Remarks on the Poisson Stochastic Process (I)
by
K. FLOREK, E. MARCZEWSKTI and C. RYLL-NARDZEWSKI (Wroclaw).

We adopt in this paper*) the known measure theoretic treat-
ment of probability?). In particular we treat a stochastic process
as a functional space Q with a probability-measure. Thus, in the
classical Poisson process, each we 2 is a function, the value w(i)
of which is e. g. the number of calls in a telephone exchange during
the half-open time-intervall (0,t).

Strictly speaking we denote by £ any set of real valued func-
tions w(t) defined for t>0, by B, the smallest o-field (i. e. a coun-
tably additive and complementative class of sets) which contains as
elements all the sets of the form

AQt,y)=Blwel;0()<y],

and by u a probability measure (3. ¢. a non-negative and countably
additive set function with u(2)=1) in B,. The friple (2,Bg,x)
is called a stochastic process?).

In particular we denote by £, the set of all integral valued
functions e(t) defined for ¢ >0, which are continuous on the right,
non decreasing, and such that »(0)=0. Finally, we denote by £,
the set of all functions weQ, possessing only jumps equal to 1.

An important class of stochastic processes is that of homoge-
neous differential ones, 4. e. fulfilling the following conditions:

*) Presented to the Polish Mathematical Society, Wroclaw Section, on
March 30, 1951.

1) Cf. Kolmogoroff [8] and Halmos [5], Chapter IX, p. 184-215.
?) Cf. Doob [2] 1
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(h) wuElo(t+1)—o(t)<y] does not depend on i (the homo-
ge’;eity),
() Mf[w(ul%w(tlk Yai-o o5 0(t) — o(l,) <Yy]
—uBLo () ~(t) <gs] - sBlo() —alt) < 1]

for 0Kty < Uy << .. Kb, <u, (the independence of increments

in non-overlapping intervals).

In ‘the sequel we shall use instead of the condition (i) a
formally weaker one:

(§)  eElo(m)—o@d)< yi0(0)—o(u)< 2]
=uBlo(t)—o(t)<y] ‘uEBlow)—o(u)<z]

for 0<t<u<<w (the independence of increments in two conti-

guous intervals).

‘A process is called degenerate if there is an w,eQ such that
w(B)=1 for each BeB, containing w,.

Let us suppose QC£Q, and put

P, (t)=pBElweQ;0()=k] (k=0,1,2,...).

Tt is well known that, if (b), (j)

1—Py(t
(n) lim L=Poll)
10
and
1 — Py (1) — Pyt
(0) lim ~— .,,.0”(,“), 1Q =0,
10 t

then the random variable w(t) has the Poisson distribution with

the mean value at?®), i. e.
(at)*

() P)y=e"—F (k= 0,1,2,...)

T4y ¢t Kb i o . 405, and {4], P-
sy (f. Khintehine [7], p. 19 and 20, F al.ler.[.‘i], ? s

364-3(37 . The application of the Poisson distribution in this process goes back

to Bortkiowici [1], §8, p. 16-19. A generalization for the non—homogeneloils

case is contained in a recent paper bY Rényi [12]. Cf also Lévy (111

chapter VIIL.
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(For a=0 the condition (p) takes the form P,(t)=1, P, (t)=0
for >0, k=1,2,..., and the process is degenerate).

In recent works the condition (n) is omitted; it tourns out
namely that, wnder the assumptions (h) and (j), if (o), then there
i & number a0 such that (p) (and conversely)*).

The purpose of the §1 of this paper is to prove directly that
the condition (o) may be replaced by

(@) w(@—2)=0

or, in other words, that (q) if and only if (p) for @ number a0 (Theo-
rem 2).

Obviously the condition (q) is fulfilled in the important case
of QCHy, 4. e if all w e have only jumps equal to 1.

It seems that condition (q) has a more expressive  pro-
babilistic sense than the analytic condition (0). In the case of
telephone ecalls the condition (q) says that two simultaneous
calls are almost impossible.

In §2 we prove in a very simple way that every probability-
measure in Qy or 2, vanishing for all one point sets is Ppoint-isomorphic
to the Lebesgue measure (Theorem 3).

§ 1. The Poisson distribution. A known reasoning4) gives
directly the following

Theorem 1. If (2,B,,u) is a stochastic process with QC Q,
and fulfills (h) and (j), then there are two non-negative numbers a
and b such that

(1) Py(t)=¢"%,  P,(t)=bte ",
We shall prove the

Theorem 2. If (2,B,,u) is a stochastic process with QC Q,,
and fulfills (h) and (), then (p) for a number a>0 if and only if (q).

L. (@)—(p). In view of Theorem 1 we have (1), and we shall
prove that

@) a=b.
Let us establish a number 7>0 and put
E:E[weQ;w(T)>1],

) Feller [3], p. 365, footnote 5, and Jz’nnos‘sy, Rényi and Aczél [6]
§1, p. 211-213.
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- =z (1 i—1 .
dn=€[a)ed;a)(? T)—w(—éfn— T)gl for y=1,2,..‘,2"].
Obviously lim £, =£0,, whence, in view of (q),
n
3) 111{11 K(Ey)=n(8)=1—Py(T)—P(T).

Next, putting

1
.5’7"=E[we.(2;w(—_’l’)=1,w(§z,;T)=2],
‘we obtain
”
() ECYECE and 5,-E=0 for iz
7=1

,LL(E'{L)zuE[w(jT_nl ) ——-n)(O):lj . ,uE[co (7‘)7; T) —a)(j—l _’Z’) ——:1]

i—1 1
- 1(]2n T)Pl(z—n.'p),

Wvllence, following (3) and (4),

j—1

on

(5) Lim P, (Tl T) fpl( T) =1—P,(T)—Py(T).
n = =1

Since, by (1)
.on 1
hznTF—Pl (?L T) =)
and since obviously
z j z z
lim = P1(~5-— T) = [ Py(t)dt= [ bt a1,
i - 0 0

4

we deduce from (5)
T
b? [ tedtdt=1—e" T —peoT,
0
and by differentiation
‘ R e e

Hence, putting =0 we obtain (2).
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The formula (p) is thus proved for k=10 and k=1. By a known
reasoning we prove successively the same formula for k=2,3,.

2. (p)—(a)*®). The formula (p) for k=0 and k=1 implies dlrec’rlv
the equality (o)

Tet us establish a number 7>>0 and put

A=E[we Q; there is t<T with w(t)—w(t—0)=2],
H i—1 i
A{L=E[we!2;w(—z—1’) ——m("—-——T)}E].
w n n

Obviously ACAL+45+... 45 for n=1,2,... When n—oco
. 1 1\
,u(A}L)—l—,u(A;‘:H—...—i—,u(A;i):n[l—Po = —P, o -0,

tollowing (o). Consequently u(4)=0, whence, since T was chosen
arbitrarily and u is countably additive, we obtain the equality (q).

Theorem 2 is thus proved.

Let us remark that it is possible to deduce the same result
from the general form of the distribution function for all homoge-
neous differential processes with Q2C £,°).

§ 2. The point isomorphism with the Lebesgue measure. Let
R denote the set of all rational non-negative numbers. For each
set 2 of real functions defined for t>>0 we denote by Q|R the set
of all partial funetions «|R, where we 2.

Let us treat the space ¢ of all real functions of a rational va-
riable 7>>0 as the denumerable Cartesian power of the set of real
numbers, and consequently as a complete and separable metric
space’).

It is easy to see thatb

(a) I, for w,,w, €2y, 0|B=w,|R, then w,=w,.

(b) For every 2C &, and every decreasing sequence »,ekR
tending to t

Alt,y)=2,

m=

A(ry,y).

3
13e

-

5 Cf. Lévy [11], p. 173.
% See e. g. Janossy, Rényi and Aczél [6], §2, p. 213-217, in parti-

cular the remark of Kolmogoroff, formulated in the same paper, p. 216.

") See e. g. Kuratowski [9], p. 231 and 313.
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~1

Next we shall prove

(e) 2,/R and O,|R are Borel subsets of ¢F.

The set I of all weEF with non-negative integral values is ob-
viously elosed in ¢%. Obviously wey|R if and only if we I, and

© is non-decreasing and continuous on the right in the set R. Con-
sequently

QlR=I"B| [] [w(n) < w(rs)] ’
IJZ (m<m) ] "1<'3<73)( ~*U"(Tl))]}

where X and II are quantifiers. It follows that QiR is an F s -set.
in ¢

Similarly

QIB=(2QR) B[ [] } (rn<ri)(w(r)—o(n)<1)],
© Iy 1.

which implies that ©,|R is also an F ,-set in ¢F.

Now we shall prove the following

Lemma 1. If Q is a non-denumerable set of functions of a non-
negative variable t, such that

() if w|R=e,|R, where w,,w,e 2, then w,=w,,

(B) for each t=0 the sets A(t,y) belong to the smallest o-field
containing -all the sets A(r,z), where reR,

(y) QIR is a Borel subset of CE,
then the field B, is point-isomorphic with the field of all Borel
subsets of the wnit interval.

Proof. Let us associate with every function w e £2-the function
o|R. In view of («) we obtain in this way a ene-ene- mapping h,

of Q onto Q'=Q|R.

In view of (B) this mapping transforms the class B, onto the
clags B’ of all Borel subsets of Q.

Finally, in view of (y), there is a measurable (B) one-one map-
ping h, of 2 onto the unit interval®). It transforms the elass B’ onto
the field B of all Borel subsets of the unit interval.

8) Every non-denumerable Borel subset of a separable and complete
metrie space is the image of the unit interval by a measurable (B) one-one
mapping (Kuratowski [9], p. 358, Theorem 2).
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The mapping m-—:hz(hl(w)) iy a point-isomorphism of B, and B.
- Lemma 2. If (2,Bg,u) i o stochastic process satisfying the’
conditions (), (B) and (y), and such that u vanishes for every ome-
point set, then w is poini-isomorphic with the Lebesgue measure in
the field of all Borel subsets in the umit interval.
Proof. The condition («) implies that weB, for every we Q.
The Lemma 2 follows from Lemma 1 and from the fact that
every probability measure in the field B, which vanishes for all one
point sets is point-isomorphic with the Lebesgue measure in B?).
The propositions (a), (b), (c) and Lemma 2 imply directly the

Theorem 3. Ewvery stochastic process (2,Bg,u) with Q=0
or Q=0,, and such that u vanishes for each one point set, is point-
isomorphic with the Lebesgue measure in the field of Borel subsets
of the unit intervall®).

In particular the hypotheses of Theorem 3 are fulfilled by
every non-degenerate process of the form (£y,Bg ,u) or (£2,Bg ,u),
sabisfying the conditions (h) and (j). In fact, in view of Theorem 1
we have the equalities (1). If a=0, then P,(t)=1 and the process
is dggenerate, and if ¢>0 it is easy to prove that u((w))=0 for every
W E 54,

Lemma 2 implies an analogous theorem for the space 2, of
all continuous veal functions of a non-negative variable (and so
particularly in the case of the Brownian motion)) and for many
other spaces considered in the theory of stochastic processes. ’
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