C3{E \ F)) is less than 1 + e.

In fact, if (2) holds, then E is a basis of its span in X € {C(T), L*(T) (1 <
p < oo)}, which is Xz by Weierstrafl’ theorem. We have the following
relationship between the unconditionality constants of E' for the spaces
X e {C(T), LF(T) (1 <p < o)}
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PROPOSITION 2.2. Let B C Z.

(1) O () = supy <o Co(B) and CS,(B) = 5up gy C5(B).

(i) If E is a (umbs) in C(T), it is a (umbs) in LP(T) for all 1 < p < o0,

This follows from the well-known (see e.g. [22])

LEMMA 2.3. Let E C Z and T' be a multiplier on Cg(T). Then [T} zicp) =
Sup15p<oo ”THE(L%)

Proof. The linear functional f — Tf(0) on Cx(T) extends to a measure
p € M(T) such that ||pllam = | Tl cem)- Let () = p(—t). Then T'f = fix f
for f € Cg(T) and

1Tl eceny S HBlam = Tlecs)-

Furthermore, if |T'f||, < C||fl|p for all 1 < p < oo, then [|Tf|lee < C|f|x
by passing to the limit. =

REMARK. There is no interpolation theorem for such relative multipliers,
The forthcoming Theorem 2.9 shows that there can be no metric interpola-
tion. Furthermore, [16] furnishes an example of an £ C Z such that the m
are uniformly bounded on L% (T) but not on Cp(T).

It is known that E is an (ubs) in C{T) (resp. in L*(T)) if and only if it is
a Sidon (resp. A(2Vp)) set. To see this, let us recall the relevant definitions.

DERINITION 2.4, Let E C Z.

(i) (See [26].) E is a Sidon set if there is a constant C' such that

Z lag| < C” Z aqeq“

qeG qeG

for all finite G C E and g4 € C.

o0
The infimum of such C is F’s Sidon constant.

(i) (See [52, Def. 1.5].) Let p > 1. F is a A{p) set if there is a constant
C such that || f|l, < C||f|1 for f € Pg(T).

In fact, the Sidon constant of E is equal to C%, (). Thus E is a complex
(umbs) in C(T) if and only if tails of E have Sidon constants arbitrarily close
to 1. We may also say: its Sidon constant is asymptotically 1.

Furthermore, E is a A(2 V p) set if and only if L(T) = L%(T). Thus
A(2V p) sets are (ubs) in L?(T). Conversely, if E is an (ubs) in L?(T), then
by Khinchin’s inequality

1/2
“ Z aqeqH = a.verage” Z :aneqH e (Z Ia.(_,lz) . H ZaqeqH
e T g€ ? e 46 ?
for all finite G C F (see [52, proof of Th. 3.1]).
The corresponding isometric question: when do we have C%(E) = 17
admits a rather easy answer. To this end, introduce the following notation:
let Ap = {a ={oplpz1 t0p EN& oy +ag+... = n} if a € 4,, all
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but a finite number of the @, vanish and the multinomial coefficient WES
n!/(a1las! .. .) is well defined. Let AT = {a € A, 1 ap =0 for p > m}. Note
that A7 is finite. We call E n-independent if

Z%‘Pvz = Zﬁipi =a=4 forall o, € A" and distinct pq,...,pm € BE.

In Rudin’s [52, §1.6(b)] notations, if & is n-independent then the number
(2 k) of representations of k € Z as a sum of n elements of E is at most
n! for all k. This may also be expressed in the framework of arithmetical
relations 5™ = {£ € Z* : &1 + ...+ &, = 0} and E™ = {¢ € =™ .
&1 + ... + |ém| < 2n}. Note that 5™ is finite, and void if m > 2n. Then
E is n-independent if and only if Y &p; # 0 for all € € BT and distinct
P1,-. D € E. We shall prefer to treat arithmetical relations in terms of
E rather than A™.

ProprosiTION 2.5, Let E C Z.

(i} If p € [1, )] is not an even integer, then C5(E) = 1 if and only if
E has at most two elemenis.

(if) If p is an even integer, then Cy(E) = 1 if and only if E is p/2-

independent. There is a constant C, > 1, depending only on p, such that
either Cp(E) =1 or C5(E) > Gy,

Proof. (i) Let p be not an even integer. We may suppose 0 € E: let
{0,k,1} € E. If we had |1 + paey +vbei|l, = |1+ aey +bey |, for all A,z € T,
then

S |1+ aey, + bey|? dm = S|1 + paey, + vber|P dm(p) dm(v) dm
= S 1+ pa + vb|? dm(p) dm(v).

Denoting by 6; : (A1, A2) — A; the projections of T? onto T, this would
mean that ||1 + aer + beil|p = |1 + aby + b8z | Lo(r2) for all a,b € C. By [53,
Th. 1], (ex, &) and (61,82) would have the same distribution. This is false,
since #y and #; are independent random variables while e, and e; are not.
So C5(E} > 1 and thus Cg, (&) > 1.

(ii) Let qy,...,qm & E be distinct and Ay,..., A\, € T. By the multino-
mial formula for the power p/2 and Bessel-Parseval’s formula, we get

SR D S S o D T

n:EA;"‘m

- 3 | (0) o

AER, wmeA i=

B
B

2
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- 5 () T

€A, i=1

+ Z Z (Pc/f) (pé2> H}\?wﬁea?aaﬁ?i’
AR, aFBEA i=1
where R, is the partition of A;“/z induced by the equivalence relation o ~ 3
o Y aigs = 3 Bigi. If B is p/2-independent, the double sum in (3) is void
and F is a 1-(ubs).

Furthermore, suppose E is not p/2-independent and let ¢1,..., ¢, € E
be a minimal set of elements of F such that there are o, € Agjz with
o ~ . Then m < p. Take o; = 1 in the former computation; then the
clearly nonzero oscillation of (3) for As,..., Am € T does only depend on R,
and thus is finitely valued. This yields Cfp. =

REMARK (1). In fact, (ii) holds with real Cf(E) instead of complex
C§(E): if we have some arithmetical relation o ~ 3, we may assume that
oy — 3; is odd for one 7 at least. Indeed, we may simplify all o; — F; by
their greatest common divisor and this yields another arithmetical relation
3 (eh — B)gi = 0. But then the oscillation of (3) is again clearly nonzero for
)\1,...,)\m D

REMARK (2). We shall see later that (i) also holds in the real setting.
This is a property of T and fails for the Cantor group [I°°: the Rademacher
sequence forms a real 1-(ubs) in (D) but is clearly not complex l-uncondi-
tional in any LP(D*), p # 2 (see Section 11).

As C;(E) = 1 is thus a quite exceptional situation and distinguishes so
harshly between even integers and all other reals, one may wonder what its
almost isometric counterpart will bring about. In the proof of Proposition
2.5(i), we used the fact that the e,, seen as random variables, are dependent:
the LP norm for even integer p is just somewhat blind to this because it
keeps the interaction of the random variables down te a finite number of
arithmetical relations. The contrast with the other L norms becomes clear
when we try to compute explicitly an expression of the type || ¥ Ajayeq||p for
any p € [1, co[. This sort of seemingly brutal computation has been applied
successfully in {15, Prop. 2] and [47, Th. 1.4] to study isometric operators
on LP, p not an even integer.

We now undertake this tedious computation as preparatory work for
Theorem 2.9, Lemma 7.3 and Proposition 7.7. Let us fix sore more notation:

forz € R and o € A,, put
(m)_ z\ [n
o) \n/\a)
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This generalized multinomial coefficient is nonzero if and only if # > n or

xg N

COMPUTATIONAL LEMMA 2.6. Let U= T or U =D in the complex and
real case respectively. Let 1 < p < oo and m > 1. Put

i P
Po(h 2,8 = L+ 3 Aizieq, (1)
i=1
forg={q,....gm) €Z™", A= (A1,...,2m) EU™ and z = (21,...,2m) €
D™, where D is the disc {Jw| < g} CC for some 0 < p < 1/m. Let R, be
the partition of N™ induced by the eguivalence relation o ~ 8 & Y g =

> Bigi. Then

W 0= 3 (Pé 2)2 T fe

) @q(’\a z) = S (Pq()h z,t) dmf(t),

aElm
i Z Z (pé2) (plé2) Hz?izfi /\E!i"ﬁi_
AER, aPEA

Furthermore, {@, : g € Z™} is a relatively compact subset of C*° (U™ x D™).

Proof. The function @, is infinitely differentiable on the compact set
U™ x D™, Furthermore, the family {®; : q1,...,¢m € Z} is bounded in
C>={U™ x D™) and hence relatively compact by Montel’s thecrem. Let us
compute @, By the expansion of the function (1 -+ w)?/2, analytic on the
unit disc, and the multinomial formula, we hawve

eeh2) =3 (pf“) (g’\*‘z"%)ar

>0

=) T (O T es

a0 AT

| 2 Ao

ogfm
Then, by Bessel-Parseval’s formula,

209 = 5 | 2 (707) [T

AR, ' agA

2

2

2

?

and this gives (4) by expanding the modulus. =

REMARK (3). This expansion has a finite number of terms if and only if p
is an even integer: then and only then (P/?) = 0 for 3 a; > p/2, whereas R,
clearly contains some class with two elements and thus an infinity thereof.
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For example, we have the following arithmetical relation on q1, g2 or ¢1, ¢,
0 respectively:

2] lau|
Q... t@=g+...+g ifsgng =sgnge,
|92 lay|
@+ +o+gr... g =0 ifnot
REMARK (4). This shows that Proposition 2.5(1) holds also in the real
setting: we may suppose that 0 € E; take m = 2 and choose distinct g1, ¢
€ E. One of the two relations in Remark (3) yields an arithmetical relation

on F with at least one odd coefficient, as done in Remark (1). But then (4)
contains terms nonconstant in A; or A and thus CY(£) > 1.

‘We return to our computation.

COMPUTATIONAL LEMMA 2.7. Let r = (rg,...,rm) € E™ and put
g =7i—7r0 (1 <i<m). Define

ki P

(5) Or (N z) = e, + D Miziey,| = Dg(A, 2).
g==]

Let &g,... 8 € 2" and

(6) (virdi) = (=& v 0,& VD) (1<i<m)

If the arithmetical relation

(7 Corot . T Emrm =0 while f+...+E,=0

holds, then the coefficient of []zFZ5 V™% in (4) is (’{4 %) (%) and thus

independent of r. If " |&| < p or p is not an even integer, this coefficient
is nonzero,

Proof. Wehave 8; — v = &, D% — >.0; = & and Y v -+ 3. 6; =
l&1] + ... 4[], s0 that 3"y vV 36 = £ 3 |&). Moreover, $(8; — )¢ =
S&iri=0,s0 that y ~ 5. =

The computational lemmas suggest the following definition.

DEFINITION 2.8. Let B C Z.

(i) E enjoys property (I,,) of almost n-independence provided there is a
finite subset F' C E such that E\ F is n-independent, i.e. &y +. .. +&mPm
# 0 for all £ € Z7 and distinet ry,...,7r, € B\ F.

(ii) E enjoys (To) if it enjoys (Z,,) for all n, i.e. for any £ € 5™ there is
a finite set F' such that &171 4. .+ &mr 7 0 for distinct r1,...,rm € B\ F.

Note that property (Z1) is void and that (T,.1)=(Z,). This property is
also stable under unions with finite sets. The preceding computations yield
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THEOREM 2.9. Let E = {ngx} CZ and 1 < p < co.

(i) Suppose p is an even integer. Then E is a real, and of the same times
complez, (umbs) in LP(T) if and only if E enjoys {Zpy2)- If (Zpy2) holds,
there is in fact o finite ¥ C E such that E\ F is a 1-(ubs) in LP(T).

(ii) If p is not an even integer and E s o real or complex (wmbs) in
LP(T), then E enjoys (Too).

Proof. Sufficiency in (i) follows directly from Preposition 2.5: if B\ F
is p/2-independent, then Ci(B\F) = CHE\F)=1.

Let us prove the necessity of the arithmetical property. We keep the
notation of computational lemmas 2.6 and 2.7. Assume & fails (Z,,) and let
€0sv oy &m € ZF with 3.& = 0 and 3 |&| < 2n such that for each I > 1
there are distinct v}, ..., 7}, € E\ {n1,...,n} with &rh + ...+ &nrl, =0.
One may furthermore assume that at least one of the &; is not even.

Assume F is a (umbs) in LP(T). Then the oscillation of &, in (5) satisfies
{8) osc Oni(\, z) —

AEU™ l—oo

for each z € D™. We may assume that the sequence of functions @,: con-
verges in C°°(U™ x D™) to a function @. Then by (8), ©(A, z) is constant
in A for each 2z € D™; in particular, its coeflicient of Hz?*?f")\;"‘"“a" is zero.
(Note that at least one of the -y; — 8; is not even.) This is impossible by
computational lemma 2.7 if p is either not an even integer or if p > 2n.

COROLLARY 2.10. Let B C Z. If E is a (umbs) tn C(T), that is, E’s
Sidon constant is asympiotically 1, then E enjoys (Zoo). The converse does
not hold.

Proof. Necessity follows from Theorem 2.9 and Proposition 2.2(ii).
There is a counterexample to the converse in [562, Th. 4.11}: Rudin con-
structs a set £ that enjoys (Zo) while E is not even a Sidon set. =

For p an even integer, Sections 3 and 10 will provide various examples
of (umbs) in LP(T). Proposition 9.2 gives a general growth condition on £
under which it is a (umbs).

As we do not know any partial converse to Theorem 2.9(ii) and Corollary
2.10, the sole known examples of (umbs) in LP(T), p not an even integer, and
C(T) are those given by Theorem 9.3. This theorem will therefore provide
us with Sidon sets of constant asymptotically 1. Note, however, that Li [31,
Th. 4] already constructed implicitly such a Sidon set by using Kronecker’s
theorem.

3. Examples for (umbs). After a general study of the arithmetical
property (Z,) of almost independence, we shall investigate three classes of
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subsets of Z: integer geometric sequences, more generally integer parts of
real geometric sequences, and polynomial sequences.
The quantity

(6,Ey= sup inf{|&pr+...+&npPml 01, ., pm € B\ F distinet}
FCE finite

zzluifgo inf{|&1p1 + ..+ EmPml : P15, P € {0y fpng, ) distinet},

where {ng} = E, plays a key role. We have
PROPOSITION 3.1. Let E = {ny} CZ.

(i) B enjoys (I,,) if and only if (£, E) £ 0 forall £ € M. If (£, E) < o0
for some &1,...,&m € L7, then E fails (Tig 4. +jg,))- Thus E enjoys (Zoo)
if and only if {£,B) = o0 forall &,...,&n € Z*.

(i1) Suppose E is an increasing sequence. If B enjoys (Iy), then the pace
npr; —ng of E tends to infinily.

(iii) Suppose jF + s,kF +t C E for an infinite F, §j % k ¢ Z* and
§,t € Z. Then E fails (Z)j)+|)-

Proof. (i} Suppose (¢, E) < co. Then thereis an h € Z such that there
are sequences pi,...,ph € {neti> with 5. &pt = h and {p},..., 0L} #
{pth,. P for all 1 > 1. As S &pt — S Epitt =0 for | > 1, E fails
(II61|+..,+|£H.1)-

(it) Indeed, {(1, 1), E) = co.

(iii) Put £ = (7, —%). Then (£, E) < 00.

Geometric sequences. Let G = {j*} x>0 with § € Z\ {-1,0,1}. Then
G,iG C G s0 G fails (Z)j141). In order to check (Z);)) for G, let us study
more carefully the following Diophantine equation:

(9) &Gt 4+€ni®™ =0 with |&]+ .. 4|60 <205 & by < ... < .

Suppose (9) holds. Then necessarily m > 2 and £ + Y i, &% ™% = 0.
Hence j|&; and |&| > |j]. As £ < 2[j], we may suppose & = j. Then
L4+ 30, &M R = 0. Hence ky = ky + 1 and §|1 -+ &. As |&] < 4],
€ {-1,|5| -1} U & =|j|—1,thenm =3, ky = k; +2 and &3 = —sgnj.
If & = -1, then m = 2: otherwise, j | {3 as before and |& |+ |&2] -+ €3] > 23],
Thus {9) has only two solutions: '

(1) G (=D =0 g (5] 1) 5 (— sgng) R =
If jis positive, this shows that & enjoys (Z;): both solutions yield 57 & # 0.
If j is negative, G enjoys (Zij1}, but the second solution of (9) shows that
Algebraic and trenscendental numbers. An interesting feature of property
(Zeo) is that it distinguishes between algebraic and transcendental numbers.
A similar fact has already been noticed by Murai [42, Prop. 26, Cor. 28].
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PROPOSITION 3.2. Let E = {n;} C Z.

(1) If nkg1/na — o where o > 1 is transcendental, then (£, E) = oo for
ony £1, ..., ém € Z*. Thus E enjoys (To.).

(i) Write [z] for the integer part of a real x. Let ny = [o*] with o > 1
algebraic. Let P(x) = & + ... + Egx% be the corresponding polynomial of
minimal degree. Then (£, E) < oo and E fails (Tyeyiq...t14])-

Proof. (i) Suppose on the contrary that we have £ and sequences p} <
... < pl. in E that tend to infinity such that &,p4 + ... + &mpl, = 0. As
the sequences {p}/p!.}; (1 <4 < m) are bounded, we may assume they are
convergent—and by hypothesis, they converge either to 0, say for ¢ < j, or
to o~% for d; € N and 7 > j. But then Eio™ % + ..+ bmo~ % =0 and o is
algebraic.

(it) Apply Proposition 3.1(1) with &:

Golo™] 4. . o™ = (]~ M)+ + Eall T - < Tl m

Polynomial sequences. Let E = {P(k)} for a polynomial P of degree d.

Asusual, the investigation becomes more number-theoretical, but certain
large arithmetical relations necessarily hold. Recall that

i d .7 i .
AIP(k) = Z (Z) (—1)iP(k — i),
(11) ; =0 ;
Nevi=o 3 (7) =7
% (ror=e %0
As AT P(k) = 0, we see that F fails (Z,«4). However, this results is much
too coarse. For example, the set of squares, the set of cubes and the set of
biquadrates fail (Tp): we know the solutions 72+ 1% = 2-5? (and 18% 417 =
152 + 102 [9, Book II, Problem 9}), 123 + 1% = 103 + 93 [6, due to Frénicle]
and 1584591 — 1344 +133¢ (and 122314+ 2003% = 103814 +10203* [12])—
and thus arbitrarily large solutions of o + b* = ¢* + d* for k € {2,3,4}.
Furthermore, {k%} and {k%} fail (Z3): we know the solutions 67° -+ 28% +
245 = 625 + 545 + 35 (and 1075 + 75° + 49° = 1005 4- 925 + 39° [40]) and
236 1 156 4 106 == 226 + 198 + 36 [40]. Finally, {k7} fails (Z4): we know the
solution 1497 + 1237 + 147 + 107 = 1467 + 1297 + 907 + 157 {10].

Note, however, that a positive answer to Euler’s conjecture—for k > 5
af &+ b* = ¢* + d* has only trivial solutions in integers—would imply that
the set of kth powers has (Z»}. This conjecture has been neither proved nor
disproved for any value of k > 5 (see [56]).

Conelusion. By Theorem 2.9, property (I,.) yields directly (umbs) in
L?P(T), p < n integer. But we do not know whether (Z) ensures (umbs)
in L?(T), p not an even integer.
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4. Metric unconditional approximation property (umap). As we
investigate simultaneously real and complex (umap), it is convenient to in-
troduce a subgroup U of T. Thus, if U = I, then the following applies to
real (umap). If U= T, it applies to complex (umap).

If the reader is first and foremost interested in the application to har-
monic analysis, he may concentrate on the equivalence (ii)<>(iv) in Theorem
4.2.4 and then pass on to Section 6.

4.1. Definition. We start with defining the metric unconditional approx-
imation property {((umap) for short). Recall that ATy = T} — Tk_1 (where
Ty = 0).

DEFINITION 4.1.1. Let X be a separable Banach space.

(i) A sequence {T%} of operators on X is an approzimating sequence
(a.s.) if each T} has finite rank and | Tz — x|} — 0 for every z € X. If
X admits an a.s., it has the bounded approzimation property. An a.s. of
commuting projections is called a finite-dimensional decomposition (fdd).

(ii) (See [14].) X has the unconditional approzimation property {uup) if
there are an a.s. {T;} and a constant C' such that

(12) | i)\kATkH <C forallmand Ay € U.
k=1

The (uap) constant is the least such C.
(ii1) {See {7, §3].) X has the metric unconditional approzimation property
(umap) if it has (uap) with constant 1 + & for any € > 0.

Property (ii) is the approximation property which most appropriately
generalizes the unconditional basis property. It has first been introduced by
Pelczynski and Wojtaszczyk [44]. They showed that it holds if and only if X
is a complemented subspace of a space with an unconditional (fdd). By [32,
Th. 1.g.5], this implies that X is a subspace of a space with an unconditional
basis. Thus, neither L*([0, 1]) nor ([0, 1]) share (uap).

Property (iii) has been introduced by Casazza and Kalton as an extreme
form of metric approximation. It is now rather well understood: see [7, §3],
(19, §8, 9], [18] and [17, §IV].

There is a simple and very useful criterion for (wmap):

ProproSITION 4.1.2 ([7, Th. 3.8] and [19, Lemma 8.1]). Let X be o sepa-

rable Banach space. X has (umap) if and only if there is an a. 5. {T} such
that

(13) sup || (X — Tie) + AT%|| — 1.
AEU k—co

A careful reading of the above mentioned proof also gives the following
results for a.s. that satisfy T, 1T}, = Th,.
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ProrosiTION 4.1.3. Let X be a separable Banach space.

(i) Let {Tx} be an a.s. for X such that Tny1Tn = Th. A subseguence
{T;} of {Tk} realizes 1-(uap) in X if and only if for all k > 1,

sup [ — (1 4+ AT3] = 1.
Agl

(i) X has an unconditional metric (fdd) if and only if there is an {fdd)
{Tx} such that (13) holds.

4.2. A characterization of {umap). We want to characterize (umap) in an
even simpler way than Proposition 4.1.2. Relation (13) and the method of
[28, Th. 4.2] suggest considering some unconditionality condition between a
certain “beginning” and a certain “tail” of X. We propose two such notions.

DErFINITION 4.2.1. Let X be a separable Banach space.

(1) Let + be a vector space topology on X. Then X has the property
{u(7)) of r-unconditionality if for all v € X and norm bounded sequences
{v;} € X such that v; 50,

(14) os¢ [[xe + g — 0.

(ii) Let {T%} be a commuting a.s. Then X has the property (u(Tz}) of
commuting block unconditionality if for all € > 0 and » > 1 we may choose
m = n such that for all x € T,Bx and y &€ (I — T7,)Bx,

<e.
(15) oseldo+yl <e

Thus, given a commuting a.s. {Tx}, T,X is the “beginning” and
(I — Tn)X the “tail” of X. If the sequence is not commuting, there are
more complex notions of beginning and tail: see the definition of A in the
proof of [28, Th. 4.2].

We have

LEMMA 4.2.2. Let X be a separable Banach space and {T%} a commuting
a. 8. for X. The following are equivalent.

(i) X enjoys {u(T)) for some vector space topology T such that Tz iz
uniformly for ¢ € Bx;
(ii) X engoys (u(T))-

Proof. (i)=-(ii). Suppose that (ii) fails: there are n > 1 and £ > 0 such
that for each m > n, there are T,, € TnBx and ym, € (J — T )}Bx such that

ose IAZm + Yml| > €.

As T, By is compact, we may suppose by extracting a convergent subse-
. . T .
quence that z,, = 2. Let T be as in (i); then gy, — 0 and (u(7)) must fail.
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(i)=(i). Define a vector space topology 7 by
50 & Yk |[Thznl] = 0.

Then Tz =z uniformly on By. Indeed, Tx(Tnz — &) = (T, — I)Tiw and
T, — I converges uniformly to 0 on Ty Bx, which is norm compact.

Tet us check (u(r)). Let » € Bx and {v;} € Bx be such that v; 50.
Let ¢ > 0. There is n > 1 such that ||Thu — ul| < ¢. Choose m such that
(15) holds for &« € T, Bx and y € (I — T )Bx . Then choose &k = 1 such that
| Tmusl| < € for j = k. We have, for any A€ U,

1w+ v € AT+ (T = T Jvs | + [Tow =l + [Ty |
< | Tts + (T = T )vj || 4 38 < [+ wy| + Be.
Thus we have (14). w

In order to obtain (umap) from block independence, we have to construct
unconditional skipped blocking decompositions.

DEFINITION 4.2.3. Let X be a separable Banach space. X admits un-
conditional skipped blocking decompositions if for each ¢ > 0, there is an
unconditional a.s. {54} such that for all 0 < a; < b1 < as < bz < ... and

Zp € (b, — Sap) X,
f;le% ”Z)\kﬂlkH < (1+5)”2mkH.

‘We have

'THEOREM 4.2.4. Consider the following properties for a separable Banach
space X.
(i) There are an unconditional commuting a.s. {1} and a vector space
topology T such that X enjoys (u(7)) and Thax = uniformly for z € Bx;
(i) X engoys {u(Ty)) for an unconditional commuting a.s. {Tx};
(iii) X admits unconditional skipped blocking decompositions;
(iv) X has (umap).
Then (iv)=> (i) (ii)=(iii). Jf X has finite cotype, then (iii)=-(iv).
Proof (i)¢+{ii) holds by Lemma 4.2.2.
(iv)=-(ii). By [17, Th. IV.1], there is in fact an a.s. {7} that satisfies
(13) such that Ty Ty = Tin(r sy if b 5 1.
Let C be a uniform bound for |Tk|. Let & > 0 and n = 1. There is
m > n + 2 such that

sup ATz + (I — T—1)l] <1 +€/(20).

Let z€ TBx and y € (I —~ Tn)Bx. As 2 — Thpm1z =0 and Thp—1y = 0,
Az +y=Ap1(z+y) + (I~ Tn-1)(@ +y),
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and, for all A € [,

2 + 3] < (1+e/Q@CYIz + yl| < llz+ vl +e.

(if)=>(iii). By [55, proof of Lemma IT1.9.2], we may suppose that T} =
Tine,y & # 1. Let £ > 0 and choose a sequence of n; > 0 such that

1+e; = [Lig;(1 +m) < 1+¢ for all j. By (ii), there is a subsequence
{85 =Ty} such that kp = 0 and thus Sy = 0, and

(16) sup |z + Ayl| < (1 +75)||lz + v
Agld

for & € (I — 5;)X and y € S;.1X. Let us show that it is an unconditional
skipped blocking decomposition: we will prove by induction that

e )| ;
(H,) fue}%H:c-i—z iz || < (1 4+¢5) ‘w—l—Zm
and z; € (5, — 9, )X (O§a1<b1<...

o (Hy) trivially holds.
e Assume (H;) holds for i < j. Let = and z; be as in (Hj;). Let A\; € U.
Then

Hﬂ’: =+ i AT
i=1

by (16). Note that -+, € (I —S,,)X; an application of (H,, ) yields (Hj).

(iil)=(iv). Let € > 0 and r > 1. There is an unconditional skipped
blocking decomposition {T} for &. Let Cy, be the (uap) constant of {T}}.
Let

for x € (I — 59;)X

<ap <b, €j3—1).

<(1 +nj)”a;+iﬂ i)\imi =(1 +ng-)||:c+ Zn +T§Xn>uwi
i=1 i=1

Vij = Tirtgr — T(.;_.l),,.+j forl1<j<randi=0.
The jth skipped blocks are

U =1- (3 is) = 30 ATisss

then 377, Uy = I. Let

1 ™
= r— 12“’3';
Jj=1
then R; has finite rank and
Ro+RBRi+...=0I-I)/(r—1)=1

Thus Wj = 3, R defines an a.s, We can bound its (uap) constant. First,
since {Tk} isa skipped blocking decomposition,
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\ < sup “ Z)\ Vh.,a‘“

7 MEU

<1“Zua~—vmu

= (r+ Z Uyz])).

Let us bound 377, [|Ujz||. Let ¢ < oo be the cotype of X and C its cotype
constant. Then by Hélder’s inequality we have

17y vYzeBx > |Usml|< rl“”"(z IIUﬂUH‘I) Y
< p3~Y4C, . average ” Z j:Uij
< ri-leg.C,.

Thus the (uap) constant of {W;} is at most (1+¢)(r + CoCurt=4) /(r —1).
As ¢ is arbitrarily small and » arbitrarily large, X has (umap). m

Yze B sup ” MR
x g2

We may remove the cotype assumption in Theorem 4.2.4(iii)=(iv) if the
space has the properties of commuting ¢1~(ap) or £,-(fdd) for ¢ < oo, which
will be introduced in Section 5:

THEOREM 4.2.5. Consider the following properties for o separable Banach
space X.

(i) There are a commuting £1-a. 5. or an £y~(fdd) {Tk}, g < oo, and @
vector space topology T such that X enjoys (u(r)) and Thx — = uniformly
for z € Bx;

(i) X enjoys (u(T%)) for a commuting £1-a.s. or an Ly-(fdd) {Th},
q < o

(i) X admits unconditional skipped blocking decompositions and one
may in fact take an £i-a.s. or an £y-(fdd) {T%}, q < oo, in its defindtion
4.2.3;

(iv) X has {umap).
Then (1)<(ii)= (1ii)=(iv).

Proof. Part (i)« (ii)=-(ili) goes as before. To prove (iii)=>(iv), note that
in the proof of Theorem 4.2.4(iii)=(iv), one may replace the estimate in (17)
by

1/
Voe Bx YWyl < o (S wal?) < M0,
where Cy is the £3-(ap) or the £,-(fdd) constant. w
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5. The p-power approximation property ¢,-(ap)
5.1. Definition

DEerFINITION 5.1.1. Let X be a separable Banach space.

(1) X has the p-power epprozimation property £,-{ap) if there are an a. 5.
{T%} and a constant C such that

(18) 0l < (32 14Tel?) " < Ol

for all € X. The £,-(ap) constant is the least such C.

(if) (See [7, §3].) X has the metric p-power approzimation property
£p-(map) if it has £;-(ap) with constant 1+ ¢ for any £ > 0.

Note that £,-(ap) implies (uap) and £,-(map) implies (umap). Note also
that in (18), the left inequality is trivial if p = 1; the right inequality is
trivial if p = oo.

Property (i) is implicit in Kalton’s and Werner’s [28] investigation of
subspaces of LP that are almost isometric to subspaces of £;.

The proof of Proposition 4.1.2 can be adapted to yield

ProOPOSITION 5.1.2, Let X be a separable Banach space.

(i)‘ If there is an o. 8. {T}} such that

(19) (o ~ Tial? + |TizP) /2 —1

uniformly on the unit sphere, then X has £,-(map). The converse holds if
p=1.

(i) X has o metric £y-(fdd) if and only if there is an (fdd) {Ti} such
that (19) holds.

We shall say that {T}} realizes £,-(map) if it satisfies (19}.

Proof. Let {Tk} be an a.s. that satisfies (19) and £ > 0. By {25, Lemma
2.4], we may suppose that Tk41Tk = T} Choose a sequence of n; > 0 such
that 14, = [[;<)(1+ny) < 1+ for each k. We may assume by taking a
subsequence of the T.’s that for all k and z € X,

(20)  (L+me) "Mzl < (lo - Thall + | TeelP) 7 < (U4 m) =]

We then prove by induction the hypothesis (Hy):

k 1/p
voeX (L+e) ol < (lo - Teall? + 3 1ATal?) " < (1 +ew)llz]l
Jj=1

e (Hy) is true.
o Suppose (Hy—1) is true. Let x € X. Note that
z—Tpt = (I —Tp)z — Th1m), ATwz = Ti(z — Th-13).
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By (20), we get

(le — Thz|[? + [ ATk lP) /7 < (14 ne)||e = Th—v2].
Hence
k 1/p
(ke - Tuzile + 3 1AT;a17)
j=1
iy p
< (U ) (o = Tosal + 3 14T l?) 7 < (1 + 23]l
j=1
by (Hk—l)-

s We obtain the lower bound in the same way. Thus the induction is
complete.

Hence {T}} realizes £,-(ap) with constant 1+e. As ¢ is arbitrary, X has
£,-(map).

If X has #1-(map), then for each & > 0, there is a sequence {Si} such
that

lzll < ||z — Skall + 1Ske]| < > [ ASwz]l < (1+6)llx]

for all € X. By a diagonal argument, this gives an a.s. {Tx} satisfying
(19).

(iii) If X has a metric £,-(fdd), then for each & > 0 there is an (fdd) {T:}
such that (18) holds with €' = 1+ &. Then, for all & > 1,

k 1
(@ - Tel < (3 1AT1r) " < (14 ¢} Tia,

i=1

sl 1/p
-l -Thal < ( 3 14T ) " < (L+) o - Thel.
i=k+1
Thus
(L =e)/(L+ eIzl < (lz — Tewll? + |1 TazlP)P < (L+€)/(L = €))llx].

By a diagonal argument, this gives an (fdd) {I}} satisfying (19). =

5.2. Some consequences of £,-(ap). We start with the simple

Prorogrrion 5.2.1. Let X be o separoble Banach space,

(i) If X has £y-(ap) with constant C, then X is C-isomorphic to a
subspace of an £y~sum of finfte-dimensional subspaces of X.
(i1} If furthermore X is o subspace of L9, then X is (C +g)-isomorphic
to a subspace of (D Ly)y for any given e > 0.
(iii) In particular, if a subspace of LP has £y-(ap) with constant C, then
it is (O +¢)-isomorphic to o subspace of £, for any given e > 0. If a subspace
of LP has £y-(map), then it is almost isometric to a subspace of £,.
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Proof (i) Indeed, & : X «— (Pim AT}),, z — {ATiz}iz1, is an em-
bedding: for all z € X,

_ ifp
O lelx < @l = (3 14Tl ) < Clleilx.
(ii & iii) Recall that, given £ > 0, a finite-dimensional subspace of L7 is
{14 )-isomorphic to a subspace of £; for somen > 1. m

We have in particular (see [24, §VIII, Def. 7] for the definition of Hilbert
gets)

COROLLARY 5.2.2. Let E C Z be infinite.

(i) No LL(T) (1 < g < 00) has £,-(ap) for p # 2.

(i) No Ce(T) has £y-(ap) for g # 1. If E is a Hilbert set, then Cg(T)
fails £1-(ap).

Proof. This is a consequence of Proposition 5.2.1(i): every infinite &

containg a Sidon set and thus a A(2V p) set. So L% (T) contains £5. Also, if
E is a Hilbert set, then Cg(T) contains ¢p by [30, Th. 2]. =

However, there is a Hilbert set E such that Cz(T) has complex (umap):
see [31, Th. 10]. The class of sets F such that Cg(T) has £1-(ap) contains
the Sidon sets and Blei’s sup-norm-partitioned sets.

5.3. A characterization of £,-{map). Recall [28, Def. 4.1j:

DEFINITION 5.3.1. Let X be a separable Banach space.

(i} Let 7 be a vector space topology on X. X enjoys property (mp{7))
if for all z € X and norm bounded sequences {y;} such that y; Z0,

lz + 931 = (ll=llP + ll511) /%1 — 0.

(i) X enjoys property (my(T%)) for a commuting a.s. {T}} if for all

£> 0 and n > 1 we may choose m > n such that for all x € Bx,
[Tz + (I = Tm)all — (1Tezl? + | ~ T)alP) 7] < e

Then [28, Th. 4.2] may be read as follows:

THEOREM 5.3.2. Let 1 < p < oo and consider the following properties
for a separable Banach space X.

(i) There are an unconditional commuting a. s. {Ty.} and a vector space
topology T such that X enjoys (mp(T)) and Tz — = uniformly for © € Bx;
(i) X enjoys (mp(Th)) for an unconditional commuting a.s. {Tw};

(iil) X has £p-(map).
Then (i}&(ii). If X has finite cotype, then (ii)=(ili)-

As for Theorem 4.2.4, we may remove the cotype assumption if X has
commuting £1-(ap) or £p-(fdd), p < oo
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THEOREM 5.3.3. Let 1 < p < co. Consider the following propertics for a
separable Banach space X.

(i) There are an £,-(fdd) (or just a commuting £1-a. s. in the case p = 1)
{T}} and a vector space topology T such that X enjoys (mp(r)) and Ty 5
uniformly for x € Bx;

(i) X enjoys (myp(Tk)) for an £p-(fdd) (or just a commuting £1-a.s. in
the case p = 1) {Tk};

(iii) X has £p-(map).

Then (i) (ii)= (i)

5.4. Subspaces of L¥ with £,-(map). Although no translation invariant
subspace of LP(T) has £,-(map) for p 5 2, Proposition 5.2.1(ili) is not void.
By the work of Godefroy, Kalton, Li and Werner [28], [18], we get examples
of subspaces of L? with £,-(map) and even a characterization of such spaces.

Let us treat the case p = 1. Recall first that a space X has the l-strong
Schur property when, given § € [0, 2] and € > 0, any normalized §-separated
sequence in X contains a subsequence that is (2/4+-<)-equivalent to the unit
vector basis of £; (see [51]). In particular, a gliding hump argument shows
that any subspace of £; shares this property. By Proposition 5.2.1(iii), a
space X with £1-(map) also does. Now recall the main theorem of [18]:

THEOREM. Let X be a subspace of L' with the approzimation property.
Then the following properties are equivalent:

(1) The unit ball of X is compact and locally convex in measure;
() X has (umap) and the l-strong Schur property;
(iii) X is (1 + £)-isomorphic to o w*-closed subspace X, of £ for any
e >0

We may then add to these the fourth equivalent property
(iv) X has £1-(map).

Proof. We just showed that (ii) holds when X has ¢;-(map). Now
suppose we have (iii) and let ¢ > 0. Thus there is a quotient Z of ¢y such
that Z* has the approximation property and Z* is (1 + &)-isomorphic to X.

Let us show that any such Z* has £1~(map). Z has the metric approxima-
tion property, with say {R,}, because Z* has it as a dual separable space.
By [20, Th. 2.2}, {R},} is a metric a.s. in Z*. Let @ be the canonical guotient
map from co onto Z. Let {P,} be the sequence of projections associated with
the natural basis of cg. Then {P}} is also an a.s. in £;. Thus

|1Pr@*z" ~ Q*Rix*|s, —» 0 for any z* € Z*,

By Lebesgue’s dominated convergence theorem (see {27, Th. 1]), QP, —
RnQ — 0 weakly in the space K(cp, Z) of compact operators from ¢g to Z.
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By Mazur's theorem, there are convex combinations {Cy, } of {P,} and {D,,}
of {Ry} such that ||QCy = Dn@Q||g(e,7) — 0. Thus

(21) IC3Q" = Q" D}l £z 20y — 0.

Furthermore, C @ €1 - £ has the form C}(zy,22,...) = (171, t029,...)
with O £ ¢; £ 1. Therefore, defining Q*a = (a3, a9, . ..), we get

(22)  ICh@Q"al + 1Q"a — CrQ"af
= || (fraq, fatg, . )| -H (L~ £1)ay, (1 = t2)ag, .. )

= 3 (il 4 1= talad = Y Jag] = |Q"aljs

As {DE} is still an a.s. for 2%, {D2} realizes €1-(map) in Z* by (22), (21)
and Proposition 5,1.2(1).

Thus X had £1-(ap) with constant 1 + 2e. As ¢ is arbitrary, X has
£1-(map). =

For 1 < p < o0, we have similarly by [28, Th. 4.2]

ProrosiTioN 5.4.1. Let 1 < p < oo and X be a subspace of LP with the
approzimation property. The following are equivalent:

(1) X 48 (1 + &)-isomorphic to a subspace X of £, for any e > 05
(i) X has &,~(map).

Proof (ii)=>(i) is in Proposition 5.2.1. For {i)=-(ii), it suffices to prove
that any subspace Z of £, with the approximation property has £p-(map).

As Z is reflexive, Z admits a commuting shrinking a.s. {R,}. Let 4 be
the injection of Z into £,. Let { P} be the sequence of projections associated
with the natural basis of £,. It is also an a.s. for £, . Thus

3" Pra* — REi*c*||z« — 0 for any 3" € £y,

As before, there are convex combinations {Cyr} of {F,} and {D,} of {R,}
such that |Gy ~ 4Dy || — 0. The convex combinations are finite and may
he chosen not to overlap, so that for each n > 1 there is m > n such that

|G+ (T = Gl = (1wl + 1 = )7
for € £, This Z has property (mp(Dy)). Following the lines of [14, Lemma

1], we observe that {D,} is a commuting unconditional a.s. since {F,} is.
By Theorem 5.3.2, Z has £,-(ruap}. «

6. (uap) and (umap) in translation invariant subspaces. Recall
that U is a subgroup of T. If U = I, the following applies to real (umap). If
U =T, it applies to complex (wmap).

6.1. Remarks on (uap). LP(T) spaces (1 < p < oc) are known to have an
unconditional basis; furthermore, they have an unconditional (fdd) in trans-
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lation invariant subspaces L# (T): this is a corollary of the Littlewood--Paley
theory [33]. One may choose Ay = {0} and 4y = ]2k, 261 U [2k-1 2k
Thus any L5(T) (1 < p < co) has an unconditional (fdd) in translation
invariant subspaces L4, (T). The spaces LYT) and C(T), however, do not
even have (uap).

Li [31, Cor. 6, Th. 7] proves that in translation invariant subspaces,
(umap) may as well be achieved with multipliers of finite rank. Modifications
of his proof apply to (uap) and £,-(ap), £p-(map). Hence his result on (umap)
may be generalized as follows:

PROPOSITION 6.1.1. Let B C Z and X € {C{T), LP(T) (1 < p < 00)}.

(i) If Xg has (umap) (resp. (uap), £p-(ap) or £y-(map)) and F' C E,
then X also has (umap) (resp. (uap), £n-(ap) or £y-(map)).

(i) If Ca(T) has (umap), then so do all Liy(T) (1 < p < oc). If Cu(T)
has (uap), then so does L (T).

Note also that a.s. of multipliers commute and commute with one an-
other.

Whereas (uap) is always satisfied for I4(T) (1 < p < 00), we have the
following generalization of [31, remark after Th. 7, Prop. 9] for Lj(T) and
Cg(T):

LEMMA 6.1.2. If X has (uap) with a commuting a. s. and X 2 cq, then
X is5 a dual spoce.

Proof. Suppose {7} is a commuting a.s. such that (12) holds. As
X Z cg, Pz™ = WmT}*z** is well defined for each =™ € X**. As {T},}
is an a.s., P is a projection onto X. Let us show that ker P is w*-closed.
Indeed, if z™* € ker P, then

| T2 = lim {7, T3 e ™| = Um |7, T"e™ =0
and T z** = 0. Thus
ker P = ﬂlcer .
7

Let M = (ker P);. Then M*=X.
CoRrOLLARY 6.1.3. Let E C Z.

(i) If LL(T) has (uap), then E is o Riesz set.
(ii) If Ce(T) has (uap) and Cx(T) 2 co, then E is a Rosenthal set.
Proof. In both cases, Lemma 6.1.2 shows that the two spaces are sep-

arable dual spaces and thus have the Radon-Nikodym property. We mnay
now apply Lust-Piguard’s characterization [35]. w
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The converse of Proposition 6.1.1(ii) does not hold: Ly (T) may have
(uap) while Cr(T) fails this property. We have

PrROPOSITION 6.1.4. Let EC Z.

(i) The Hardy space HY(T) = LL(T) has (uap).
(ii) The disc algebra A(T) = Cu(T) foils (uap). More generally, if Z\ B
i8 a Riesz set, then Cp(T) fails (uvap).

Proof. (i) Indeed, HY(T) has an unconditional basis [36]. Note that the
first unconditional a.s. for HY(T) appears in [37, §I1, introduction).

(ii) Let 4 < T be the Cantor set. By Bishop’s improvement [4] of Rudin-
Carleson’s interpolation theorem, every function in C(A) extends to a func-
tion in Cpr(T) if Z \ £ is a Ricsz sct. By [43, main theoremy], this inoplies
that C(A) embads in Cg(T). Therefore Cp(T) cannot have (uap); otherwise
C(A) would cmbed in a space with an unconditional basis, which is false. =

6.2. Characterization of (umap). Let us introduce

DeriNrTioN 6.2.1. Let £ € Z and X € {C(T), LP(T) (1 < p < o0)}.

F enjoys the Fourier block unconditionality property (i) in X whenever,
for any € > 0 and finite ¥ C E, there is a finite G € F such that for
f € Bx, and g € Bx,, .,

(23) Qe |Af+gilx <e

LEMMA 6.2.2, Let BE C Z and X € {C{T),L?(T)(1 < p < o0)}. The
Jollowing are equivalent.

(i) X& has (u(re)), where 7p is the topology of pointwise convergence of
the Fourter coefficients:

Tn 50 & VEk Bu(k) — 0;
(i) E enjoys (U) in X,
(iil) Xp enjoys the property of block unconditionelity for any, or equiv-
alently for some, . 8. {Th} of multipliers.

Proof. {i)=>(ii). Suppose that (i) fails: there are £ > 0 and a finite F’
such that for cach finite @, there are zg & Bx, and yg € Bxy, , such that

ose [ hee +yel > e

As By, is compact, we may suppose zg = ©. As ya 2o, (u(Ty)) fails.
(i1)=>(iii). Let € be a uniform bound for ||Tk||. Let n = 1 and ¢ > 0.
Let F' be the finite spectrum of T;,. Let G be such that (23) holds for all
f&eByx, and g & BXM\G' Let V be the element of de la Vallée-Poussin’s -
a.8. such that V|x, = I|xq. Then ||V|c(xp) < 3. As V has finite rank, we
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may choose m > n such that |[(I — Tn) V| coxey = [V - To)llcixmy S &
Let then z € Tp By, and y € (I — Ty, ) Bx,. We have

(23)
Az +y] <Az +{I-Vyll+e < lz+T -Vl +4C+1)e+e
< ||z 4yl + (4C + 6)e.

(iii)=>(i) is proved as Lemma 4.2.2(ii)=>(i): just note that if y; 70, then
|| Ty;|| — O for any finite rank multiplier T". m

THEOREM 6.2.3. Let EC Z and X € {C(T), LP(T) (1 £p <co)}. If X
has (umap), then E enjoys (U) in X. Conversely,

(i) If E enjoys (U) in L5 (T) (1 < p < c0), then L(T) has (umap).
(i) If B enjoys () in Ly(T) and L5(T) has (uap), then Li(T) has
{umap).
(i) If B enjoys () in Cr(T) and Cx(T) has £1-(ap}, in particular if £
is o Sidon set, then Cp(T) has (umap).

Proof. Notice first that in the three cases, (umap) implies () by
Lemma 6.2.2(iii)=(ii).

(i) Notice that L%(T) (1 < p < oo) has an unconditional (fdd) {mzna, }
of multipliers. Thus () implies (umap) by Theorem 4.2.5(ii)= (iv).

By Lemma 6.2.2, parts (ii) and (iii) follow from Theorem 4.2.4(il) = (iv)
and Theorem 4.2.5(ii)=-{iv) respectively. m

7. Property (umap) and arithmetical block independence. We
may now apply the technique used in the investigation of (umbs) in order to
obtain arithmetical conditions analogous to (Z,) (see Def. 2.8) for (umap).
According to Theorem 6.2.3, it suffices to investigate the property (U) of
block unconditionality: we have to compute an expression of type || f+ Agl|p,
where the spectra of f and g are far apart and A € U. As before, U = T
{resp. U = D) is the complex (resp. real} choice of signs. To this end, we
return to the notation of computational lemmas 2.6 and 2.7. Define

J m—j
(24)  ¥.(X2) =6.((1,...., 1A ..., ), =)
=]

N " \
e+ zen®) 2 S zie.m(t)’pdm(t)

= 2 (pc/f)zﬂwm -
aeNm
+ Z Z (PLZ) (p[/-f)AE,}jai*ﬁin?igfi‘

AER, ot BEA
As in computational lemma 2.7, we make the following observation:
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COMPUTATIONAL LEMMA 7.1, Let &y,...,6n € Z* and ~, § be as in
(6). If the arithmetic relotion (7) holds, then the coefficient of the term
Nz ‘W"ﬁj‘ [1272% in (24) is (Pn/f) (P4%) and thus independent of r. If 3 |&]
< p orp is not an even infeger, this coefficient is nonzero. If o+ ... + &
is nonzero (resp. odd), then this term is nonconstont in A € U.

Thus the following arithmetical property shows up. It is somewhat sim-
ilar to property (Z,,) of almost independence.

DErNImoN 7.2, Let £ S Z and n > 1.

(i) ¥ enjoys the complen (resp. real) property (J.) of block indepen-
dence if for any £ € BT with £+ ... + £; nonzero (resp. odd) and given
P1,...,p; € B, there is a finite F € E such that &1p1 + ... + EmpPrn # 0 for
all Piglye e Pm € B \ F,

(ii) E enjoys complex (resp. real) (Jo) if it enjoys complex (resp. real)
(J) for all n > 1.

Thus property (J7,,) has, unlike (Z,,), a complex and a real version. Real
(Jy) is strictly weaker than complex (J,): see Section 8. Notice that (71)
is void and (Jpr1)=(Jn) in both complex and real cases. Also (Z.) #
(J): we shall sec in the following section that F = {0} U {n*}x»0 provides
a counterexample. The property (7») of real block independence appears
implicitly in [31, Lemma 12].

ReMARK. In spite of the intricate form of this arithmetical property,
(Jn) is the “simplest” candidate, in some sense, that reflects the features
of (U):

e it must hold for a set E if and only if it holds for a translate E -+ k;
this explains Y & = 0 in Definition 7.2(i);

e as for the property (¢) of block independence, it must connect the
beginning of F with its tail;

o Li gives an example of a set B whose pace does not tend to infinity while
Ce(T) has £,-(map). Thus no property {Jn) should forbid parallelogram
relations of the type py — py = pq ~ ps, where py,po are in the beginning
of E and py,py in its tail. This explains the condition that & + ... + & be
nonzero (resp. odd) in Definition 7.2(i).

We now repeat the argument of Theorem 2.9 to obtain an analogous
statement which relates the property (U) of Definition 6.2.1 with our new
arvithynotical conditions:

LeMMA 7.3, Let B = {ny} CZ and 1 £ p < oc.

(i) Suppose p is an even integer. Then E enjoys the complex (resp. real)
Fourier block unconditionality property (U) in LP(T) if and only if E enjoys
complez (resp. real) (Jp2)-
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(i) If p is not an even integer and E enjoys complex {resp. real) (U) in
LP(T), then it enjoys complex (resp. real) (Jo0)-

Proof Let us first prove the necessity of the arithmetical property
and assume F fails (7,); then there are £o,...,6m € Z* with 378 = 0,
S |¢} < 2n and £+. . .+&; nonzero (resp. odd); and there arerg,...,r; € B
and sequences ""ff—|—3.: ooyt € BN {n1,...,m} such that

foro+ ...+ &jTj + ‘Sj-’r«lrz-}l +o ‘gm'rin =0.

Assume F enjoys (Uf) in L#{T). Then the oscillation of ¥, in (24) satisfies
for each z € D™. The argument is now exactly the same as in Theoremn 2.9
we may assume that ¥, converges in C®(U x D™) to a function ¥. Then
by (25), ¥(), 2) is constant in A for each z € D™, and this is impossible by
computational lemma 7.1 if either p is not an even integer or p > 2n.

Let us now prove the sufficiency of (J,/2) when p is an even integer.
First, let A% = {0 € A, 1 oy = 0for k < ¢ <1} (Ay is defined before
Proposition 2.5), and convince yourself that (7,/2) is equivalent to

(26) V3> kVae,4ec A%

p/2
Zami = Zﬁm,; = Zai = Z’Bl (I‘G‘.’:Jp. mod 2).
i<k T
Let [ = Y aen, € Pp(T). Let & > 1 and A € U, By the multinomial
formula,
A _ - p/2 Lpgh i o ’
mf + (F—mpE= | 3 AZrn (T a2 )egapm, | dm
acal) “
n/2
n /2 2
= S Z/\J Z (pa )(Haf"‘)ezmm dm.
=0 ey,
oo =j

(26) now signifies that we may choose ! > k such that the terms of the above
sum over j (resp. the terms with 7 odd and those with j even) have disjoint

spectrum. But then ||Amgf4 (f —mf)|p is constant for A € U and F enjoys
(U) in IP{(T). =

Note that for even p, we have as in Proposition 2.5 a constant Cp>1
such that either (23) holds for £ = 0 or fails for any £ < Cp. We thus get

COROLLARY 7.4. Let E C Z and p be an even integer. If E enjoys complex
(resp. real) (L) in LP(T), then there is a partition E = | J By into finite sets
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such that for any coarser partition B = | ) Ej,,
vf € Pu(T) > ey, fl| =0
P

Among other things, B = Eq U Fp where the L%i (T) have a complex
(resp. real) L-vnconditional (fdd).
Lemma 7.3 and Theorem 6.2.3 yield the main result of this section.

O8C
A€

THEOREM 7.5. Let ECZ and 1 <p < oo,

(i) Suppose p is an even integer. Then Lg(T) has complex (resp. real)
{(wnap) ‘if and only if B enjoys complex (resp. real) (Tp;a).

(ii) If p is not an cven integer ond L%(T) has complex (resp. real)
(umap}, then B enfoys complex (resp. real) (Joo)-

COROLLARY 7.6. Let E C 7.

(i) If Cr(T) has complex (resp. real) (wmap), then E enjoys comples
(resp. real) (Joo)-

(i) If any L5, (T), p not an even integer, has complex (resp. real) (umap),
then all L% (T) with p an even integer have complew (resp. real) (umap).

Suppose p is an even integer. Then Section & gives various examples of
sets such that L% (T) has complex or real (umap). Proposition 9.2 gives a
general growth condition that ensures (umap).

For X = LP(T), p not an even integer, and X = C(T), however, we
encounter the same obstacle as for (umbs). Section 8 only gives sets B such
that X g fails (umap). Thus, we have to prove this property by direct means.
This yields four types of examples of sets E such that Cg (T)—and thus by
[31, Th. 7] all L5,(T) (1 < p < oo) as well—have (umap):

e Sets found by Li [31]: Kronecker’s theorem is used to construct a set
containing arbitrarily long arithmetic sequences and a set whose pace does
not tend to infinity. Meyer’s [38, VIII] techniques are used to construct a
Hilbert set;

e The scts that satisfy the growth condition of Theorem 9.3;

o Soquences B = {ny} C % such that ngq, /7 is an odd integer: see
Proposition 9.1,

Wo know no axample of a set B such that some L5 (T), p not an even
integer, has (umap) while Cg(T) fails it.

There is also a good arithmetical description of the case where {mp} or
a subsequence thereof realizes (umap).

PROPOSITION 7.7. Let B = {nz} € Z and X € {C(T), L7(T) (1 <p
< o0)}. Consider an increasing sequence {Ey} of finite sets such that E =
U Ex.
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(i) Suppose p is an even integer. Then {mg,} realizes complex: {resp,
real) (umap) in L%(T) if and only if there is anl = 1 such that

(27) Vpl,...,meE

E1pr Ao+ P =02 VE 21 Z £; =0 (resp. i8 even)
pjEHn
for all § € ET,. Then Li(T) admits the 1-unconditional (fdd) {mg, tr>i. In
particular, if we choose Ey = {ny,...,n}, then mg, = m realizes comples
and real (umap) if and only if there is o finite F such that for £ € Z 7},

(28) Vo1, b EE Ep1+ . A Empm =01,

(ii) Suppose p is not an even integer. If {mg,} realizes complexr (resp.
real) (umap), then for each & € B™ there is @ k > 1 such thet (27) holds.
In particular, if {my} realizes either complex or real (umap), then for all
£ € E™ there is a finite F such that (28) holds.

Proof. It ig analogous to the proof of Lemma 7.3: suppose we have
£ € 5™ such that (27) fails for any ! > 1. Then there are &,...,&m € Z*
with 3.6 =0, 3 |&| < 2n and &+ . .. + £; noozero (resp. odd) for some
7; for each I, there are rf,...,75 € By and r},,,...,rh, € B\ B such that
Eorb+ .. F&mrl =0,

But then {wg,} cannot realize complex (resp. real) (umap): the function
¥, in (24) would satisfy (25) and we would obtain a contradiction as in
Theorem 2.9.

Sufficiency in (i} is proved exactly as in Lemma 7.3(i). w

Pm € L.

In particular, suppose that the cardinality #[F.] is uniformly bounded
by M and {rg, } realizes (umap) in L4 (T). If p # 2 is an even integer, then
E is a A(p) set, being the union of a finite set and M p/2-independent sets
(see Prop. 2.5 and [52, Th. 4.5(b)}). If p is not an even integer, then E is a
A(q) set for any ¢ by the same argument.

Let p be an even integer. If (27) holds, then a tail of {Uk} realizes 1-(fdd)
in L (T). Similarly, if (28) holds, then F is a (wmbs) in L?(T).

8. Examples for (umap). The pairing (¢, E} underlines the asymptotic
nature of property (7). It has been defined before Proposition 3.1, whose
proof can be adapted to give

PROPOSITION 8.1. Let F = {n;} C Z.

(1) If (&, B) < oo for &1,...,6m € Z* with T & nonzero {resp. odd),
then B fails complez (resp. real) (Jies 1 +..41&m|) - Conversely, if B fails com-
plex (resp. real) (T.), then there are £1,...,&6, € Z* with S & nonzero
(resp. odd) and 3 |&| < 2n — 1 such that (¢, ) < co.
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(ii) Thus B enjoys complex (resp. real) (Joo) #f and only if (&, By =
forall Lo, 6 € 2 with 3 &; nonzero (resp. odd).

Proof of the converse in (i), If E fails complex (resp. real) (7,), then
there are £ € S wit h E1+...F &'J nonzero (resp. odd) P1,-..,p; € E and
sequences pho g, ..., ph, € {nk}k;,; such that; EDJ Eiph = — 1< Eipi Let
£ = (&p1r-o0bn). Then 3718 < 2n—land (¢ E) <oo. m

An tmmediate application is, as in Proposition 3.1,
Prorosrrion 8.2, Let B o= {ng} C Z.

(i) Suppose B engoys (Toy-.1). Then B enjoys romplew () and actually
there is a finite set ' such that (28) holds for £ € BT,

(ii) Suppose B enjoys (T). Then B enjoys comples (Joo) and actually
Jor all £ &€ Z there is o finite B such that (28) holds.

(iil) Let B' = {ng + mp} with {my} bounded. Then (¢, FE) = oo if and
only if (£, E') = oco. Thus (Z) and compler and real (Joo) ore stable under
bounded perturbations of E.

(iv} Suppose there s h € Z such that E U {h} fails complez (resp. real)
(Jn). Then E fails complex (resp. real) (Jan—1). Thus the complen and real
properties (Jeo) ave stable under unions with an element: if E enjoys i,
then so does B \J {h}.

(v) Suppose jF 4 s,kF +t € F for an infinite F, § # k € Z* and
8,4 € Z. Then 1 fails complex (1 x|), ond also real (Tjiwpm) if 5 and k
have different parity.

We now turn to an investigation of various setg E in relation to their
arithmetical properties.

Geometric sequences. Let G = {j*}x»o with 5 € Z\ {-1,0,1}.

(1) As G, jG C G, G fails complex (J|j)+1), and also real (Jjjj41) if j is
even. The solutions (10) to the Diophantine equation (9) show at once that G
enjoys complox (7)), since there is no arithmetical relation £ € & 7] between
the beginning and the tail of G. If § is odd, then & enjoys in fact real {Joo ).
Indeed, let £1,...,&, € Z* and ky < ... < ky; then Y £7% € j57Z and
either |L§ R = gk or quk‘ = (), Thu=., if (£, F) < oo then (£,E) =0
and 3 & is even '-.mc e § is odd. Now apply Proposition 8.1(iii), The same
argument yiolds that even G U —~G U {0} enjoys real (Jw). Actually, more
is trmes see Proposition 9.1,

2) GU{0} may behave differently than G with respect to property (Jn),
thus this property is not stable under unions with an element. Indeed, the
first solution in (10) may be written as (—j+1)- 04758+ (=1) . j¥+ = 0.
If j is positive, then (=j + 1) + 7+ (~1) < 27 and G'U {0} fails complex
(J;). A look at (10) shows that it nevertheless enjoys complex (Jj..1}. On
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the other hand, G U {0} still enjoys complex (J);) if j is negative. In the
real setting, our arguments yield the same if j is even, but we already saw
that G U {0} still enjoys real (Joo) if 4 is odd.

Symmetric sets. By Propositions 3.1(iii) and 8.2(vi), they enjoy necither
(Z) not complex (J2). They may nevertheless enjoy real (Jn). Int;'oduce
property (J5¥™) for B: it holds if for all p1,...,p; € E and p € Z"™ with
™ 1 even and 3 pe, i < 2n and 7y + ...+ 7 odd, there is a finite set
F such that m1p1 + . . . + GmPm # 0 for any pjt1,....0m € F \ F'. Then we
obtain

PROPOSITION 8.3. EU —E has real (J,,) if and only if E has (T53¥™).

Proof. By definition, £ U —FE enjoys real (7,) if and ouly if for all
p1,...,p € B and £,( € Z™ with £+ ¢ € =" and Eigk(ii — ¢;) odd, there
is a finite set F* such that (& ~ ¢;)p; # 0 for any pj1,....pm € F \ B
and thus if and only if E enjoys (J2¥™): just consider the mappings between
arithmetical relations (£,{) — 1 == £ — ¢ and n — (£, {) such that n = £ -,
where &; = n;/2 if 7; is even and, noting that the number of odd #;’s must
be even, & = (m — 1)/2 and & = (n; + 1)/2 respectively for each half of
them. m

Consider again a geometric sequence G = {j*}. If j is odd, we saw before
that GU—G and GU—-GU{0} enjoy real {Jeo). If j is even, then GU—G fails
real (Jj+1) since & does, GU—GU{0} fails real (J;/2+.1) by the arithmetical
relation 1-0+ j - 7% + (=1) - 5¥* = 0 and Proposition 8.3. G U —G enjoys
real (J;) and GU —G U {0} enjoys real (7, /2) as the solutions in (10) show
by a simple checking.

Algebraic and transcendental numbers. The proof of Proposition 3.2
adapts to

PROPOSITION 8.4. Let B = {n3} C Z.

@) If ngy1/me — o where ¢ > 1 is transcendental, then E enjoys
complez (oo ).

(i) Let ng = [oF] with ¢ > 1 algebraic. Let Plz) = & + ... + £qz?
be the corresponding polynomial of minimal degree. Then E fails complex
(Tieo|+.tleal)s and also real (Tigo|4...41eq)) i P(1) is odd.

Polynomial sequences. Let E = {P{(k)} for a polynomial P of degree d.
The arithmetical relation (11) cannot be adapted to property (J.). Notice,
though, that {A7 _F‘}:‘f__u1 is a basis for the space of polynomials of degree less
than d and that 2¢P(k) ~ P(2k) is a polynomial of degree at most d — 1.
Writing it in the basis {47 P}4.., yields an arithmetical relation 2¢ - P(k) —

1- P(2k) + Y50 & - P(k — §) = 0 such that 2% — 1 + 3¢; is odd. By
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Proposition 8.1(i1), F fails real (J,) for a certain n. This n may be bounded
in certain cases:

» The set of squares fails real (J2): let F, be the Fibonacei sequence de-
fined by Fy = F| = 1 and Fog = Frq1 + F,. As {F1/F, )} is the sequence
of convergents of the continned fraction associated with an irrational (the
golden ratio), Fy, — oo and FpFy, 19 — F2, = (~1)" (see [13]). Inspired by
[41, p. 15}, we observe that

(B Pk B3P+ (R0 = (FuFrg + Frgpi Frga)? + 12,

o The sot of cubes fails yeal (73): starting from Binet’s [3] simplified
solution of Buler’s equation [11], we observe that p, = 9n?, g, = 1 4 9n3,
ro o= 31 - 3n8) satisly p 4 ¢ =12 4 1% and tend to infinity.

o The set of bigquadrates fails real (J3): by an equality of Ramanujan
(sce [48, p. 386]),

(4n® — 5n)? -+ (6nt — 3)* + (dn? + 1)* = (4n® + n)? + (20t — 1)* 4+ 34

As for (Z,), a positive answer to Euler’s conjecture would imply that the
set of kth powers has complex (Ja) for k > 5.

Conclusion. By Theorem 7.5, property (J,) yields directly (umap) in
L#(M), p < n integer. But we do not know whether () ensures (umap)
in LP(T), p not an even integer, or C(T).

Nevertheless, the study of property (J3) permits us to determine the
density of sets such that Xz enjoys (umap) for some X 5 L2(T), L*(T): see
Proposition 10.2. Other applications are given in Section 12.

9. The positive results: parity and a sufficient growth condition.
In the real case, parity plays an unexpected réle.

PROPOSITION 9.1. Let B = {ng} C Z and suppose that ngi1/ny s an
odd integer for oll sufficiently large k. Then Cr(T) has real (umap).

Proof. Let us verify that real () holds. Let ¢ > 0 and F C E N
[~n, 7). Lot I, to he chosen later, be such that ngp1/ng i an odd integer
for k 2 I. Take G 2 {ny,...,m} finite. Let f € Be, and g € Bey, - Then
gluwexpin/ng) = —g(u) and

| (wexpim frg) — f(u)] £ 7/l F oo < 7nf
by Bernstein’s inequality and for [ large enough. Thus, for some v € T,
£ = glloe = |£ (w0} + gluexpin/m)| < |f(uexpin/m) + g(uexpin/ni)| + €
Slf+ 9l +e
As E is a Sidon set, we may apply Theorem 6.2.3(iii). w

m[S&'
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Furthermore, if E satisfies the hypothesis of Proposition 9.1, so does
EU~E = {ny, —n1,n2, —Na,...}. But BU—F fails even complex (J2) and
no Xzu_g # L% _p(T) has complex (umap). On the other hand, if there
is an even integer h such that ngy1/ny = b infinitely often, then & fails real
(Jiny+1) by Proposition 8.2(vi).

For X = LP(T) with p an even integer, a look at (Z,) and () gives by
Theorems 2.9 and 7.5 the following general growth condition:

PROPOSITION 9.2. Let B = {nx} CZ and p > 1 an integer. If
(29) liminf |ngt1/ne| 2 p+ 1,
then L2(T) has complez (wmap) and E is a (umbs) in L*(T).

Proof Suppose we have an arithmetical relation
(30) Gng, + ...+ Enng,, =0 with £ € E;n and inkll <. < 17’1,;%”].
Then |€mne,,| < €1k | + ... + [Em—17kp_. | The left hand side is smallest
when || = 1. As 1&1] 4 ... +|ém| € 2p and necessarily |¢;| < p, the right
hand side is largest when [£,—1| = p and |{m-2] = p — 1. Furthermore,
it is largest when Ky, = km-1 + 1 = kpm2 + 2. Thus, if (30) holds, then
[nk,. | < plnk,,_o |+ (0= 1)|nk_y |- By (29), this is impossible as soon as m
is chosen sufficiently large, because p+1>p+(p—1)/(p+ 1). m

Note that Proposition 9.2 is best possible: if 7 is negative, then {j*} fails
(Zy5))- If 7 is positive, then {7%} U {0} fails complex (J;).

Although we could prove that F enjoys (Zoo) and (Joo) when npy1 /1
— 00, weneed a direct argument in order to get the corresponding functional
properties: we have

TaEOREM 9.3. Let E = {ng} C Z be such that npyi/ny — oo. Then
Ce(T) has £1-(map) with {mg} and E is a (umbs) in C(T}. If the ratios
41/ M are all integers, then the converse holds.

Note that by Proposition 2.2(1i), F is a (umbs} in LP(T) forall 1 € p <
as soon as it is a (wnbs) in C(T). Recall further that, by {31, Th. 7], L% (T)
has complex (umap) as soon as Cg(T) has £;-(map) (and hence complex
(umap)).

Proof (of Theorem 9.3). Suppose |nji1/ni| = ¢ for 7 2 1 and some

g > 1 to be fixed later. Let f = ) ase,, € Pp(l) and k = I. We show by
induction that for all p > k,

71‘21— 2(fk—p)
(31) ol > (1= 2 it
r
72 1 — g?li=p)
<2 (T
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» There is nothing to show for p = k.

e Supposc (31) holds. Let u € T be such that |7, f!ee = |75 (4)]. Then
there iy a v € T such that
. larga/v| < w/inppal,
(‘%2) ‘Tr f(/u) _.*_ ) -

pf (1) + apyien, s ()] = 170 f oo + laptal.

Tndeed, there are |npp1] equidistant points v € T such that Opt1€np ., (V)
and 7, f{u) have the same argument: there is necessarily one such point v
at distance at most £270/npg1| = 7/|npe] from w.

By [38, §1.4, Lemma 8, by Bernstein’s inequality applied to myf" and
separately to cach azoll 7 >k,

il
(33)  mpflw) - mp fv)] < %‘Mg?f'/‘—’12||77pf”Hoo
2 P 2
T ’IF
< e I |* e flloo + ———n;|*la;
2/npg|? * j____%l 2npeal® T

< ™ A-p-1) 7 aimp-1
<54 Hmﬂm+ Z:3w |-
j=k+1
Thus we get snccessively
751 flloo 2 l"T;'»-Hf('UH 2 |mp fu) + Qp+1€n,.0 (v)} - Wpf(”) - '“'pf('UN

{3248:38) a?
2 o f oo + lapaa] — S5 Vlime |

(31) 21 = g2(k-p-1)
S P el i
2 21

)Hmﬂlm
ptl 2 q . g2li-p-1)
.

jehkd
e So (31) iy true for all p > k. Finally,

2 (v

30l = Jm s 2 (1 52 ) (el # 3 o)
Thus {m;};>p realizes £1-(ap) with constant 1--7% /(2% — 2 —x%). As ¢ may
be chosen arbitrarily large, B has £4-(map) with {r;}. Additionally, (34)
shows by choosing 7 f = 0 that E is a (umbs) in C(T).

Finally, the converse holds by Proposition 8.2(vi): if ngt1/ne does not
tend to infinity while being integer, then there are h € Z \ {0,1} and an
infinite £ such that F,hF C E.
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REMARK. Suppose still that E = {ng} € Z with Npt1/me — 00 A
variation of the above argument yields that the space of real functions with
spectrum in E U —F has £-(ap).

Recall that E = {nx} C Z is a Hadamard set if there is a ¢ > 1 such
that ng,1/ne > ¢ for all k. It is a classical fact that then E is a Sidon set;
Riesz products (see [34, Chapter 2] even yield effective bounds for its Sidon
constant. In particular, €S (E) < 2 if ¢ 2 3. Our computations provide
an alternative proof for ¢ > /72/2+ 1 and give a better bound for ¢ >
V72 + 1: as we may suppose that ny = 0 in the preceding proof, (34) yields
for k == 1 the following

COROLLARY 9.4. Let E = {nz} C Z and ¢ > /72/2+ 1. If |na| >
glns|, then the Sidon constant of E satisfies CS,(E) < 14+7°/(2¢" ~2—n%).

This estimate is optimal for large ¢ in the following sense: Let F =
{0,1,¢} with ¢ > 2 an integer. Then

|14 ey (t) — eg(t)]* = 3+ 2cost — 2cos(g — 1)t — 2cos gt
and, as cos(g — 1)t + cosqt = 0 for [t| < 7/(2¢) and cost < cosn/(2g) for
|t] € [r/(2g), 7],

]|1—i—el—eq||§og5\/(3-«]—2(;05%—%24—2) =7+ 2c05 o

2g
2
S7+2(1m£"_"28_\/§(1) ) =9_§Lé__\/_§_
n 2¢g q2
since cost < 1 — ((16 — 8v/2)/7)t? for |¢| < 7/4. So
8 — 42 M/? -
ce (B) > 3(9— q;/_) > 1+%

since (1 — £)~%/2 > 1+ ¢/2 for t < 1. In fact, one even obtains C%, (E) >
1+ (m?/12)g~% + 0(g™?) and there is no hope to improve Corollary 9.4.
Nots, however, that there are sets E that satisfy nyry/ng — 1 and

nevertheless enjoy (Tu) (see end of Section 10): they might be (wmbs) in
C(T), but this is unknown.

10. Density conditions. We apply combinatorial tools to find out how
“large” a set F may be while enjoying (Z,,) or (J»), and how “small” it
must be.

The coarsest notion of largeness is that of density. Recall that the maz-
imal density of E C Z is defined by

&(E) = lim max#[En{a+ 1,...,a,-|—h}].
h—o0 agEZ h
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Suppose B enjoys (Ip) with n > 2. Then E is a A(2n) set by Theorem
2.9(i). By [39, §1, Cor. 2], d*(E) = 0. Now suppose E enjoys complex or
real (J,,) with n > 2. As Li [31, Th. 2] shows, there are sets F such that
Cp(T) has £1-(map) while F contains arbitrarily long arithmetic sequences,
and we cannot apply Mikheev's argument.

Kazhdan (see [23, Th. 3.1]) proved that if d*(E} > 1/n, then there is
ate{l,...,n— 1} such that &*{E N (E+ 1)) > 0. One might hope that
it should in fact suffice to choose ¢ in any interval of length n. However,
Hindman [23, Th. 3.2] exhibits a counterexample: given s € Z and positive
g, there is a sot B with d*(E) > 1/2 — £ and there are arbitrarily large a
such that BN {H —t) =0 forall t € {a+1,...,a+ 3} Thus, we have to be
satisfled with

Levma 10.1. Let E € Z with positive mazimal density. Then there is o
t > 1 such that the following holds: for any s € Z we have some a, |a| <,
such that &*((E+ )N (E +3)) > 0.

Proof DBy a result of Erdés (see [23, Th. 3.8]), there is a t > 1 such
that F = E+1U ... UE +1t satisfies d*(F) > 1/2. But then, by [23, Th.
3.4], d*(F N (F +8)) > 0 for any s € Z. This means that for any s there are
1<a,b<tsuchthat *{((E+a)N(E+s+b)>0 n

We are now able to prove
ProrosrrioN 10.2. Let E C Z.

() If E has positive magimal density, then there is an a € Z such that
Eu{a) fails real (J2). Therefore E fails real (J3).
(i) If d*(E) > 1/2, then E foils real (J2).

Proof. (ii) is proven in [31, Prop. 14]. (i) is a consequence of Lemma
10.1: indeed, if E has positive maximal density, then the lemma yields some
a € Z and an infinite F' C E such that for all s € F there are arbitrarily large
k,l € E such that k +a = | + 5. Thus E U {a} fails real (7). Furthermore,
F fails real (J3) by Proposition 8.2(iv). =

We may reformulate the remaining open case of (Jz). Let us introduce
the infinite difference set of E: AE = {t : #[BN(E —t)] == oo} (see [57] and
[54]). Then K has real (J2) if and only if, for any a € B, AE meets £ —a
finitely many times only. Thus our question is: are there sets with positive
maximal density such that (B — a) N AE is finite for all @ € E?

Proposition 9.2 and Theorem 9.3 show that there is only one general
condition of lacunarity on B that ensures properties (Z,), (Jn) or (Zoo)s
(Joo): B must grow exponentially or superexponentially. One may never-
theless construct inductively “large” sets that enjoy these properties: they
must only be sufficiently irregular to avoid all arithmetical relations. Thus
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there are sequences with growth slower than k%" ~! which nevertheless enjoy
both (Z,,) and complex and real (7). See [21, §I1, (3.52)] for a proof in the
case n = 2: it can be easily adapted to n > 2 and shows also the way to
construct sets that satisfy (Too) and (Js) and grow more slowly than k™
for any sequence ng — 00.

11. Unconditionality and probabilistic independence. Let us frst
show how simple the problems of (umbs) and (umap) become when consid-
ered for independent uniformly distributed random variables and their span
in some space.

Let D* be the Cantor group and I' its dual group of Walsh functions.
Consider the set R = {r;} C I' of Rademacher functions, i.e. the coordinate
functions on I®°; they form a family of independent random variables that
take values —1 and 1 with equal probability 1/2. Thus || 3_ Aiaqrs|| ¥ does not
depend on the choice of signs A; = %1 for any space X € {C(ID*°), L*(D>)
(1 <p < oo0)} and R is areal 1-(ubs) in them.

Clearly, R is also a complex (ubs) in all such X. But no space X4 has
complex (umap) for any X # L?(D™) and any infinite A = {v} C I,
Indeed, A would have an analogue property (I/) of block unconditionality in
X: for any £ > 0 there would be n such that

max ey + bynlly < (1 -+ €)]lar + b llp.
But this is false: for 1 <p< 2, takea =b=1, A=
W3 A1+ Yallp 2 (GUE+ 1P + [i~ 1PNV = VE > iy + Fallp = 22~V
for2<p<oo,takea=1,b=i A=1i

max [ A+ iall 2 (G + [~ i[P)) 7P = 21712 > |lyy 4, = /2.

This is simply due to the fact that the image domain of the charac-
ters on D™ is too small. Take now the infinite torng T and consider
the set § = {s;} of Steinhaus functions, i.c. the coordinate functions on
T=¢; they form again a family of independent random variables with val-
ues uniformly distributed in T. Then § is clearly a complex 1-(ubs) in any
X e {C(T*), LP(T) {1 < p < co)}.

As the random variables {e,} also have values uniformly distributed in
T, some sort of approximate independence should suffice to draw the same
conclusions ag in the case of .

A first possibility is to look at the joint distribution of (e, .. ., ey, ) with
P1s...,Pn € E and to require it to be close to the product of the distribu-
tions of the ep,. For example, Pisier [46, Lemma 2.7] gives the following
characterization: E is a Sidon set if and only if there are a neighbourhood
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Vof 1in T and /3 > 0 such that for any finite F C E,
(35) mle, € Vi p e F| g 27A#IF]
Murai [42, §4.2] calls E C Z pseudo-independent if for all A,..., A, C T,

n T
(36) mlep, € A 11 <4< n] vl ]m[ep‘. € A= Illm[A,}
Tri 00 GT= 1=

His theorem [42, Lemma 30] gives together with Proposition 8.1(iii) the
following

PROPOSUTION 11.1. Let B € Z. Then E s pseudo-independent if and
only of B enjoys (Tew).

Note that by Corollary 2.10, (36) does not imply (35).

Another possibility is to define some notion of almost independence.
Berkes [1] introduces the following notion: let us call a sequence of random,
variables {X.} almost i.i.d. (independent and identically distributed) if,
after enlarging the probability space, there is an i.i.d. sequence {¥,} such
that | Xn — Yullee — 0. We have the straightforward

Prorosirion 11.2. Let E = {ny} C Z. If E is abmost i.i.d., then E is
a (umbs) in C(T).

Proof. Let {¥;} be an iid. sequence and suppose ey, — ¥jlloc < € for

7= k. Then
> gl = ”Z%’YJH S”Z%‘%— m'l‘SZ\Gﬂ
2k izk IRETY: izk

iz
and the uncounditionality constant of {ng, ni41,...} 18 less than (1 —¢)~*. =

Suppose E = {ng} C Z is such that ng1/ne is an integer for all k. In
that case, Berkes [1] proves that E is almost i.i.d. if and only if ngq1/ns
— 0. We thus recover a part of Theorem 9.3.

12. Summary of results. Remarks and questions. For the conve-
nience of the roader, we now reorder our results by putting together those
which are relovant to a given class of Banach spaces.

121, The ease X = LP(T) with p an even integer. Let p be an even
integer. We observed the following facts,

e Real and complex (umap) differ in any space LP(T): consider Proposi-
tion 9.1 or B = {£(p/2)*}.

s By Theorem 7.5, L% (T) bas complex (resp. real) (umap) if so does
LEF2(T.
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e The study of geometric sequences in Section 8 shows that the converse
is false for any p. In the complex case, & = {(p/2)*} is a counterexample.
In the real case, take B = {0} U {£p"}.

e (umap) is not stable under unions with an element: for each p, there
is a set B such that L% (T) has complex (resp. real) (umap), but Lk | {0}( )

does not. In the complex case, consider E = {(p/2}*}. In the real case,
consider B = {£(p/2)*}.
o If E is a symmetric set and p # 2, then L%(T) fails complex (wmap).

Proposition 8.3 gives a criterion for real (wmap).

What is the relationship between (umbs) and complex (umap)? By Pro-
position 8.2(1) and 7.7(i) we have

PrROPOSITION 12.1.1. Let E={ng} CZ and n = 1.

(i) If E is a (umbs) in L*"2(T), then LF(T) has complex (umap).
(i) If {mx} realizes complez (umap) in L3(T), then E is a (umbs) in
£2(T).

By Proposition 10.2(i) we also have

PROPOSITION 12.1.2. Let E C Z and p # 2,4 an even integer. If L (T)
has real (umap), then d*(E) = 0.

Note also this consequence of Propositions 3.2, 8.4, 11.1 and Theorems
2.9, 7.5:

PROPOSITION 12.1.3. Let ¢ > 1 and E = {[o*]}. Then the following
properties are equivalent:

(1) o is transcendental;

(ii) L%{T) has complex (wmap) for any even integer p;
(iii) B s a (umbs) in any LP(T), p an even integer;
(iv) E is pseudo-independent,

12.2. The cases X = LP(T) with p not an even integer and X = C(T).
In this section, X denotes either LP(T), p not an even integer, or C{T).

Theorems 2.9 and 7.5 only permit us to use the negative results of Section
8: thus, we can just gather negative results about the functional propertios
of E. For example, we know by Proposition 8.2(iv) that (Ze) and (o) are
stable under unions with an element. Nevertheless, we cannot conclude that
the same holds for (nmap). The negative results are (by Section 8):

 for any infinite £ C Z, Xpyar fails real (vmap). Thus (wmap) is not
stable under unions;

e if F is a polynomial sequence (see Section 8), then E is not a {(umbs)
in X and Xg fails real (umap);
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o if I is & sywmnetric set, then F is not a (umbs) in X and Xp fails
complex (umap). Proposition 8.3 gives a criterion for real {umap);
o if B = {[¢*]} with ¢ > 1 an algebraic number (in particular, if I is

a geomoetric sequence), then F is not a (umbs) in X and X fails complex
(wmap).

Furthermore, by Proposition 9.1, real and complex (umap) differ in X

Theorem 9.3 is the onty but general positive result on (umbs} and com-
plex (umap) in X. Proposition 9.1 yields further examples for real (umap).

What about the sets that satisfy (Tee) or (Jee)? We only know that (Z)
does not even ensure sidonicity by Corollary 2.10.

One wight wonder whether for some reasonable class of sets B, B is a
finite union of sets that enjoy (Zo) or (Jw ). This is false even for Sidon sets:
for example, let 2 be the geometric sequence {4 }k>0 with 7 € Z\{-1,0,1}
and suppose B = [ U..,UE,. Then E; = {j* }ke 4;, where the A;’s are
a partition of the set of pomtlvc integers. But then one of the A; contains
arbitrarily large a and b such that |a — b| < n. This means that there is
an infinite subset B C A; and an h, 1 < h < n, such that h + B C A,.
We may apply Proposition 8.2(vi): E; enjoys neither (Z;ny;) nor complex
{Tih g1 )-—nor real (Tynq) if furthermore j is even.

Is there & result corresponding to Proposition 12.1.1(ii)? We do not know.
But suppose that 1+ e, = || — (14 N7l x) converges sufficiently rapidly
to L: suppose that not only e, — 0 but also > &, < 0o, As

ax Zz\au +Za.c
)\:Cﬂ'” § i Cpy Oy

we get

< (1+ &) max ” ZA [Ui€p; 1 Zamem

mmx H Z Aia,em < H + &)

and if 3 &, < oo, thc,n (1+&)(1 -+ E;-H)
(umbs).
Let us fnally state

Proprosrrion 12.2.1. Let B ¢ Z, If Xy has real (umap), then d*(E)
= (),

E Qi€n,;

—>1asl—+oo,i.e.Eisa

’

12.3. Questions. The following questions remain open:

Combinatorics. Regarding Proposition 10.2(i), is there a set E enjoying
(Jo) with positive maximal density, or even with a uniformly bounded pace?
Furthermore, may a set E with positive maximal density admit a partition
E = | ) B; into finite sets such that all By + E;, ¢ < j, are pairwise disjoint?
Then LE(T) wounld admit a l-unconditional (fdd) by Proposition 7.7(i).
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Functional analysis. Let X € {I*(T), C(T}} and consider Theorem 6.2.3.
Is () sufficient for Xg to have (umap)? Is there aset B C Z such that some
space LZ(T), p not an even integer, has (umap), while Cg(T) fails it?

Harmonic analysis. Is there a Sidon set E = {nx} € Z with constant
asymptotically 1 such that ny.1/ny is uniformly bounded? What about the
case E = [o*] for a transcendental o > 17 If ¥ enjoys (Zoo), Is £ a (umbs)
in LP(T) (1 € p < 00)? What about (Je)?
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WALDEMAR HEBISCH (Wroctaw)

Ahbstract. Let ¢ be a homogeneous Lie group. We prove that for every closed, ho-
mogeneous subset I of G* which is invariant under the coadjoint action, there exists a
regular kernel P such that P goes to 0 in any representation from I’ and P satisfies the
Rockland condition outside I'. We prove a subelliptic estimate as an application.

Introduction. The purpose of this paper is to construct operators which
satisfy the Rockland condition in a given set I" of representations, and are
equal to 0 outside I'. Rockland operators satisfy remarkable subelliptic es-
timates ([11], [7], [9], [10], [14]; see also [15]) making them a good substitute
for elliptic operators on homogeneous groups. Christ &t al. [2] gave a calcu-
lus for paendodifferential operators on homogeneous groups: the formulas for
products and adjoints and criteria for existence of left or right parametrices
(generalizing results of [8]). However, one should note that the great flexibil-
ity of the classical calculus of pseudodifferential operators is in large part due
to the ease of constructing scalar functions (cutoffs and partitions of unity).
In the homogeneous group case we want to pre-specify operators in a set of
representations and still have regular kernels; this is not straightforward, in
fact not always possible. Qur kernels may serve as cutoffs on spectral side
(for the spatial cutoffs one simply uses multiplications with smooth func-
tions). The conditions we impose seem to be necessary. We present also a
sitmple application in which we derive some LP estimates.
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Preliminaries. We consider a homogeneous group &, that is, a nilpotent
Lie group equipped with a fawily of automorphisms (dilations) {ds }iso0 such
that &:d, = 8, and for all z € G we have §;z — ¢ ast — (. The reader may
wish to consult [6] (our definition is a bit more general). We identify G with
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