On some theorems of S. Saks

by
A. ALEXIEWICZ (Poznah).

In a series of papers ([6]-8]) SAKS has proved some theo-
Tems concerning the structure of the sequences of linear operations
defined in Banach spaces, with values in the space § of measurable
funetions defined on an interval I. These theorems state that the
interval I can be split into two measurable sets on one of which
the sequence has a particular structure (e. g. is bounded or con-
vergent almost everywhere) and on the second of which it is depri-
ved of this property except for a set of the first category of values
of the argument.

I shall prove that all these theorems and a large class of anal-
ogous results may be considered as a particular case of a general
theorem. concerning the structure of one linear operation depend-
ing on a parameter. In this paper T am dealing with the ’indi-
vidual” case, i. e. with the behaviour of the operation at individual
values of the parameter, the treatment of the behaviour in mean
being left to another paper.

1. We will be coneerned with two F-spaces ([1], p. 35) X and
Y, and an abstract set 7 with a o-ring G of subsets of 7 (called
measurable sets) on which a c-additive meagure w is defined. We
suppose that TeE and u(T)<oco. The measure w defines a meagure
space (T,E,u): introducing the distance of two gets B, E,e € by
the formula ‘

@ (B, By)=p (B, —Bp) + (B, —B,)

and considering two sebs subject to the condition o(B,B,)=0 as
one element of the space (T,® y4) we get a complete metric space.

icm

On some theorems of 8. Saks. 19
We suppose that the measure p is separable, i. e. that the space

T,&,u) is so. . )
& ]Z.n the sequel U(z,?) will denote an operation from XxT to

Y satisfying the following eonditions:

(8) U@y +ms,t)=U(2,)+U(@y,t) a e?) in T,

(b) #,~~0 implies lim as||U(z,,t)|=0,

(¢) given any x and any open set S8CY, the set tE{U(z,t) eS]
is measurable.

These conditions imply

(d) U(z,t)=AU(z,t) a. e.in T.

Finally, we put for any set RCY

8(z)=E|U(z,t)¢ R};
¢

this set will be denbted also, if necessary, by @p(z).
Lemma 1. For any set RCY, measurable (B), the set O(x)

is measurable.
The easy proof is left to the reader.

Lemma 2. For any set RCY, measurable (B), and any HeE

the sets
A(H,R)=E|n(H—O(@)<s),

- B(H,R)=E|u(H—6(x))<e)

are measurable (B). .
Proof. We prove first that, the set R being closed, the seb
B(H,R) is also closed. For, let x, ¢ B(H &), then

tim a8 | U (z,,,8) — U (9, )| = 0.

Hence there exists a subsequence {x,] such that
(U (2,5 1) — Ulg,8) | =0
except in a set N e of measure 0. Put
O=lim sup O(z,,)-
i

Then u(H—6)—p(limint (H—0(®, )))<s. It te@—N, then there

1) a. e. = almost everywhere.
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exists a sequence of indices {km} (depending on ?) such that i ¢ Q(anhi)y
hence

IlU(wnki,t%—U(wc,t)H—wy _
and sinee U (@, ,1)e R, the closedness of the set Rimplies U(wy,?) ¢ K.
Tt follows @—N CO(a,); thus we have shown that the set B(H,R)

?
is closed.
The formula
]

1
(2) f{,u(ﬂ——@(m)) <6]= Z E{,u (H—@(;‘U))s (L~ n)(—f

=1z

©0

implies that for any closed set R the set A(H,R) is of I, type.

To prove the lemma in gemeral case it suffices to show that
(3) Ry Ry,...
being any monotone sequence of sets, with the limit R, (B)-measu-
rability of the sets A(H,R,) and B(H,R,) implies the same rela-
tively to the sets A(H,R) and B(H,R).

Put

‘Qn(m)z-?{U(myf‘) € Roz,]

and suppose first the sequence (3) to be increasing. It iy obvious
that ‘

Oplx)= Z:Qn(w)::!;?(m).
We will prove that
(4) B{p(H— Q) <s)= é‘l]mﬂ{p (H—Q,(@)<e)-

« x

For, if = belongs to the set on the left hand side of the formula
(4), then‘y{H—Q(w))<ef The sequence of sets £2,(2), 2 (),... being
increasing, ‘
H— Q(x)=lim (H—Q,(»)),

p(H —Q(x))=lim pu(H—2,(@));

hence there exists an index n for which w(H—Q,(2))<s, i. . @ be-
longs to the set on the right hand side. Conversely, if x belongs
t6 the set on the right hand side, then there exists an index =
such that u(H—Q,(®)<e, and since H— Q(x)CH—Q,(z), « helongs
also to the set on the left hand side.
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The formula (4) shows that the set A(H,R) is measurable
(B) if the sets A(H ,R,) are so. (B)-measurability of the set B(H,R)
follows by the formula

E{y(H—@(m))< s}———nE{p (H—6(@)< (1+ —)s}~
% a=1% n
Suppose now that the sequence (3) is decreasing. Then
Op(@)= H1 Q,(x)=0%=)
. n=
and (B)-measurability of the set B(H,R) follows by the formula

E{ﬂ(H—Q*(m))ga}z HIE{#(H-—.Q”(%)) <s,
x n=1%
analogous to the formula (4); (B)-measurability of the set A(H,R)
follows by the formula (2).
Lemma 3. Let the set R be linear and measurable (B). If the
set W=E|u(H—0O(x))<e| is of the second category, then the set
x
V=E{u(H—0(x))<2¢] is residual?).

x

Proof. Write PCQ if u(Q—P)=0. The formula

0(z)0(y) C O(x—y)
implies
H—6(x—y)C[H—0@@)]+[H—6()],
hence u(H—O(zx—y))<2e¢ it x,y¢W. The set W being measurable
(B) by Lemma 2, if the elements #,y run down through the set W
the elements z—y il a sphere »S(0,7) with centre 0 and radius 7,
except a set N of the first category. Hence

8(0,r)—N C B{u(H—O(z)}< 2.

The lemma results by the formula u(@(ix)—6(w))=0.
TLemma 4. The set R being linear and measurable (B), the set
Z=E{u(H—6()=0 is either of the first category or identical
x
with X.

=) The set W is said to be residual if its complement is of the first cate-
gory.
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Proof. By Lemma 3 this seb is residual, hence every transla-
tion of the set Z has common points with Z. It suffices to notie
that the difference of two elements of the set Z belongs to Z.

Theorem 1. Let the set R be linear and measurable (B). Then
there exists a decomposition T=A+B of T into two measurable sets,
and o residual set ZCX such that

() Ulx,tyeR for any z a. o i A,

(i) U(z,t)noneR for any ve Z a. e in B.

Proof. Denote by ¥ the clags of the sets @ belonging to €
and subject to the condition

u(@—6(@)=0 for every .

Tet o denote the supremum of the measures of the sets of 2A.
There exist sets @, in 9 such that x(@,)—>0 and u(Q)< (@) <. ..
Put

‘A':Z‘Qn’ B=T-A.
n=1
Then (i) is evidently satistied.
Suppose now (ii) not to be satisfied. Then the seb
f{y(B@(w))>0}
ig of the second eategory, hence there exists an a>0 such that the
set Q= E{u(BO(2))>a}is of the second category. Let B denote the
&

class of the sets of € eontained in B of measure not less than o
there exist sets M, e®B such that the sequence M, M,,... is denso
in B. Write -

o0
Since QC Y X,,,, there exists an index m, such that the set
n=1

1
'f}{‘u(ﬂ'"m— %] (9}))< 2‘7,—”}
is of the second category, hence by Lemma 3 the sets

Wm=-£}{ lu'(Mﬂm— @(ﬂ?))< 57%}
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are residual. Put
W= Hle,

s

M= limsup M, .

The set W is residual and p(M)>limsup u (M, ) > a. Let rzeW,
then "

u(M—@(w))w(g gs(Mnm~@(w)))

)

</L( P (Mn,,;~@(w>}) <

m=8

3
ibs

(M, ~B@) <z
hence u(M—6(z))=0. By Lemma 4 u(M—O())=0 for every =
in X. Thig is however impossible since x(A-+M)>o+a and the
set A+ M has the property (i). o

Remark 1. Theorem 1 is also valid under hypothesis of the
measure g being o-finite on T' ([3], p. 31).

Remark 2. In order to apply Theorem 1 we must first show
that the operation U(x,t) satisties the postulate (e). A sufficient
condition for (c¢) is Bochner-measurability ([2], p. 264) of U(z,?)
congidered for fixed x as vector valued function from T' to Y. In
the case of ¥ being separable and of B, type (MAZUR and ORLICZ
[4]) the following criterion due to Perris ([5], p. 278) is useful:
the function y(t) from T to Y 4 Bochner - measurable if for every
linear functional ny belonging to a fundamental set I’ the function
7y(t) is measurable. Here by a fundamental set is meant any set of
linear functionals, which for every y,£>0, and & contains a functio-
nal 7 such that |yl —e<|pyl<lyle, ¥l denoting the k-th pseudo-
norm in the space Y.

Theorem 1 implies immediately the following

Corollary. Let {Rn} be am increasing sequence of linear sets

measurable (B). Then there ewists a decomposition T= 3 A, into mea-
surable sets, and a residual set Z such that n=0

(i) Ux,t)eR, for every z a.e. in 4, (n=1,2,...),

(i) Ul(=,t) none Y R, for every weZ a.c.in A,.
n=1
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9, Now we will supply some applications of Theorem 1. To
obtain the theorems of Saks and their analoga, we choose as Y
the space s of the sequences y=|a,} with the norm

|a’ll‘[4. .

2 1
”f’/” ng:o 2n1 "Hanl

This space is separable and of By-type.

Let § denote the space of the real valued functions y==y(i)
defined in T and measurable x. An operation V(w)="7V(x,t) from
T to S is said to be linear if V(wy+as,t)=" (2,1)+V(2s,t) a. ¢. and
,~>m, implies asymptotical convergence of V(,,t) to V(x,,t). Any
sequence [Vn(m ,0)} of linear operations from X to § may be consi-
dered as an operation U(z,t) from X X1 to s, since for fixed 7 it
defines a sequence of reals, i. e. an element of s. It is easy to verity
that the operation U(z,t) satisties the postulates (a)-(e). In parti-
cular (¢) results by the mentioned criterion of Pettis.

Denote successively by Ry,...,R, the classes of the sequences
y=|a,} with the following properties:

1° the sequence {an} is bounded,
2° the sequence {an} converges,

3° the sequence |a,| converges to 0,

£ Yo <co (p>0).

n=0
These classes considered as subsets of the space s are linear
and measurable (B). Theorem 1 applied to the operation Ul(x,?)
gives now
Theorem 2. Let V,(x,t) be a sequence of linear operations
from X to S; then there ewist decompositions T=A4,+B,=...=4,+B,
and residual sets Z,,...,Z, such that®)

(b)) lim |V, (z,t)| = oo for every xeZ, a.e. in B,
n-ro0

(2) lim V,(,1) exists for every » a.e. in A,,
n—> o0

3) The cases (a,)-(b,) were proved by Saks [7].
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(b,) Lm V,(x,t) does not exist for every xreZ, a.e. in By,
N M=y 00
(ag) Hm V,(x,t)=0 for ewery & a.e. in 4,.

N> 00

(by) Tim |V, (@,8)|>0 for every zeZ, a. e. in By,
-y 00
oo
(ay) |V, )P < oo for every & a.e. in A,
n=0

(bs) X |V, (2,1)P =00 for every zeZ, a.e. in By.
n=0

Denote now by R, the set composed of these y=|a,jes for
o0

which the series > «,l” has the radius of convergence not less than
n=0

o. This set is measurable (B); this follows by formula
where

Applying the Corollary we get easily

Theorem 3. Under the hypotheses of Theorem 2 there exists
for every £>0 a decomposition T=A+B+C, and a residual set
Z such that

0o

(a) the series XV, (x,1){" converges for every x and every |L|<<g
a.e. in 4, n=0.

(b) the series YV, (x,t){" diverges for every ze Z and every |{|>0
a.¢. in B, n=0

(e) u(0)<e.

As a second application we give an.analogous theorem dealing
with operations depending on 2 continuous parameter. Let C* de-
note the space of the functions y=y(%) defined for a<<A<<h (where
—oo<a<h<+oo) and continuous there. The norm is defined as

a1l (Yl
”“JHZ,;,E;*HM”
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where [y]n=u\5111£ nly(/l)|, b,=b— [}{I if b<+oo and b,=mn if
b=oc. This space is separable and of By -type.

Denote now successively by Ry,...,R, the subsets of C* com-
posed of the functions y=y(1) for which respectively

1° |y(A)| is bounded in [a,b),
2° lim y(2) exists,

A>b—

b
8° [ly(h)rdi<oo (p>0),

b— T
4 [ y)ar="tm [y(A)dr exists,

a T=¥b— o

5° (1) is of bounded variation in [a,b), i. e.

var y(A)= sup var y(i)<oo,
aaA<h a<li<h aKAgr

6° y(A) is absolutely continuous in [a,b).

These sets are measurable (B). We prove this for some of them.
Ad R;. The sets
bn

Qnm=%’{ i |y(z>1“cu<m},

b, being a sequence with limit b, are closed in C* and

Ad R;. The sets. ‘
Qum=E{ var y(i)<m
¥ A<Dy,
are closed in C* and .

‘R5= f ﬁ er;'

m=1 n=1
Ad Ry. Denote by V(y;n,b) the supremum of the sums
; [y (B:)—y (el
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where (a;,8;) is any system of disjoint intervals contained in [a,d]
and Y |f;—a|<n, then put

1 .. 1
=BV |y;—, b <=
mepk ‘!I{ (’!/7”1,’&11) p}

The sets @, are closed and
oo o0 oo
R6=H Z n Qnmp'
p=1 m=1n=1

Theorem 4. Let W,(x,t) denote an operation which, for fe-
zed 4, is linear from X to § and for fized x,t depends continuously
on the parameter i varying in [a,b). Then there exist decompositions
T=A;+B,=...=Ag+B, and residual seis Zy,..., 2 such that*)

(ay) lim |W,(x,t)|<co for every x a.e. in A,

i>b—

(by) Lim |W,(x,t)|=oc0 for every zeZ; a.e. in By,
Jrb—

(2,) lim W,(x,t) exists for every x a.e. in A,,
A-rb—

(by) Hm W ,(x,%) does not exist for every zeZ, a. 6. in By,
Arb—

b
(a3) f [W,(,1) Pdd<oco for every x a.e. in Ag,
‘b
(bs) f]Wl(:z:,t) [Pdi=oc for every we Z; a.e. in Bg,

a

b—
(2y) fWA(m,t)dl exists for every » a.e. in Ay,

a
b—

(by) sz(w,t)dl does mot exist for every zeZ, o.e. in By,
a

(as) var W,(z,t)<<oo for every x a.e. n Asg,
a<CA<h
(bs) var W,(zm,t)=oc0 for every weZ; a. e in Bs,
a<I<h ’
4) The cases (as)-(by) were proved by Orlicz (to be published in
Studia Mathematica).
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(2) Wy(m,t) is AC in A for every x a. e. in A,
(bg) W, (z,t) is not AC in A for every xeZs a. e. in By.

Proof. Consider W,(z,t) as operation U(r,t) from X' xT fto
C*. It is easy to prove that the conditions (a)-(¢) are satisfied. Now
we apply Theorem 1.

Theorem 4 enables us fo get results concerning the structure
of some functional spaces.

Theorem 5. Let X be an F-space composed of the funclions
x=ux(() of the complex wariable [, continuous for |J]<l. Suppose
that ||jz,)|->0 implies for t=const limas @,(A6%)=0, and that addition

- NP OO
of elements and multiplication by reals are defined in wsual sense.
Under the above hypotheses there exist decompositions [0,2n]=
=A,+B=...=A;+B;, and residual sets Z,,Z,,Z, such that

(2

fal)

Hm [z(Ae?)|<oo for every x a. e. in A,
Il

(by

1im |z (Ae)|=oo for every xe Zy a.e. in B,
1

(a,) lim @(e®) ezists for every x a. e. in Ay,
1

(by) Lm w(Ae") does not exist for every meZ, . e. in By,

31—

1
(ag) f]:c(lei’)|pdl<oo for every x a. e. in Ay,
0

1
(by) [ {w(Ae!)P dr=co for every we Z, a.e. in By,
0

moreover if the space has the property that x(C) being an element of
il the fumction x(€®Z) belongs also to this space, then in every couple
A;,B; one of the sets is empty.

Proof. Put U,(g,t)=a(ié%) and apply Theorem 4. The se-
cond part is obvious.
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