D. Blackwell’s conjecture on power series
with random coefficients
by
C. RYLL-NARDZEWSKI (Wroetaw).

E. BorREL?) was the first to assert that Taylor’s series with mu-
tually independent random coefficients have, with probability 1,
a coupure on their circle of convergence, which is to say that al-
most -certainly the circle is a singular line for the funetion defined
by such a series. This assertion has been proved since for certain
classes of random power series?), mevertheless its general validity
is eagily refuted by the following example:

Let (#,) be a sequence of random variables, each #, being
chosen independently from the interval (0,2z) with uniform pro-
bability. The power series

00

D a2 with a,=é"n

n=1
has 1 as its radius of convergence; it has independent random coef-
ficients. The series

2 Bt with  f,=a, 42

n=1
hag also independent random coefficients. Its radius of convergenco
is 1/2 and as the first series is regular for [¢|=1/2 the only sin-
gular point of the second series on the circle |¢|=1/2 is the pole
#=1[2 of the series ) 2"2" against Borel’s assertion.

1) Sur les séries de Taylor, C. R. 123 (1896), p. 1051-1052.

2) Cf. H. Steinhaus, Uber die Wahrscheinlichkeit dafiir, dass der Kon-
vergentkreis einer Potenzreihe ihre natiirliche Grenze ist, Math. Zeitsehrift 31
(1930}, p. 408-416.
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It is obvious that it is sufficient to add to the second series the
series Y'(—2™)2" to get the first one; now, it is known that the
first series has, with probability 1, the eircle |2|=1 as its singular
line. ' :
The conjecture we have to prove in this Note is, roughly speak-
ing, that the example given above exhibits already the features
of the general cage: given any power series with random coefficients
we have only to add to it an appropriate series with fix coeffi-
eients (in our example the series 2(—2") 2" ) to get a series obeying
Borel’s assertion?).

Preliminary remarks and explanations.

We will follow here the vocabulary of the theory of indepen-
dent functions?*). Thus we will have to deal with series of the form

1) F(2)= 3 a,(t)2";

the complex-valued and (L)-measurable functions a,(t) of the sto-
chastic variable t (0<<t<1) are assumed to be stochastically indepen-
dent as a whole (en bloc). It can be shown that, under such cir-
cumstances, the series (1) has a definite radius of convergence r(F)
(0<Lr<{oo), whiech means that for all values of ¢, a set of measure
0 if any excepted, |¢|=r is the eircle of convergence of (1), r being
8 number and-not a function of ¢. The proof is based on the fact
that 1/r equals the
lim supy/ | a,(2)]
Fiad
and the lim sup of a sequence of independent functions is constant
almost everywhere.
We willvhave also to eonsider series of the form

oo

(2) G(R)= 2 b,(s,)";

n=1

) The conjecture has been formulated in 1947 by Prof. D. Blackwell
of the Howard University, in a conversation with Prof. H. 8teinhaus and
communicated by the later to the author.

Y) Sur les fonctions indépendantes I-IX: Studia Mathematica 6 (1936),
p. 46-58, p. 59-66, p. 89-97; 7 (1938), p. 1-15, p.96-100; 9 (1940), p.121-
132; 10 (1948), p. 1-20; 11 (1949), p. 133-144; 12 (1951), p. 102-107. -
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here the coefficients b, are (L)-measurable functions of two stochastic
variables s, (0<<s<<1,0<t<1); assuming their independence it can
be shown as in the case (1) the existence of a definite radius of
convergence 7(@), the exceptional set of points (s,f) having a plane
measure 0.

In both cases, (1) and (2), the series is called singular if its
circle of convergence (defined as above) is a singular line for the
function defined by the series, this being true for all points ¢, res-
pectively for all points (s,t), a set of linear measure 0, respectively
of plane measure 0, of such points, if any, being excepted.

Series of the form (1) or (2) will be called random series. A. spe-

cial case of a random series is an ordinary power series

®) ﬂ@=§@w

with fix coefficients ¢,. For clarity’s sake we will denote the sums
of random series by capital letters F,@,..., the sums of ordinary
series by small letters f,g,...

The radius of convergence of any series § will be denoted by
7(8) putting S=F,Q,...,f,q,... For almost all ¢ of the interval
(0,1) or for allmost all (s,t) of the square (0,1)® means that the
property in question fails to be true only in a set of points ¢ of
linear measure 0, respectively in a set of points (s,t) of plane
measure 0.

Theorem. To every random series F(z) an ordinary series f,(z)
can be associated -in.such a manner that the random series

{(4) H(z)=F(2)+fol2)
has the following properties:
@) rEF+HK<r(H) for every ordinary series f(z);
(i) H(e) is singular;
(iil) if an ordinary series f(z) satisfies the equation
(8) . r(F4-f)=r(H),
the series F(z)+1(2) is singular.

To prove the theorem we have to establish two lemmas of
which it is an immediate consequence.
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Lemma 1. Let F(z) be the random series (1) and G(z) the ran-
dom series defined by
(6) G(z): :j (an(t’)—'a’n(’g))gﬂ
Then we will have for every ordinary series f(2) the inequalities
1° r(EF+HH)<r(E),
2 r(E+H<(@), _
and there will exist an ordimary series fy(2) satisfying the equation
3% r(F+fo)=r(G).
Proof of 1°. Let us write out f(2) as in (3). It is then obvious
that the series

(0<s<1,0<E< ).

-

o

3 (an(t)+0y)"

n=1
is convergent for almost all ¢ of the interval (0,1) for |2|<r(F-f),
and the series

o

2 (an(s)Fe,) 2"

n=1
is convergent for almost all s of the interval (0,1) for |z|<r(F--f).
Substraction gives the convergence of the series (6) for almost all
points (s,?) of the square (0,1)? for |z[<r(F+f), q. e. d.
Proof of 2°. The series

2 (a'n(t) _an('g) +cn) 2"

being convergent for almost all points (s,f) of the square (0,1)
for |z]<<r(G-f), there exists an s, (0<<8,<<1) such that the series

o

(7) Z(a’n(t)_a'n(so)_l_cn)zn

n=1
is convergent for almost all ¢ of (0,1) for |z[<7(G+f). Calling f,
the ordinary series

)

21 (¢ —an(s)) 2"
the series (7) becomes F-f, and thus we get
(3 PG+ <r(F+fo)<r (@),

the second inequality resulting from 1°.

Studia Mathematiea. T. XIII.
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Proof of 3°. Put f=0 in (8).

Lemma 2. If a random series F(z) has on its circle of conver-
gence o point which is regular for almost all values of the stochastic
variable, there cwists an ordinary series fi(z) such that

9 (I <r(F 1)

Proof. Let us assume the regular point 2, to be r(F); this
assumption does not diminish the generality, because 2= = %0 (J)
(with any real @) is the general case and the series

= f a, (1) 6z (=) —1)

n=1
has independent coefficients, the same radius of convergence as ¥ (e),
and z=r(F)=r(F*) is a regular point for F*(z). The assumption
implies the existence of real mumbers %,» such that

(10) o<u<r(Y<u-tv,
and such that the series
T, u)
1 _______ M
(1) mZ—O m! K

is convergent for almost all ¢ of (0,1). F™ means here d™F(2)/de™;
we write F(t,2) instead of F(z) to recall the fact that the coeffi-
cients of ¥ (2) are functions of ¢.

The series (11) can be written as a double geries:

3 Zieoeeon ()T ()

m=0n=m

this transformation together with the definition

min (N,n) " o \m [ y \n-m
(12) Ayn= 2 |ullors) = )

= v \utov
enables us to replace the convergence of (11) by the equivalent
condition of the existence of the limit

13) lim ZAN,,[a () (-+0)7]

N-r00 520

for almost all ¢ of (0,1).
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Now we have to apply to (13) a theorem of J. MARCINKIEWICZ
and A. ZYGMUND %) about series of independent functions:  x(t)
being such a series summable (7') almost everywhere, there exists
a numerical sequence {4} which makes the series 3 (w(t)+4,) con-
vergent almost everywhere. Summability (7) means here the exis-
tence of the limit

(14) lim 2 %%k 1

1300
the matrix T'=lja,,|| being any matrix with the property
(15) limag,=1 (k=1,2,3,...).
100
To apply the theorem we have to verify the independence
of the functions a,(f)(u-+v)", these functions playing the role of
#,(t), and the property (15) for oy =A,; as defined by (12). Both
properties being evidently valid (for the second one notice that
4, ,=1 for ¥>n), the existence of the limit (13) yields a numerical
sequence {1,] which makes the series

(16) i[an(t)(u—i—v)“—]—/l"]

convergent for almost all ¢ in (0,1). If we define f,(2) by
-

A
=2 o ¥

the convergence of (16) implies the convergence of the series F--f,

for |z|<u-v. Thus we get
(F+f)z(uto)>r(F

the second inequality resulting from (10). This implies (9), g. e. d.

Proof of the theorem. We choose f,(2) to satisfy 3° of lemma 1.

We have to show that this choice gives to the random series H(z)

defined by (4) the properties (i), (ii) and (iii) spoken of in the text

of the theorem. (i) follows from 1° and 3° of lemma 1. Suppose H (2)

not to be smgular, lemma glves then an ordinary series f,(z) with

r(H-+f)>rH)=r(F+f)=r(d), which leads to r(F+fot-f) >r(G)

tes, Studia Mathe-

5) Quelques théorémes sur les fonctions indép
matica 7 (1938), p. 104-120; p. 116, théoréme 7.

3%
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against 1° of lemma 1; this contradiction yields (ii). To prove (iii)
let us suppose (5) and F(z)-+f(2) not singular. Lemma 2 assures
the existence of f(2) with 7(F+f)<<r(F-+f+f,); comparing with (5)
we get 7(F-+g)>r(H), where g means the ordinary series f--f;;
the last inequality contradiets (i) and thus (iii) is established.

(Regw par la Rédaction le 6. 10, 1951)

Sur la convergence des séries de puissances
de Popérateur différentiel
par

C. RYLL-NARDZEWSKI (Wroctaw).

1. Considérons la série
(1) Vot-yi8itry, 2424,
ou y, sont des nombres complexes, s Dopérateur différentiel?) et
A une variable complexe.
Pour la convergence .de cette série, on a le critére suivant:
Sl existe un nombre §>1, tel que
(2) lim sup (n")°] ,,| <oo,
n-roo
la swite (1) converge pour tout i complexe. Si

(3) lim sup »"|v,| >0,

n-+>00
lo suite (2) diverge pour tout 1 complexe non nul.
Démonstration. Soit 1<<1/u<f<<6. Posons pour t réel

fit)= fexp(at—2)dz,
J

ou lintégrale est prise le long de I’axe imaginaire J. On a
(4) f(0)= [ e"exp(st—2")de (n=0,1,2,...),
J

car chacune des intégrales (4) converge uniformément pour tout ¢,
ce qui résulte de 1’inégalité

1) Voir [1], p. 47.
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