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The purpose of this paper is to prove the following

Theorem. If B,p,,...
such that
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is convergent for every non-negative m and its sum deoreases i the
interval 0 <La<<oo monotonically from 1 to 0. Moreover we hawe
(p) for p>0.
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This theorem is stricly related with the results of our earlier
paper’) and extends the theorem 3 given there. In view of the
theorems 1 and 2 of that paper, it suffices here to prove that
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where

1) J. G.-Mikusinski, On generalized power series, Studia Mathematica
12 (1951), p. 181-190.

s any sequence of posilive numbers
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We are going to show that
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We have evidently
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(if n=1, one admits that S,=0). Since the function z/(B,—x) is
increasing for #<C§,, we can write, in view of (i),
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the last integral may be obtained by substituting #==ew/f,. The
1 T .
funetion log (T——l) being positive for 0<<t<1/2 and negative for

1>1/2 we have a fortiori
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Now, the function
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is decreasing for > f,, because its derivative
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is negative. Hence

Studia Mathematica. T. XIIL. 4


GUEST


50 J. G.-Mikusinski
LS [pefatel—m ﬁr_»..u.w)
oy 2, (l" slr—n)  Putelr—n)
1§ ﬁnif?_-ﬁ___)
:E;,g{‘(logAav Bt ey
(5) Lo pt ;
&
= Pa 88 Pn )g
< Mf (log o Pt e{v) 7
L Pl et
~~0f (ngf )

From (3), (4) and (5) follows (2). From (2) and (i) follows (1)
which completes the proof.
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A theorem on bounded moments
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1. The well known theorem of MUNTZ [6] can be formulated
as follows:
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(X) If ByyPay.-. 18 an increasing sequence such that > 1/§,= co
n=1
and f(xr) a function iniegrable in [ab] (where a>>0) such that

b
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(n=1,2,...),

then f(x)=0 almost everywhere in [a,b].

If particularly B,=mn, this theorem reduces itself to the well
known theorem of LERCE [1]. On the other hand, the following
theorem holds [2]:

(IX) If f(x) is integrable in [1,b] and there exists a number M
such that
(1)

b
[ & f(z)da) <M (m=1,2,...)
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then f(x)=0 almost everywhere in [1,b].

It is easy to see that the lower bound of the integral cannot
be diminued. Indeed, all moments of any funetion which vanishes
for «>1 are always commonly bounded.

The theorem (II) can be generalized by replacing the natural
sequence of exponents n by any sequence {n°} where 0<a<{1 [4].
The question arises if the sequence of exponents may be replaced
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