Remarks on the Poisson Stochastic Process (II)*)

by
E. MARCZEWSKI (Wroctaw).

I denote by £, the set of all integral valued functions w(t) de-
fined for -¢>0 which are continuouns on the right, non-decreasing,
and such that w(0)=0.

For every 2CQ, I denote by B, the smallest o-field of sots
containing as elements all the sets of the form Blwe 2;0(t)<y]
and by u 2 probability measure in B,1). ©

For every hali-open interval B=(u,»)> I denote by ip(w) the
increment w(v)—w(u). Obviously for every B iz(w) is a random
variable, 7. ¢. a real function measurable with respect to B,. It is
well known that some qualitative properties of (y(w) determine
its distribution funetion. In particular, if the considered process
is a homogeneous differential one, 4. e. if for any intervals B,By,B,,...

(h) the distribution fumction of vy depends only of the mumber

|B}2),

(i) the random wvariables i8> LB, 1+ -y b, Wre Independent (in the

stochastic sense) whenever By,B,,...,B, are disjoing,
and, if, moreover, every function we Q has only jumps equal to 1,
then ¢ has the classical Poisson distribution with the mean value
proportional to |B|%). The form of the distribution function of by
is also known without any assumptions on jumps4)

*) Presented to the Polish Mathematical Society, Wroctaw Section, on
March 14, 1952.

. [1) Ci. e.g. Dooh [1], and Florek, Marczewski and Ryll-Nardzew-
ski [2].

- %) I denote by |B| the length or, more generally, the Lebesgue measure
of B.

%) Cf. Florek, Marczewski and Ryll-Nardzewski [2].
4) Cf. e. g Janossy, Rényi and Aczél [58], §2, p. 218-217.
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The purpose of this paper is to investigate the increments ip
not only for intervals but, more generally, for arbitrary Borel sets.

Stricly speaking, I denote by t5z(w) the sum of all positive jumps
w(t)—w(t—06) for te B. Obviously for every set BC (0,4 o) the
set § of all te B with w(f)—w(t—0)>0 iz at most denumerable.
If B is bounded, then § is finite. Consequently, for every B, iz(w)
is a non-negative integer or oo, and, for bounded B, 15(w) is finite.
In the case of an interval B this definition of .5 is compatible with
the preceding one.

T shall prove that the conditions (h) and (i) for intervals imply
the same conditions for Borel sets. More precisely, I shall prove
the following

Theorem. Let (2,B,,u) be a stochastic process with 2C 0.
If the conditions (h) and (i) are fulfilled by any intervals, then

I. For every Borel set B the increment ip s a random variable
and fulfills the condition (h).

IL. If the Borel sets B; converge in measure (i. e. in the Lebesgue
measure) to B, then tp; converges in probability (i. e. in the measure p)
to i1p.

III. The condition (i) is fulfilled by any Borel sets By, B,,...B, .

In the sequel the letter w denotes always the elements of Q.
Put T=(0,t> (where 0t < +o0), and

P (t)=u B[ tp(w)=Fk],

(1) for k=0,1,2,...
By ()=p Bl ip(0)>k]=1—[Po(t)+... +P4()]
Obviousty

(2) Py(0)y=1, P 0)=0 for k=1,2,..., +oc.

If the process is degenerate, i. e. if Py(t)=1 for all {0, then
Theorem is trivially true. Consequently we may suppose that it
is not the case.

In what follows we use only the following properties of P(i):

(3) Poo(4o0)=1, Py(+o0)=0 for finite k,
4) lim P,(t)=P,{f;) for finite &, and 0<t,<o0;
t—>to

9%
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they are simple consequences of the analytical form of these funec-
tions®).

Part 1 of the theorem implies the

Corollary. Under the assumptions of Theorem

ME[LB(w)=70] =P,(|B|)

for any Borel set BC(0,-+oo). If, wmoreover, the process 4s mon-
degenerate and |B|=--oo, then

pB[ig(w)=-+co]=1.
Proof of L

Lemma. If A is a class of Borel subsets of (0,
(a) the class E of all sets of the form
(1,010 + (@, bap+ ... (8,0,
is contained in A, '

(b) if B;eA, B,CB,C..., then B,+B,+...¢ A4,

(c) if BjeA, B;D B,D ..., and B, is bounded, then B, B,... ¢4,
then every Borel subset of (0, +o0)) belongs to A.

Let us denote respectively by A, and E, (where 0<i<<-4o0)
the class of all sets BeA or BeE such that BC(0,t>. The class
E, is a field of subsets of (0,t>. The class A, has obviously the fol-
lowing properties:

(@) E,CA,

(b') if B;ed,, B,CB,C..., then BI+BQ+ .eA,,

(¢/) if Bjed;, B;OB;D..., then BB,.

It follows from a known theorem“) that At is the class of all
Borel subsets of (0,t), which implies, in view of (b), that 4 iz the
class of all Borel subsets of (0, 4-oo).

The lemma is thus proved.

Let us denote by D the distribution function of 4y, Where
T=(0,t), and by A4 the class of all Borel sets B such that
5) { i i3 a random variable,

the distribution function of . is DB,

+o0) such that

(@,0,0;>>0)

‘) See footnotes ?) and ¢).
°) See Halmos [3], p. 27, Theorem B,
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or, in other terms, such that

Blig(w)>k]e By,
(6) @ _ for k=0,1,2,...
/tf[tg(w)>k1=1?k(l31),

In virtue of Lemma it suffices to prove that A satisfies the
conditions (a), (b) and (c).

A satisfies (a). Since the condition (h) is fulfilled by every
interval I=(u,v), we have Ie¢d. Let be B=I,+I,+...+1,, where
I, are disjoint intervals with |[;]=4d,. Obviously

iplo)=tz (o)t (@)+ ...+ (w),

whence ¢z is a random variable.
Put

Ti=(0,d,3,
=yt ety e Fdy
=J Tyt
d=|J|=|B|.

for j=2,3,...,m,

It follows from the conditions (h) and (i) for intervals and
from the equality

Ly (@) =6y, (0) 1y, (0)F - 17, (0)

that ¢, and ¢y have the same distribution function, namely, that
of the sum of independent random variables with distribution func-
tions D%,D% ... D%, Since the distribution funetion of ; is D%
that of iy is also D% Thus, for every BeE the conditions (5) are
fulfilled.

A satisfies (b). Let B,CB,C... and let us suppose that
B;eA or, in other words, that B; satisfy (b). Put ’B=B1—§—Bg+...
and, for a fixed %,

Eo=£?[tﬁ((o)>k], Ef'zf;[LBi(w)>k}'

Obviously
(7 5,CE,C...C5,.

Now, I am going to prove that

(8) Ey=E+5,+...
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In view of (7) it suffices to prove that if weH,, then there is
an n such that weZ,. If welk,, then there is a finite sequence

S=(lysty, .- %, ) of numbers belonging to B and such that
(9) Z[w(t,.)—w(t,——mpk.
j=1

Consequently, in view of the definition of B, there is an inte-
ger n such that SCB,, whence by (9) we obtain weZ, and thus
the formula (8) is proved.

Obviously Z,eB, and the relations (7) and (8) imply

()= lim u(5)),

>0
and since by hypothesis
H(Ej)':-Rk(!Bﬂ);

we obtain in view of (1) and (4)
(&) =By (|BI)-
Consequently Bed, gq. e. d.

A satisfies (c). Let B;DB,D ..., where B; are hounded sets
belonging to A, 4. e. satisfying (6). Put B=B,B,... and, for a fixed k,

B=B[i(0)>k], E=Bl(0)>k].

Obviously
(10) E'DED...D BN

Now, I am going to prove that
(11) Eo=gL. B2,

In view of (10) it suffices to prove that, if we & for j=1,2,..
then we 5° Let us denote by §; the set of all {e¢B; such tham
w(l) —w(l;—0)>0. Since B; are bounded the sets 8, are finite,
and we have §,08,D... Consequently there is an mtvgm' n Nuch
that bn~ﬁ,l+1w;8’n+2~..., whenee §,CB. Since

0)= 3 [o(t)—o(t—0)]=4, (0)>F,
te Sy,
we ohtain weZ, and thus the formula (11) is proved.

Analogously to the proof of the condition (h) we prove BeA
by the aid of (10), (11), (1) and (4).

Proposition T is thus proved.
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Proof of II

Let us suppose that the Borel sets B;C (0, +o0) converge in
meagure to B and denote by Q; the xvmmetrlc difference B~ B;.
Then we have [Q;|—0.

Since

Bl 15, (0) #15(e) |CE g, 0],
we have
/‘f[‘]gj(w)75lB(w)]gl‘E[‘Q]-(m)9’50]=1‘P0(|Qf]):

whence by (4)
hm /LE[LB (w) Fip(w)]=0.

Consequently tp; converges in probability to ¢, q. e. d.

Proof of III.

Let B,,B,,...,B; be disjoint Borel subsets of (0, +oo). We
may without loss of generality assume that |B;|<oo (j=1,2,...,%).
Thus, there exist % infinite sequences of sets F,E},...,E}
(=1,2,...) belonging to E (cf. the definition, p. 133), such that

1° BBl =0 for I#m,
and

20 for each i=1,2,...,k the sequence E!, E?,...
measure to B;.

converges in

- It follows easily from the condition (i) for intervals that
tgllg?y -y bk are independent. In view of II, the random variables
Ugtytg?s .-+ tend in probability to i . Since the passage.to limit
in probability preserves independence?), the random variables
lgy2eeatpgstp, are independent, q. e. d.

Theorem is thus proved.

The problem arises whether the condition (i) for intervals
implies (i) for any Borel sets, without the assumption (h) of the
homogeneity. This problem has bheen solved quite reeently by
(1. RYLL-NARDZEWSKI, who has also applied the method of in-

7) See Hartman and Marczewski [4], p. 130, Theorem 4.


GUEST


icm°®

crements in Borel sets for the complete discussion of non-homoge-
neous Poisson processes®). These results of RYLL-NARDZEWSKI will

be published in a forthcoming paper.
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