

Remarks on the Poisson Stochastic Process (I)

by

K. FLOREK, E. MARCZEWSKI and C. RYLL-NARDZEWSKI (Wrocław).

We adopt in this paper*) the known measure theoretic treatment of probability¹). In particular we treat a stochastic process as a functional space Ω with a probability-measure. Thus, in the classical Poisson process, each $\omega \in \Omega$ is a function, the value $\omega(t)$ of which is e.g. the number of calls in a telephone exchange during the half-open time-intervall (0,t).

Strictly speaking we denote by Ω any set of real valued functions $\omega(t)$ defined for $t \ge 0$, by \mathbf{B}_{Ω} the smallest σ -field (i. e. a countably additive and complementative class of sets) which contains as elements all the sets of the form

$$A(t,y) = E[\omega \epsilon \Omega; \omega(t) < y],$$

and by μ a probability measure (i. e. a non-negative and countably additive set function with $\mu(\Omega)=1$) in \boldsymbol{B}_{Ω} . The triple $(\Omega,\boldsymbol{B}_{\Omega},\mu)$ is called a stochastic process²).

In particular we denote by Ω_0 the set of all integral valued functions $\omega(t)$ defined for $t \geqslant 0$, which are continuous on the right, non decreasing, and such that $\omega(0) = 0$. Finally, we denote by Ω_1 the set of all functions $\omega \in \Omega_0$ possessing only jumps equal to 1.

An important class of stochastic processes is that of homogeneous differential ones, i. e. fulfilling the following conditions:

(h) $\mu E[\omega(t+\tau)-\omega(t) < y]$ does not depend on t (the homogeneity),

$$\begin{split} \text{(i)} \quad & \mu \underbrace{E}_{\omega} \left[\, \omega(u_1) - \omega(t_1) < y_1; \dots; \omega(u_n) - \omega(t_n) < y_n \right] \\ = & \mu \underbrace{E}_{\omega} \left[\, \omega(u_1) - \omega(t_1) < y_1 \right] \cdot \dots \cdot \mu \underbrace{E}_{\omega} \left[\, \omega(u_n) - \omega(t_n) < y_n \right] \end{split}$$

for $0 \le t_1 < u_1 \le t_2 < \ldots \le t_n < u_n$ (the independence of increments in non-overlapping intervals).

In the sequel we shall use instead of the condition (i) a formally weaker one:

$$\begin{aligned} \text{(j)} \quad & \underset{\boldsymbol{\omega}}{\mu E[\; \omega(u) - \omega(t) < y \; ; \; \omega(v) - \omega(u) < z]} \\ & = & \mu E[\; \omega(u) - \omega(t) < y \;] \cdot \underset{\boldsymbol{\omega}}{\mu E[\; \omega(v) - \omega(u) < z]} \end{aligned}$$

for $0 \le t < u < v$ (the independence of increments in two contiguous intervals).

A process is called degenerate if there is an $\omega_0 \in \Omega$ such that $\mu(B) = 1$ for each $B \in B_{\Omega}$ containing ω_0 .

Let us suppose $\Omega \subset \Omega_0$ and put

$$P_k(t) = \mu E[\omega \epsilon \Omega; \omega(t) = k]$$
 $(k = 0, 1, 2, \ldots).$

It is well known that, if (h), (j),

(n)
$$\lim_{t \to 0} \frac{1 - P_0(t)}{t} = a$$

and

(o)
$$\lim_{t \to 0} \frac{1 - P_0(t) - P_1(t)}{t} = 0$$
,

then the random variable $\omega(t)$ has the Poisson distribution with the mean value at 3), i. e.

(p)
$$P_k(t) = e^{-at} \frac{(at)^k}{k!}$$
 $(k = 0, 1, 2, ...).$

^{*)} Presented to the Polish Mathematical Society, Wrocław Section, on March 30, 1951.

¹⁾ Cf. Kolmogoroff [8] and Halmos [5], Chapter IX, p. 184-215.

²⁾ Cf. Doob [2].

³⁾ Cf. Khintchine [7], p. 19 and 20, Feller [3], p. 405, and [4], p. 364-367. The application of the Poisson distribution in this process goes back to Bortkiewicz [1], § 8, p. 16-19. A generalization for the non-homogeneous case is contained in a recent paper by Rényi [12]. Cf. also Lévy [11], chapter VII.

Remarks on the Poisson Stochastic Process (I).

(For a=0 the condition (p) takes the form $P_0(t)=1$, $P_k(t)=0$ for $t\geqslant 0$, $k=1,2,\ldots$, and the process is degenerate).

In recent works the condition (n) is omitted; it tourns out namely that, under the assumptions (h) and (j), if (o), then there is a number $a \ge 0$ such that (p) (and conversely)⁴).

The purpose of the §1 of this paper is to prove directly that the condition (o) may be replaced by

(q)
$$\mu(\Omega - \Omega_1) = 0$$

or, in other words, that (q) if and only if (p) for a number $a \ge 0$ (Theorem 2).

Obviously the condition (q) is fulfilled in the important case of $\Omega \subset \Omega_1$, *i. e.* if all $\omega \in \Omega$ have only jumps equal to 1.

It seems that condition (q) has a more expressive probabilistic sense than the analytic condition (o). In the case of telephone calls the condition (q) says that two simultaneous calls are almost impossible.

In § 2 we prove in a very simple way that every probability-measure in Ω_0 or Ω_1 vanishing for all one point sets is point-isomorphic to the Lebesgue measure (Theorem 3).

§ 1. The Poisson distribution. A known reasoning 4) give directly the following

Theorem 1. If $(\Omega, \mathbf{B}_{\Omega}, \mu)$ is a stochastic process with $\Omega \subset \Omega_0$, and fulfills (h) and (j), then there are two non-negative numbers a and b such that

(1)
$$P_0(t) = e^{-at}, \quad P_1(t) = bte^{-at}$$

We shall prove the

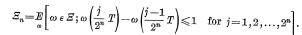
Theorem 2. If $(\Omega, \mathbf{B}_{\Omega}, \mu)$ is a stochastic process with $\Omega \subset \Omega_0$, and fulfills (h) and (j), then (p) for a number $a \geqslant 0$ if and only if (q).

1. (q) \rightarrow (p). In view of Theorem 1 we have (1), and we shall prove that

$$a = b.$$

Let us establish a number T>0 and put

$$\mathcal{Z} = E[\omega \epsilon \Omega; \omega(T) > 1],$$



Obviously $\lim_{n} \Xi_{n} = \Xi \Omega_{1}$, whence, in view of (q),

(3)
$$\lim_n \mu(\mathcal{Z}_n) = \mu(\mathcal{Z}) = 1 - P_0(T) - P_1(T).$$

Next, putting

$$\mathcal{Z}_{n}^{j} \!=\! \underbrace{E}_{\omega} \! \left[\omega \, \epsilon \, \Omega \, ; \omega \! \left(\! \frac{j-1}{2^{n}} \, T \! \right) \! = \! 1 \, ; \omega \! \left(\! \frac{j}{2^{n}} \, T \! \right) \! = \! 2 \right],$$

we obtain

$$\mathcal{Z}_n \subset \sum_{j=1}^{2^n} \mathcal{Z}_n^j \subset \mathcal{Z} \quad \text{and} \quad \mathcal{Z}_n^i \cdot \mathcal{Z}_n^j = 0 \quad \text{ for } \quad i \neq j.$$

By virtue of (j) and (h) we have

$$\begin{split} \mu(\Xi_n^j) &= \mu \mathop{E}_{\omega} \left[\; \omega \left(\frac{j-1}{2^n} \; T \right) - \omega(0) = 1 \right] \cdot \mu \mathop{E}_{\omega} \left[\; \omega \left(\frac{j}{2^n} \; T \right) - \omega \left(\frac{j-1}{2^n} \; T \right) = 1 \right] \\ &= P_1 \left(\frac{j-1}{2^n} \; T \right) P_1 \left(\frac{1}{2^n} \; T \right), \end{split}$$

whence, following (3) and (4),

(5)
$$\lim_{n} P_{1} \left(\frac{1}{2^{n}} T \right) \sum_{j=1}^{2^{n}} P_{1} \left(\frac{j-1}{2^{n}} T \right) = 1 - P_{0}(T) - P_{1}(T).$$

Since, by (1)

$$\lim_{n} \frac{2^{n}}{T} P_{1} \left(\frac{1}{2^{n}} T \right) = b$$

and since obviously

$$\lim_{n} \frac{T}{2^{n}} \sum_{j=1}^{2^{n}} P_{1} \left(\frac{j-1}{2^{n}} T \right) = \int_{0}^{T} P_{1}(t) dt = \int_{0}^{T} bt e^{-\alpha t} dt,$$

we deduce from (5)

$$b^2 \int_0^T te^{-at} dt = 1 - e^{-aT} - bte^{-aT},$$

and by differentiation

$$b^{2}te^{-at} = ae^{-at} - b^{-at} + abte^{-at}$$

Hence, putting t=0 we obtain (2).

⁴⁾ Feller [3], p. 365, footnote 5, and Jánossy, Rényi and Aczél [6], § 1, p. 211-213.

The formula (p) is thus proved for k=0 and k=1. By a known reasoning we prove successively the same formula for k=2,3,...

2. (p) \rightarrow (q)⁵). The formula (p) for k=0 and k=1 implies directly the equality (0).

Let us establish a number T>0 and put

 $\varDelta\!=\!\!E[\omega\,\epsilon\,\varOmega; \text{ there is } t\!<\!T \text{ with } \omega(t)\!-\!\omega(t\!-\!0)\!\!\geqslant\!2],$

$$\varDelta_n^j = \mathop{E}_{\omega} \left[\omega \in \Omega; \omega \left(\frac{j}{n} \ T \right) - \omega \left(\frac{j-1}{n} \ T \right) \geqslant 2 \ \right].$$

Obviously $\Delta \subset \Delta_n^1 + \Delta_n^2 + \ldots + \Delta_n^n$ for $n=1,2,\ldots$ When $n \to \infty$

$$\mu(\mathcal{A}_n^1) + \mu(\mathcal{A}_n^2) + \ldots + \mu(\mathcal{A}_n^n) = n \left[1 - P_0 \left(\frac{1}{n} \right) - P_1 \left(\frac{1}{n} \right) \right] \rightarrow 0,$$

following (o). Consequently $\mu(\Delta) = 0$, whence, since T was chosen arbitrarily and μ is countably additive, we obtain the equality (q). Theorem 2 is thus proved.

Let us remark that it is possible to deduce the same result from the general form of the distribution function for all homogeneous differential processes with $\Omega \subset \Omega_0^{-6}$).

§ 2. The point isomorphism with the Lebesgue measure. Let R denote the set of all rational non-negative numbers. For each set Ω of real functions defined for $t\geqslant 0$ we denote by $\Omega|R$ the set of all partial functions $\omega|R$, where $\omega\in\Omega$.

Let us treat the space C^R of all real functions of a rational variable $r \ge 0$ as the denumerable Cartesian power of the set of real numbers, and consequently as a complete and separable metric space⁷).

It is easy to see that

- (a) If, for $\omega_1, \omega_2 \in \Omega_0$, $\omega_1 | R = \omega_2 | R$, then $\omega_1 = \omega_2$.
- (b) For every $\Omega \subseteq \Omega_0$ and every decreasing sequence $r_n \in R$ tending to t

$$A(t,y) = \sum_{m=1}^{\infty} \prod_{n=m}^{\infty} A(r_n,y).$$

Next we shall prove

(e) $\Omega_0|R$ and $\Omega_1|R$ are Borel subsets of \mathcal{E}^R .

The set I of all $\omega \in \mathcal{C}^R$ with non-negative integral values is obviously closed in \mathcal{C}^R . Obviously $\omega \in \Omega_0|R$ if and only if $\omega \in I$, and ω is non-decreasing and continuous on the right in the set R. Consequently

$$\begin{split} \varOmega_0 | R = & I \cdot \underbrace{E}_{\omega} \big\{ \prod_{r_1 < r_2} [\omega(r_1) \leqslant \omega(r_2)] \\ & \cdot \prod_{r_1} \sum_{r_2} (r_1 < r_2) \big[\prod_{r_2} (r_1 < r_3 < r_2) \big(\omega(r_3) = \omega(r_1) \big) \big] \big\}, \end{split}$$

where Σ and Π are quantifiers. It follows that $\Omega_0|R$ is an $F_{\sigma\delta}$ -set in \mathcal{C}^R .

Similarly

$$Q_1|R = (Q_0|R) \cdot E[\prod_{\omega} \sum_{r_1} (r_2 < r_1)(\omega(r_1) - \omega(r_2) \le 1)],$$

which implies that $\Omega_1|R$ is also an $F_{\sigma\delta}$ -set in \mathcal{E}^R .

Now we shall prove the following

Lemma 1. If Ω is a non-denumerable set of functions of a non-negative variable t, such that

- (a) if $\omega_1 | R = \omega_2 | R$, where $\omega_1, \omega_2 \in \Omega$, then $\omega_1 = \omega_2$,
- (β) for each $t \ge 0$ the sets A(t,y) belong to the smallest σ -field containing all the sets A(r,z), where $r \in R$,
- (γ) $\Omega|R$ is a Borel subset of C^R , then the field B_Ω is point-isomorphic with the field of all Borel subsets of the unit interval.

Proof. Let us associate with every function $\omega \in \Omega$ the function $\omega | R$. In view of (α) we obtain in this way a one-one mapping h_1 of Ω onto $\Omega' = \Omega | R$.

In view of (β) this mapping transforms the class \mathbf{B}_{Ω} onto the class \mathbf{B}' of all Borel subsets of Ω' .

Finally, in view of (γ) , there is a measurable (B) one-one mapping h_2 of Ω' onto the unit interval. It transforms the class B' onto the field B of all Borel subsets of the unit interval.

⁵⁾ Cf. Lévy [11], p. 173.

^{&#}x27;) See e. g. Jánossy, Rényi and Aczel [6], § 2, p. 213-217, in particular the remark of Kolmogoroff, formulated in the same paper, p. 216.

⁷⁾ See e. g. Kuratowski [9], p. 231 and 313.

^{*)} Every non-denumerable Borel subset of a separable and complete metric space is the image of the unit interval by a measurable (B) one-one mapping (Kuratowski [9], p. 358, Theorem 2).

The mapping $x=h_2(h_1(\omega))$ is a point-isomorphism of B_0 and B.

Lemma 2. If $(\Omega, \mathbf{B}_{\Omega}, \mu)$ is a stochastic process satisfying the conditions (α) , (β) and (γ) , and such that μ vanishes for every one-point set, then μ is point-isomorphic with the Lebesgue measure in the field of all Borel subsets in the unit interval.

Proof. The condition (α) implies that $\omega \in B_{\Omega}$ for every $\omega \in \Omega$. The Lemma 2 follows from Lemma 1 and from the fact that every probability measure in the field B, which vanishes for all one point sets is point-isomorphic with the Lebesgue measure in B°).

The propositions (a), (b), (c) and Lemma 2 imply directly the

Theorem 3. Every stochastic process $(\Omega, \mathbf{B}_{\Omega}, \mu)$ with $\Omega = \Omega_0$ or $\Omega = \Omega_1$, and such that μ vanishes for each one point set, is point-isomorphic with the Lebesgue measure in the field of Borel subsets of the unit interval¹⁰).

In particular the hypotheses of Theorem 3 are fulfilled by every non-degenerate process of the form $(\Omega_0, \mathbf{B}_{\Omega_0}, \mu)$ or $(\Omega_1 \mathbf{B}_{\Omega_1}, \mu)$, satisfying the conditions (h) and (j). In fact, in view of Theorem 1 we have the equalities (1). If a=0, then $P_0(t)=1$ and the process is degenerate, and if a>0 it is easy to prove that $\mu((\omega))=0$ for every $\omega \in \Omega$.

Lemma 2 implies an analogous theorem for the space Ω_c of all continuous real functions of a non-negative variable (and so particularly in the case of the Brownian motion 11)) and for many other spaces considered in the theory of stochastic processes.

References.

- [1] L. Bortkiewicz, Die radioaktive Strahlung als Gegenstand wahrscheinlichkeitstheoretischer Untersuchungen, Berlin 1913.
- [2] J. L. Doob, Stochastic processes depending on a continuous parameter, Transactions of the American Mathematical Society 42 (1937), p. 107-140.

- [3] W. Feller, On the theory of stochastic processes, with particular references to applications, Proceedings of the Berkeley Symposium on Math. Statistics and Probability, Berkeley-Los Angeles 1949, p. 402-432.
- [4] An Introduction to Probability Theory and its Applications, I, New York and London 1950.
 - [5] P. R. Halmos, Measure Theory, New York 1950.
- [6] L. Jánossy, A. Rényi and A. Aczél, On composed Poisson distributions I, Acta Mathematica Academiae Scientiarum Hungaricae 1 (1950), p. 209-224.
- [7] A. Khintchine, Asymptotische Gesetze der Wahrscheinlichkeitsrechnung, Berlin 1933.
- [8] A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung, Berlin 1933.
 - [9] C. Kuratowski, Topologie I, Warszawa-Wrocław 1948.
- [10] E. Marczewski (Szpilrajn), O zbiorach i funkcjach bezwzględnie mierzalnych, Comptes Rendus Soc. Sc. de Varsovie, Cl. III, 30 (1937), p. 39-68.
 - [11] P. Lévy, Théorie de l'addition de variables aléatoires, Paris 1937.
- [12] A. Rényi, On some problems concerning Poisson processes, Publicationes Mathematicae (Debrecen) 2 (1951), p. 66-73.
- [13] N. Wiener, Generalized harmonic analysis, Acta Mathematica 55 (1930), p. 117-258.
- [14] Extrapolation, interpolation and smoothing of stationary time series with engineering applications, New-York 1949.

PAŃSTWOWY INSTITUT MATEMATYCZNY STATE INSTITUTE OF MATHEMATICS

(Reçu par la Rédaction le 20. 5. 1952)

^{*)} See e. g. Marczewski [10], p. 57.

 $^{^{10})}$ For the case of processes having the Poisson distribution cf. Wiener [14], p. 51.

¹¹⁾ Wiener's proof of the existence of the measure for Brownian motions furnishes at the same time the construction of such an isomorphism (Wiener [13], p. 216). Obviously our theorems do not imply the existence of a measure for the considered stochastic processes. For the existence proofs, see Doob [2], in particular p. 120-123.