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A noncommutative limit theorem
for homogeneous correlations
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ROMUALD LENCZEWSKI (Wroclaw)

Abstract. We state and prove a noncommutative limit theorem for correlations which
are homogeneous with respect to order-preserving injections. The mast interesting exam-
ples of central limit theorems in quantum probability {for commuting, anticommuting, and
free independence and also various g-geit’s), as well as the Hmit theorems for the Poisson
law and the free Poisson law are special cases of the theorem. In particular, the theorem
contains the g-central limit theorem for non-identically distributed variables, derived in
our previous work in the context of ¢-bialgebras and quantum groups. More importantly,
new examples of limit theorems of g-Poisson type are derived for both the infinite tensor
product algebra and the reduced free product, leading to new g-laws. In the first case the
limit as ¢ — 1 is studied in more detail and a connection with partial Bell polynomials is
established.

1. Introduction. Noncommutative analogs of the central limit theorem
have been investigated by many authors. The existence of a relatively large
number of those theorems may be attributed to the fact that there is no
single definition of independence in quantum probability. Thus even in the
case of identically distributed independent random variables we obtain dif-
ferent noncommutative versions of the same classical theorem (we restrict
our attention to the method of moments). They are related to various kinds
of independence like commuting [C-H, G-W], anticommuting [H, Wi, free
[V, 8], or some form of g-independence {B-S, S-W, Sch]. Essentially, most of
those theorems are based on the same combinatorial argument that leads to
the vanishing of non-pair partitions and, perhaps, some other pair partitions
like, for example, the crossing ones as in the case of free independence.

However, it is also interesting to study the case of non-identically dis-
tributed quantum variables. Moreover, it turns out that such variables ap-
pear naturally in mathematical physics. Namely, if we consider the Jimbo—
Drinfeld quantum groups Uy(g), then the coproduct of the so-called non-
group-like generators may be viewed as a sum of non-identically distributed
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g-independent random variables {see [L1]-[L3]). The simplest example is
furnished by the two-level system represented by the fundamental repre-
sentation of Uy{su(2)) and the vacuum state [L-P]. In the limit we obtain
the algebra of the g-harmonic oscillator in the vacuum state and the limit
law is ¢-Gaussian. One would like to include such examples in a more gen-
eral type of limit theorem. The central limit theorem for weakly dependent
maps studied in [A-L], although quite general (it allows for non-identically
distributed variables), does not cover the above-mentioned examples due to
an assumption on the variance of the sums (it must be of order equal to
the number of terms). This assumption is crucial to the combinatorics, and
therefore, to all further results.

Morzeover, it would be interesting to prove a limit theorem of which not
only central limit theorems, but also those leading to other laws, especially
those of Poisson type, would be special cases. Therefore, we state and prove
a limit theorem assuming a homogeneity condition for correlations. This
theorem includes the most important examples of quantum central limit
theorems (for commuting, anticommuting and free independences) as well
as their various g-analogs as special cages, but also the limit theorems for
the Poisson law, the free Poisson law and certain g-laws obtained from con-
vergence of ¢-Poisson type.

The mathematical setup is as follows. We have a ‘small’ *—al\ge’}\:)ra C and
a ‘large’ *-algebra C with a state ¢. Two standard examples of (C, ¢} come to
mind immediately: the infinite tensor product (C®°°, $®°) and the reduced
free product (C**°, ¢**). Let ji, v, where N € N, 0 < k < N, be a triangular
array of *-homomorphisms (or, more generally, *-injections) from C into C.
Consider the sums of random variables

N
Sy(v) = Zik,N(’U)
k=1

where v is a generator of C, and calculate the correlations of such sums for
different generators v;,...,v, in the state ¢. Using appropriate ‘rescaling’
(v — v™), one calculates the limits of the ‘rescaled’ correlations as N — oo,
In order to do that one assumes: (i) some kind of invariance condition for
the correlations

¢(dar,n (V1) - Gy 5 (0p))
with respect to the indices 4y,...,4,; (ii) a condition on the growth rate of
the normalized correlations of this type. Note also that with each tuple of
indices we can associate a partition of the set {1,...,p} in a natural way.

The first step would be to cover the case of identically distributed vari-
ables. The main two assumptions could be stated as follows:
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(I) the correlations are invariant under order-preserving injections,
(P)  the correlations decay polynomially or faster

(for details, see Section 3). Here, the order of the polynorpial is equal to
the number r of blocks in the (ordered) partition associated with the cor-
relation. More precisely, (P) stands for the condition that the correlations
decay as N7 or faster. Clearly, if a correlation vanishes even before taking
the limit, then it also satisfies (P). It is not hard to show that conditions
(I)-(P) ensure the existence of the limits and thus lead to a quite general
limit theorem. Other assumptions are characteristic of specific types of limit
theorems, leading to various laws (Gaussian, Wigner, Poisson, free Poisson,
etc.). Essentially, one can say that a nonvanishing contribution comes only
from those correlations which decay as N~7, whereas those which decay
faster, disappear.

The second step would be to include the convolution g-analog of the
central limit theorem studied previously for the Jimbo-Drinfeld quantum
groups Uy(g). In that case, it is natural to assume that the variables are
not identically distributed. That is why (I) and (P) will be replaced by the
following conditions:

(H) the correlations are homogeneous with respect to order-preserving
injections,
(E}  the correlations decay exponentially or faster.

The precise definitions are given in Section 4. In order to include the case
g =1, or conditions (I)~(P), we can replace (E) by

(PE)  the correlations decay polynomially or faster for ¢ = 1 and expo-
nentially or faster for ¢ # 1.

In general, one can say that our objective is to state and prove
a noncommutative limit theorem that would be general enough to include:
(i) the known examples of independence, and (i) different kinds of limit
theorems, i.e. weak laws of large numbers, central and higher order
limit theorems, limit theorems of Poisson type, etc. Loosely speaking, going
from [S] through [S-W] to this paper, the main assumption on the cor-
relations changes as follows: invariance w.r.t. permutations — invariance
w.r.t. order-preserving injections — homogeneity w.r.t. order-preserving in-
jections. This is the main reason why this paper is more general; how-
ever, we should also add that its scope is fairly large because of (i)-(ii)
above (cf. [S] for free independence, and [S-W] for central limit theorems).
Moreover, it leads to new interesting examples of limit theorems, which
may be viewed as g-analogs of Poisson convergence, singles out new limit
laws and provides a nice connection with combinatorics and partial Bell
polynomials.
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In Section 2 we give definitions and derive certain combinatorial formu-
las. In Section 3 we state and prove a limit theorem for the correlations which
are invariant with respect to order-preserving injections and decay polyno-
mially (‘Theorem 3.1). In Section 4 we state and prove a limit theorem for
the correlations which are homogeneous with respect to order-preserving
injections and decay exponentially (Theorem 4.2). To combine those two
theorems into one, one needs a new formulation, which is given in Section 5,
where we also discuss the central limit theorem. In Section 6 we consider spe-
cial cases of our main theorem, namely those of convergence of Poisson type
for both the infinite tensor product and the reduced free product. In Sec-
tion 7 we study the case of the infinite tensor product and the corresponding
new limit law in more detail. A connection with partial Bell polynomials for
g — 1 is established.

We assume throughout this work that ¢ > 0 without further mention.
The case g < 0 is almost equivalent and can be easily treated along the same
lines.

2. Definitions, combinatorics and g-formulas. Let £ be a *.algebra
and C; y its *-subalgebras, where 1 < i < N and N € N. In other words, we
have a triangular array of subalgehras. Moreover, we assunie that there exist
*injections j;n of a *-algebra C into C such that j; x(C) = Ci,n. Further,
let $ be a state on C. It is convenient to think of ¢ as some large algebra,
such as the tensor algebra or the reduced free product of Voiculescu. This
is the general framework for this paper. On the algebraic level, it is enough
to assume that we work with algebras, injections and functionals instead of
*-algebras, *-injections (or even, *-homomorphic embeddings) and states.
Especially, we will speak of injections most of the time, but whenever we
deal with states we will tacitly assume that they are *-injections.

The central notion in our approach is that of an ordered partition 5,
by which we mean an ordered tuple (Si,.. ., S,) of disjoint subsets {called
blocks) of an index set I, with union J. By the signature of S we mean the
tuple (71,...,%), where y; is the cardinality of S;. The set of ordered par-
titions of I = {1,...,p} will be denoted by Poe{l,...,p}, in contrast to
P{1,...,p}, which will denote the usual (unordered) partitions. Among the
latter we distinguish the noncrossing partitions denoted by P*¢{1,...,p}
(see, for instance, [S]). Note that to each unordered partition {Sy, ..., S}
there correspond r! different ordered partitions. We denote by 5™V the or-
dered partition with reversed order of blocks, i.e. §%¥ = (Sp,...,81).

If C is a *-algebra generated by G, U §_ with G_ = g%, we use the
notation

S;':{k635|vk€g+}, S;m{kESﬂvkEg_},
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i.e. the blocks associated with the generators from Gy and G_, respectively,
We also introduce the set of ordered inversions

WS:{(Q‘M?)!?:ESJG: jESmy i<ja.ndk>m}

as well as Wg+ and Ws-, with Si, Sy, replaced by S;F, S, or S;, S5,
respectively (these are inversions associated with the generators from G,
and G_, respectively).

Consider p order-preserving injections corresponding to the tuple of in-
dices {iy,...,4p) and fixed N and let Iy = {ét, - yip} = {k1,. .., ko }, where
ki < ... < ky. The set I defines an ordered partition S = (Si,...,5,) of
{1,...,p} in & natural way, ie. we have Sp, = {j | i; = kn} (note that
in S the order of sets is relevant). Conversely, to each ordered partition
§ = (81,...,8,) there corresponds the minimal tuple (43,...,47) such that
iy =m il § € Sy Actually, this correspondence is one-to-one. We choose
* instead of the superscript § for notational convenience. Finally, an order-
preserving injection T from {1,..., M} into {1,...,N}, where M < N, is
an injection for which T'(é) < T'(j) iff ¢ < 4.

Let us briefly illustrate the above notions. For example, let (i1,...,15) =
(4,2,2,4,6). Hence, Iy = {2,4, 6} and the ordered indices are &y = 2, ky = 4
and ks = 6. The ordered partition defined by Iy is given by § = (81, 55, 53),
where 81 = {2,3}, 52 = {1,4} and S5 = {6}. The minimal tuple associated
with this partition is (2, 1, 1,2, 3). One can see that the tuple (4,2, 2,4, 6) can
be obtained from the minimal tuple associated with the same partition S by
the order-preserving injection T, where T'(2) = 4, 7'(1) = 2 and T(3) =6.

Using this language, we say that the tuple (iy,. .., 1p) has a singleton if
the partition associated with it has at least one set of cardinality 1. We also
say that a correlation has a singleton if the tuple of indices of its injections
has a singleton. In turn, the correlation is of second order if the partition
assoclated with the set of those indices is a pair partition.

Finally, in the limit thecrems we consider sums of the type

N
Sw(®) = 3 (o),
k=1

Le. the sums of the images of the generator v under the consecutive injections
k.. The generators will be denoted by vy, ..., v,, which after N-dependent
N

‘rescaling’ become v3 ,...,v;;v . If no confusion arises (in one-dimensional

cases), we write Sy(v™) = Sy.

The rest of this section is devoted to g-expressions and formulas. The
latter (Propositions 2.1, 2.2 and Lemma 2.3) are rather technical, but their
proofs are given for the reader’s convenience.
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For g# 1 and § #£ 0 let

N o+8)N

eN _ 4l
_ 4 q
[N]‘s:” - q° — q(cr-i—zi)

We define [N]_24,a = [IN]y. For convenience, we use another notation if
o = 0, namely [[z]]; = (¢° — 1)/(g — 1). We introduce the multivariate
g-expressions
1
(:L‘l: . .,fﬂr)q = (qfﬂl - 1)(qm1+.1:2 — 1) — (q$1+‘--+mr — 1):
IS 1
ey Eplg = ,
P B i+ wlly Tt
[z )lqli]lq - . - l2+]]a .
z1]]gllz + 22llg - Iz + 2]l

[[:Bl., v amr]]q = [[

We also write
[[z1,-- s 2]l = (21, . 2]
Further, S denotes the symmetrizer, for instance
§[[I1: s ,:C:,-}]q = Z [[mn—(l): sy mw(r)]]qa
‘?TES'F

where S, denotes the permutation group of 7 elements, and similarly for any
function of r variables.

Proposrrion 2.1. Let zy,...,z, € R\ {0}, ¢ >0, ¢ #1. Then

[ml'p-"umf’}l = [931,...,33,«},

-

e Ty = d § yeees = 1.

Soror) = —— and Sz, z]

Proof. If we prove the first relation, the second follows immediately:
Sz, ool =21 281, ... 3] = 1.

The case r = 1 of the first relation is clear and the inductive step goes
as follows (” denotes an omitted index):

Siny. = !

ol B (@) F 2a(@) o (@) oo D)

-1

1
:$1+---+$r+12 Z

I=1 ge8p {1, ]y 1}

1
Er1y (Er(1) + Trzy) - - By + oo+ Tnge)
B 1 iy 1 1 .
$1+...+mr+1j=1.’131...53j...$.,-+1 :L‘l...mf.‘_l.
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Now define another important multivariate g-function:

GN (161: .- ;ﬁr |q) = Z qﬁ1k1+...+ﬂrkr

1€k <.<hr SN
. Br € R. Note that for g = 1 we obtain

G r ) = (),

so we can think of G (81,..., 0, | ¢) as g-analogs of the binomial coefficients.
However, one has to be careful with the terminology since they are not equal
to the g-multinomial coefficients in standard g-analysis.

PROPOSITION 2.2. Let q # 1,—1 and B1,...,05 5 0. The following
recurrence relation holds:

GN(4811 .- :ﬁr ‘ Q) = <5r)q~1(GN——1(ﬁ1, e :ﬁr—l + ﬁ'r J Q)
—QNETGN*l(ﬁla--vgﬁw—ﬂG!))

for ¢,51,...

where we put Gy (0] ¢) = 1.

Proof. We repeat the proof from [L2] for the reader’s convenience.
Clearly,

Gn(Bg) = (B)g—(1 - V).

In turn,

GN(ﬂlr"HG'r‘q)
= Z gPrhatet Btk Z g
1<k <. <hpr SN 1

E<hy <<l SN =1

= (ﬁ?")q"l (GNul(ﬁlr s 3181'—1 ‘l‘“ﬁ'r ‘Q) - qNﬁ"GN—l(ﬂli s nBr—l I Q')) L]

LeMmMA 2.3, Under the assumptions of Proposition 2.1 we have the fol-
lowing decomposition:

kv-—].(krSN
1 —_ qﬁr(N_kr—l)

qﬁx kit 81 kpa G (ke —1+1)
1 q;@r

GN(JBJ.i vy ﬁv‘) = Z qN(5i4.1+.--+ﬁr)gi(ﬁ1: ey 137' J Q)
im0

where

9i(Bu,- .., Be | @) = PO A (B Byt (Biity -, B

Proof. The general form of the decomposition with some coefficients
that depend on f1,. . ., B, and g follows directly from the recurrence formula
in Proposition 2.1. Denote the coefficients by g; {51, ..., 05| ¢). It remains to
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prove that they take the given form. First, note that Proposition 2.1 used
again gives the following recurrence formulas for g;(51,..., 8- | ¢):
gilBus. s Bl @) = (Bryg-a (g P Prgy(Br, o Bra + Br | 9)
— g T8y, B )
fori=10,1,...,7r— 2 and
gr1(Bry- B | @) = = (Brig=18r—1(B1,- .., Br-1]q),
9e(Brs- -, Br | @) = (Be)g~29r—1(B1, ..., Br1 + Br | @)

From this it is easy to show that g; (81, ..., 8| q) given by this lemima satisfy
the above relations. The last two of them are immediate. Let us show the

first one:
RHS = (Br)y-1{Bi, .., Br)g=2{{Bivrs - -, Bt + Brhg — (Bidts - - -1 Brt)q)
= (Br)g-1{Bis- -, B1) g1 {Biv1)g - (Big1 + ...+ Bra)yq
X ({Bipr+ -+ Bedg— By + ..+ Broa)g)
= (Beig=1{Bis- . P11 {Bit)g -+ - (Birr 4 + Bro2)q
x glitattbe (1- qﬁ”)(ﬁm oot Bem1)gBir oo+ Brlg
= glerit (g B g1 {Bigts - -5 Br g
=g:(f1,...,0r|q) =LHS. u
In particular, we have
o1, Br | @) = ¢ TP (B1, L B,
9 (B1s-- 80 10) = (B, - .. ;/31>q“1'

Lernma 2.3 and the explicit form of go(51,...,58:|q) and g-{B1,--.,58 |4
will be used in the proof of Theorem 4.2.

3. Limit theorem for invariant correlations. The two main defini-
tions that lead to assumptions (I)~(P) from the introduction are given be-
low. Let T" be an order-preserving injection from {1,..., M} into {1,...,N},
where M < N.

ConpiTioN 1. The correlations are invariant with respect to order-pre-
serving injections, or satisfy Condition 1, iff
#Grgia) v (v1) i), 5 {0p)) = @iy ac(vn) o dig, a0 {vp))
for 1 <dyenydp KM, 1<T(,),. .., T(ip) < Nand M < N.
ConpITION P. The correlations satisfy Condition P iff the limits
NI_EIIOO N""qb(ji;,N(U{V) .. .ji;,N('U;{)V)) = MS(U]_, e ,’Up)

exist and are finjte for the minimal tuple (4}, ...,4)) associated with a par-
tition § = (S1,...,5,), where 1 < ity SN
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REMARK 1. In other words, the correlations satisfy Condition P iff they
decay polynomially or faster, or iff they decay as N~ or faster, where r is
the number of blocks in the partition § associated with the correlation.

REMARK 2. The canonical embeddings in both the infinite tensor product
and the reduced free product satisfy Conditions I-P.

THEOREM 3.1. If the correlations are invariant under order-preserving
injections and satisfy Condition P, then

R CICORICHENEDY
Sepora{l,..p}

where Dg equals 1/r!, and thus depends only on the numnber of blocks in the
partition 5. If, in addition, the correlations are inveriant under permuta-
tions of sets in the partition S, then

Nl'i—lynoo CTICO Sn(w))) =

DsMS(Ul, - ,’Up)

Z Ms{vy,...,vp).
SeP{1,....p}
In both cases, Mg(v1,...,vp) = 0 for those partitions which decay faster
than N™7.

Proof Tuples of indices can be grouped into equivalence classes rep-
resented by minimal tuples associated with ordered partitions. Then each
of the tuples from the same equivalence class can be obtained from the
same minimal tuple (47, ...,4%) by an order-preserving injection 7. We rear-
range each tuple (T'(é7), ..., T'(i})) as {T(3}), ..., T(43)} = {k, ..., k. } with
k1 <...<ky Let §=(51,...,8,) be the partition of {1,...,p} associated
with (i1,...,4%). Namely, S; consists of all numbers m such that i = 7.
Note that for a given ordered-partition § = (S4,...,5,) and fixed N there
are () different order-preserving injections. Therefore, using Condition I,

-
we obtain

F(Sn (i) ... Sn(vi))

- >

1<is,0 i SN
§=(815:,5r) 6P, p}
and hence, using Condition P, we arrive at

Jim GSx (). S = Y
Seperdf1,...p}
where Dg = limpy—oo N™7 (JX ) = 1/r!. Clearly, the contribution from the

correlations which decay faster than N ™" vanishes. This finishes the proof
of the first part of the theorem. The second part is obvious. m

$le (Wl .. Fip v (5))

(V) iz 2)-- s )

DSMS'(vls- v :'U:p)
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The above limit theorern will be generalized in the sequel, but it seems
interesting in its own right, since its formulation is relatively simple and
it is free from the kind of independence and covers a few types of limit
theorems. As its immediate corollaries we obtain, for example, the central
limit theorems for commuting, anticommuting, and free independence, as
well as the limit theorems for the Poisson law and the free Poisson law (see
the discussion below). Moreover, it also covers the g-central limit theorems
studied in [Sch, B-S, S-W].

Discussion of special cases. We shall consider the tensor product and the
reduced free product. If a correlation vanishes before taking the limit, we say
that its rate of decay is equal to N~°°. In the case of central limit theorems,
this happens if the factorization produces first moments in the state ¢. Thus,
such correlations will not contribute to the limit. Since the rate of decay of
all other correlations is N™?/2 it is clear that only pair partitions may
survive and only for even p. However, in the case of free independence, the
correlation corresponding to any crossing partition can be expressed in terms
of products of more than r factors (see [S], Lemma 4}, Thus, if it is a pair
partition, it must have a first moment in each of the products, and therefore,
its rate of decay is N~ and it does not appear in the limit Wigner law.
In a similar way (skipping the last part of the above argument} we can see
that in the limit law for the infinite tensor product of a *-algebra C, all pair
partitions contribute to the limit, giving the symmetric, antisymmetric, or
g-Gaussian laws. The situation is even simpler for theorems of Poisson type.
In the classical case, we assume that the rate of decay of all correlations is
equal to N7 since limy—.0o N@((v™)*) = X and therefore for the correlation
corresponding to the partition S = (S4,...,S,) we have

Jim NG (o)) = o

and thus all partitions contribute to the Poisson law. However, in the case
of free independence, the above calculation holds only for noncrossing parti-
tions, since the crossing ones decay faster than N~ due to the factorization
into more than r moments, and thus vanish in the limit. For convenience,
we shift the N-dependence from the states to the variables (classically, it is
assumed that Npy — A, where py is the probability of heads).

4. Limit theorem for homogeneous correlations. Our aim is to
formulate a g-analog of Theorem 3.1 that would also include the g-central
limit theorem studied in [L-P, L1, L2} and lead to new limit theorems. In
view of the above, we can see that such a ¢-analog (for positive g, not equal
to one, and thus allowing for non-identically distributed variables) could be
based on a similar formulation, except that N should be replaced by some
g-function of N. Moreover, we know from our previous work that invari-
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ance with respect to order-preserving injections will not hold. Therefore,
Condition I will be replaced by a more general one, namely homogeneity.

Let T be an order-preserving injection from {1,...,M }into {1,..., N},
where M < N. Further, let ¢ and 8 be maps from the set of generators of ¢
into the reals. They will be called deformation maps. We set o; = a(v;) and
fi = B(v;). In turn, for a partition § = (S1,...,5.) € P41, p} and
p-tuples of real numbers & = (@1,...,05) and 8 = (f,...,8,) associated
with the generators v1,...,v,, we define

as, = ) o, Bs.= . B

kE€Sm k€S,
where . = 1,...,r, which can be viewed as the degrees of deformation
associated with S and (v1,...,vp).

Let us state the conditions which generalize Conditions I-P.

ConprTioN H. We say that the correlations are (o, 8)-homogeneous with
respect to order-preserving injections, or that they satisfy Condition H, iff

ARG SHIC )Y g Jaae(n) - Gip,m(v)
qﬂﬂ]T(H)-}*ﬁlN qapT(ip)+ﬁpN qa11:z+ﬁ1M T qapip‘l’,BpM
where g € R* and o1,..., 04, Br,...,8, € R are associated with vy, ... s Up
eGLuUG_.

CoNDITION E. We say that the correlations satisfy Condition E iff the
limits

lim q(ﬁsl’i‘-l"ﬁSr)Na(‘?q’N(v{V) .. -j'i;,N((UiJV)) = Mg (?)l: vy UP)

N—oo

for 0 < g < 1, and

lim q(asl +otag.+8s +-.,+,55‘-,-)N¢(ji;,N(’U]z_v) Ve jg;’:N(U;v))

N—coo
= Mg(‘vl,. . ,’Up)

for 1 < ¢ < co, all exist and are finite, where (43,...,1y) is the minimal
tuple associated with the partition 8.

REMARK 1. If g < 1 and 8 < 0, or ¢ > 1 and -+ 8 > 0, then we say that
the correlations decay B-ezponentially, or (a+3)-exponentially. On the other
hand, if g < 1 and 8 > 0, or if ¢ > 1 and @ + 8 < 0, then we say that they
grow S-exponentially, or (¢ + 3)-ezponentially. It is enough to consider two
cases (one for exponential decay and one for exponential growth), but often
we will further restrict our attention to exponential decay since expornential
growth can be done in a similar fashion.

REMARK 2. Another possibility would be to put & instead of @ + 3 in
the second equation, but then Condition H would look more complicated.
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REMARK 3. One could say that Condition H means invariance of the
correlations with respect to order-preserving injections for ezponentially
resealed variables. Note also that Condition H is a special case of Condi-
tion ILior g = 1.

Let us now give a few examples of correlations that satisfy the above
conditions.

ExaMPLE 1. Let C = Uy{(su(2)), the ¢g-deformation of the enveloping
algebra U(su(2)) generated by v,v*,¢,¢~", with hermitian ¢,¢7*, subject to
the usual commutation relations [L-P, L1]:
2~ ¢2

7l = ¢ = 1, qz—_q_—z,

to =g vt, vt = g*u™t, W vl =

and the usual coproduct
Aw) =t Quw+wdt, A =ttt

where w & {v,v*}. More generally, cne can consider the g-bialgebra defined
as above, except for one relation, the Lie bracket, which is not assumed.
Define injections of € into C®* as follows:

giv(w) = (PN @ w g 8 g 18,

Let ¢ = ¢®® for the state ¢ on C such that ¢(£) = ¢ and ¢(t™1) = ¢77,
extended homomorphically to C[£,#7*]. Then the correlations satisfy Condi-
tion H with o = —24. With the appropriate normalization [L-P, 1.1], namely
vV = (1//[N]a)v, v*~ = (1/4/[N]a)v*, Condition E can also be satisfied.
In particular, when § = 1, = —2, we have the vacuum state for the fun-
damental representation of U, (su(2)), i.e. the cyclic vector is annihilated by
v*, Note that Ax_j(w) = Sy{w), where Ay _; is the (N — 1)th iteration of
the coproduct [L-P, L1]. This noncommutative Jimbo-Drinfeld deformation
can be generalized to Ug(g) (see [L2] for details).

Alt) =t ®1,

ExAMPLE 2. Let € = Upq(su(2)), the pg-deformation of U(su(2)), a gen-
eralization of Uy(su(2)). It is generated by v, v*, s,t subject to the relations

1

tv =g tput, to* =qp'u*t, sv=qp lus, sv' =g 'pu*s

and
- 32

5 e

q° —-p
with hermitian, commuting s,t. The *-injections given by
Jin{w) = B0 @y @ B8N0 g 18

where w & {v,v*}, are generalizations of those in Example 1. Let ¢(t) = ¢°,
d(s) = g>t8, -extended homomorphically to C[t, s]. Then the correlations

[, v] =
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with ¢ = $®* satisfy Condition H {Condition E can be satisfied with nor-
malization similar to Example 1). In particular, if ¢ is the vacuum state of
a 2-dimensional representation of Uy, (su(2)) indexed by a real number g,
we have ¢(t) = ¢ T1/2p0=1/2 and ¢(s) = glo—1/2pia+1/2,

ExaMPLE 3. Introduce g-canonical injections in the infinite tensor prod-
uct algebra:

Gr(o) = B0 @ 1 @ T 91800 — glon G-, ) V-

Wherg by, = ¢t and a; = ¢P* and Ji are the canonical embeddings. If we
take ¢ = ¢®°, then Conditions H-E are satisfied.

ExXAMPLE 4. Replace (C®%, ¢®°°) by (C*°°, ¢**), the reduced free prod-
uct of (C, ¢), and define g-canonical *-injections by

Fov(vg) = glert =15, () ) (PN ~0)

where j; are the canonical *-homomorphic embeddings. The RHS in Exam-
ples 3 and 4 are written in a noncommutative way for the sake of similarity
to the previous examples.

Condition H can be expressed in a slightly different form, which will be
used in the sequel, given by the following proposition.

PROPOSITION 4.1. Let (4f,...,%y) be a minimal tuple such that {i},...
gt ={1,...,r} andletr < N. The correlations are (o, 8)-homogeneous
with respect to order-preserving injections iff

S(iriipy, v (v1) - Friig),n (v)) = € 0Bz r (v1) . iz e ()
where

TS =3 ((T(5) ~ if)ow + (N —r)B)
k=1

stands for the “total shz’ft’._
Proof Obvious.

We are ready to state a quantum limit theorem for the correlations which
are (a, 8)-homogeneous with respect to order-preserving injections and sat-
isfy Condition E. In this section, we state the thecrem with Conditions H-E,
thus assuming ¢ # 1. In Section 5, we will restate the theorem by incorpo-
rating the case ¢ = 1.

We assume that the deformation map « is positive (the case of negative
@ is equivalent). The general case of arbitrary « involves certain technical
difficulties and will not be treated in this work. There are no restrictions
on 3, which is the less relevant (easy to handle} deformation map.

THEOREM 4.2, Assume that the correlations are (o, 8)-homogeneous with
respect to order-preserving injections and satisfy Condition B for ¢ > 0,
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g# 1. Then

A}Erlooa(SN(”iv)-‘- D (o, B)Mg(vr, . .. up)

Sn())= 3

Seperd{l,...,p}

where
YiSeBgo(as,,... a5 lq) if ¢g>1
Dq a, — q gols,, PRATCHS . 3
S( ﬁ) { qY(S’a“B)gT(aSu ey g, l Q) 3f g<l,
and Y(8,a,8) =3 _ (~mas,, —18s,,)-

Proof Let first ¢ > 1. The idea of the proof is similar to that in The-
orem 3.1, but we have to keep track of all g-expressions, which. complicates
the calculations. Note that

TS = E
= Z((k

™
=W(S,N,a,8) + Y knog,
==l
where we separated the part depending on the ordered indices from the
indices-independent expression

T(ig) — ix)ax + (N ~7)8k)

m m)aSm + (N - T)Bsm)

W (8, N, a,8) = = )85

Z (—mag,, +

Thus, using Proposition 4.1, we arrive at

¢(Sn(v1') - .. Sn(vy)
= Z qﬁ(jzlxN(vi\T)“'jzp)N(v;v))
1<y, g SN
= > gV INR Gy (ag,,. . a3, 14)
S=(81,0, S ) EPYL,...,p}
X Gy w (0]) - Gim (V)
where
GN (Q‘Su g, lq) = Z qaslk1+u-+as,~kr'
1<k <. <k <N
‘We now use Proposition 2.2 to calculate
Di(o, 8)
= lim ¢ —(atsy Hentas, +0s, +...+Bs, ) N+W(S,N, a’ﬁ)GN(C!Sl, ..., as, q)

N-oo
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for each ordered partition S (recall that the analogous expression in the case
of ¢ =1 is almost trivial, i.e. we obtain 1/r!). Here, using Condition E, we
arrive at

D§(a, 8)

r
— I —-N )
- 1\1!1»5[100 Z(q (e +asa))qY(S,a’mgi(aS1 IR

i==0

where Y (8,0, 8) = .0 _, (—mag,, —rBs..).
It g > 1and a; > 0 for every 4 € {1,...,p}, then the only term which
gives a nonzero contribution is the one with index 1 = 0 and thus

Dg(@, IG) = qY(S’aﬁ)gO(aSl: -y O, | Q)
;@s, | ) is defined in Section 2. This finishes the proof for

as, |q)

where golag,, ...
g>1

If g < 1, we proceed in a similar manner and observe that the only term
which survives in the limit is the one with ¢ = r. Hence we obtain

Dg-(a,ﬁ) = qY(S'a’ﬁ)g"(aSm ceey g, [Q)a
which finishes the proof. m
CoROLLARY 4.3. If, in addition, o = —283, then we have the inverse-

D (e, B).

reverse symmetry D% (o, 8) =
Proof. If & = ~24, then

D%(e, 8) = gEm= Om=r=2Bsm (a5 0 ) g1
sloy8) = o (2m—r)Bg if
gem=1 *“(aS,«;---:afh)q—l itg>1
Note that

T L

do@m-r)bs, =Y (r—2j+2)8s, ..,

m=1 j=1
. R -1
which gives D¥(o, 8) = Direu(v, 8). u

5. Another formulation and special cases. We have chosen the
above formulation for the sake of simplicity, but we can also rephrase Con-
dition E using the g-deformed N of type

gN — glotdN

[N]rs,cr = ‘—"‘“‘“"qo_ - q‘(ﬂ-l-a) 3

motivated by ¢-analysis and quantum groups, used in our previous work.
This will be done below. Let us only point out that both formulations have
certain advantages and disadvantages. The main advantage of using Condi-
tion E is its simplicity. However, if we want to let ¢ — 1, then Condition PE
given below becomes more convenient.
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Now we introduce a deformed S-dependent IV, which will replace N"
from Theorem 3.1 in the assumption of its g-analog (Theorem 5.1). It will
be defined multiplicatively, i.e.

[Nls,a,8 = [N]s, - .- [N]s,

where [N]g, = [N]as s, Before we go on, let us mention a few properties
of such q~deformat10ns of N. Firstly, we clearly have

hm[N}gm = N.

Secondly, note that the deformation of Jimbo-Drinfeld type, as in the
g-deformed enveloping algebras Uy{(g}, is obtained when we put a = —283.
Thirdly, if we put @ = const and £ = const, then we get a wuniform de-
formation, independent of vy,...,v,. In the case of uniform deformation of
type (2, —1) the main theorem of this section could be obtained by replacing
N7 by

[Ns,mp = [Nly, - - [Ny,
where (v1,...7.) is the signature of 5. The uniform deformation for pair
partitions bears even more resemblance to the usual case. Namely, we then
obtain [Nlg a,g = [N]} for p = 2r. Moreover, if ¢ = 1, we put [N]z = N.
Therefore, as we shall see later, Theorem 3.1 will be recovered as a special
case of the g-limit theorem stated and proved below.

The new version of Condition E takes the following form. In fact, it will
not be exactly equivalent to it since its formulation allows for ¢ = 1 (with the
convention that for ¢ = 1, [N]g,ag = N7). One might say that it combines
Conditions P and E.

ConpITION PE. Under the assumptions of Condition E the limits
Jim [Ns.e 500, (o) Gig v (vp)) = ME (v, p)

exist and are finite for the minimal tuple (if,...,%;) associated with a par-

tition S, i.e. the correlations associated with (S, e, 3) decay as [V ]EL g Or
faster.

‘We give a version of Theorem 4.2 which lends itself easily to the limit
procedure g — 1. As we mentioned before, it will combine Theorems 3.1
and 4.2. Due to different combinatorics, the proofs of both theorems have fo
be put together to give Theorem 5,1. Its form is similar to the limit thecrem
presented in [8], except that we can apply it not only to free probabilify,
but also to other kinds of quantum independence. In particular, it includes
g-deformed limit theorems, such as the g-analog of the qclt [L1, L2].

THEOREM b.1. Assume that the correlations are (o, §)-homogeneous with
respect to order-preserving injections and sotisfy Condition PE. Then
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. iy N N * *
Jim ¢(Sw(vr). S )= D DE(a, AME (v1,...,v)
SE'P“"d{l,...,p}

where

qY*(S,a;.@)[[aS““_,asr”q zf q> 17
D¥ (e, 8) = § 1/r! if g=1,

qY (8,e.8) [[QSM Tery 0!5'1]]q_1 %f g <1,

and Y*(5,0,8) = 351 (1 — k)ag, + (1 ~1)8s,).

Proof. For ¢ > 1 we have

T

as, o) [ - 1)

f=1

DY(c,8) = @ S Thcs Bom gy (g

= qym (S,Cf,,@) [[a¢5'13 et Q!ST,]]Q'

The proof for ¢ < 1 is almost identical. I ¢ =
Do, B) = Dg = 1/r! by Theorem 3.1. w

COROLLARY 5.2. Suppose that limg_,y M2(vy,...,v,) =

= Ms(v1,...,vp)
exists for all vy,...,vp ond that the assumptions of Theorem 5.1 are satis-
fied. Then

ql—lrril+ ;\,1}_1}100 QS(SN('Ul ). SN(UIJJV))
= Z [[O‘Sl: -

SePerd{L,..p}
lim hm B(Sn (M) .. SN(U;;V))

= Z [{QSM ‘e

SePerd {1, ..p}

1, then we clearly have

og | IMs(vr, ..., v),

'aaslnMS(vln" ' :'UP)'

Proof. Follows directly from Theorem 5.1. m

ReMARK 1. It is interesting that the form of the limit state is, in gen-
eral, different from that obtained in Theorem 3.1. However, if we assume
invariance under permutations, then they coincide, thus giving the second
part of Theorem 3.1. This means that the limits as ¥ — oo and ¢ — 1 are,
in general, not interchangeable. However, note that {[ag,,. .., asg.]] = 1/rlif
(71, oy ¥r) = (k, ..., k). In particular, this is the case if §'is a pair partition.
Thus, if we have invariance of correlations with respect to permutations, we
obtain the usual result for the central limit theorem (where only pair parti-
tions survive).

REMARK 2. As far as Theorem 5.1 is concerned, the ‘strange’ g-factor
involving ¥ (8, «v, B) shows the deviation from commutativity as the argu-
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ment below will demonstrate. Thus we will argue that it is very natural to
redefine MZ(v1,...,vp).

If $ is a state, then Theorems 3.1, 4.2 and 5.1 give states on the free *-
algebra generated by free generators ¥ assoclated with v € G, UG_. Below,
we will refer to the imit state ¥ of Theorem 5.1 and denote its correlations
by ¥(Ty...0p).

COROLLARY 5.3. In the case of commautalive independence with g-cano-
nical injections the limit state of Theorem 5.1 takes the form

T T) = Y, s, asllid(s) . ¢vs,).
Seperd{1,..,p}
Proof. We take the infinite tensor product algebra with the ¢g-cancnical
injections
Gipn(ve) = b8 @y @ V) g 180
where ax = g°* and by = ¢* P For the minimal tuple (i},...
ated with a partition § = (S1,...,5%), we obtain

;i) associ-
Bljigr(v1) - Jig e (¥p))
= @@ 485, (m=1) 85 (r=mN g (40 Y | (g )

=gV 5B} . . plus,)

where ¢ = ¢®> and vg, = [Ires, vx (in the natural order). m

The above proof gives the factorization law for the injections considered.
It is worthwhile to compare it with the factorization laws for other types
of independent variables. Note that we can write them using unordered
partitions and their refinements since there is no need to use the ordered
ones.

ExaMpLE 1. The simplest is the commutative factorization law:

-~

G(Jiz,r(v1) - Jine(vp)) = $lus,) ... d(us,)
where 5 is the partition associated with the minimal tuple (i3, ... ,%;).

ExampLE 2. The case considered in Corollary 5.3 is a generalization of
the above to g-canonical injections:

S(igr(v1) - Jim o (vp)) = @77 S glug ). dlug,).
Let us call it the commutative factorization law for g-identically distributed
variables.

ExaMPLE 3. The free foctorization law takes the form

Sz (1) Gisr () =3 Qhpd(vr,) ... d(vp,)

' P=3
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where P = {P,...,Pv} = § = {81,...,5,} means that P is a (not nec-
essarily proper) refinement of 5. When § is a noncrossing partition, then
we have the same law as in the commutative case. Otherwise, only proper
refinements appear in the summation.

ExaMPLE 4. If, in Example 3, we take Q% g~ (5®8) instead of QLp,
then we obtain the free factorization law for g-tdentically distributed vari-
ables.

ExaMPLE 5. In the case of U, (su(2)) we have the following factorization
law [L1, L2]:

a(jii‘,r('ul) . ‘ji;,'r('vp)) = q—Y*(S,ayﬁ)+4#W3+_4#W _—(t)(vfh) . tf’(vsr),
which could be called the g-commutative factorization law for g-identically

distributed variables.

In order to include the known factorizations we could define the following
general factorization law:

Sz (01) - iy () = Y Qsp(0,Bla)d(vr,) - . G(vp, ).
P=s

This formula can be inserted in Conditions I-H and the results of all limit
theorems in this paper can be rewritten in a new form, dependent only on
Qsp(a, B q). However, we will stick to our notation which is more compact.

One can say that all coefficients except @ss(a, 8| ) = ¢~Y 58) show
a deviation from the commutative factorization law. Thus, defining

Mgr* (’U]_, A ,'Up) = q_y*(s’a’ﬁ)Mg’(Ul, PN ,Up)
we can write the limit state obtained in Theorem 5.1 in the form

‘I’(ﬁl...ﬁp}ﬂ Z

Sepnrd{l’l”!p}

llas,, ..., agleME(v1, ..., v,)

for ¢ > 1 and analogously for ¢ < 1 {cf. Theorem 3.1}.

Let us briefly discuss here certain special cases of Theorem 5.1, including
the central limit theorem. For simplicity, we assume that 8 =0 and a = 1.
Thus ag, = vs, and Bs, = 0, where (vg,,-..,7s,.) i the signature of the
partition S.

CorOLLARY 5.4. Let vy = v,;/[N]y'g where 8 € N, and assume that

a; =1, F;=04i=1,...,p. Then
(qa_l)p/s<731="':73r)q if ¢>1,

sl {(‘J""—1)"/’<'Ysr,-~,'rsl)q—x if g <1.
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Proof. Straightforward calculation gives, for g > 1,

[Nls,am _ ( ¢ -1 )p/"' B kil S C el 04
([N]q,)P/E - ¢V -1 i=1 grsi -1 HLl(qﬂfs" -1)
as N — oo, which, when multiplied by [[vs,,...,7s,]lq, gives the result. The

proof for g < 1 is similar.

COROLLARY 5.5. Let 5 = 2 and assume that the limit limg1 ME(vy,. ..

cosvp) = Mg(ve,...,v,) exists. In addition, assume that the correlations
which have singletons vanish. Then, for p = 2k, we obtain
liny lim FSn(wl).. . Sw@) = > DsMs(vy,...,vp)

SE'PS;?,{L...,;D}
where D{S) = 1/rl. The limit odd correlations vanish.

Proof. Straightforward, in view of Corollary 5.4 and the following sim-
ple calculation:

(qg —1)”2 0 lfj > 2,
1+—j'—_'1—= ]. 1f3=2,
et g oo #ji<2,

and a similar one for the left limit. m

Thus, we obtain a central limit theorem which is also a special case of
Theorem 3.1. Therefore, in this case, the limits as ¢ — 1 and ¥ — oo can
be interchanged. Note also that the above central limit theorem covers also
the free case. Then simply Mg(vy,...,v,) = 0 for crossing pair partitions
since they have a singleton.

6. Limit theorems for convergence of g-Poisson type. The frame-
work of Theorem 4.2 lends itself to limit theorems other than the g-analog
of the central limit theorem. Therefore, we present here g-analogs of Pois-
son convergence leading to certain ¢-laws. The cases we study are ‘one-
dimensional’ and thus very simple (in the tensor product case—classical),
similarly to the free Poisson convergence studied in [S].

In both the classical and free Poisson convergences it is assumed that

Jim Ng((oM)F) =\

for each natural k. The only difference in the final result (see [S]) comes
from different factorization laws as we mentioned in Section 3. Thus, the
only question we have to ask ourselves is that concerning the rates of de-
cay of the correlations. That may depend on the factorization law. In fact,
we shall discuss two different limit theorems of g-Poisson type, one for the
tensor product, and the other for the reduced free product. Thus, we obtain
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g-analogs of Poisson convergence. However, the limit laws will not be con-
tinuous g-deformations of the Poisson law, or free Poisson law, respectively.
We choose a natural way to formulate a special case of Condition E.

ConDITION E-A. Let 0 < A < 1, &,6 € R and let v¥ be hermitian
elements in a *-algebra C. We say that the moments in the state ¢ eC*
satisfy Condition E-) iff

im GV (@ ) g o, Nyky -
g #((v")7) = A

for all natural ¥ and ¢ > 1, and
Jim VG = x

for ¢ < 1, where k = 1,2,... In particular, when ¢+ 8 > 0 for ¢ > 1, or
B <0 for ¢ <1, we say that the moments decay ezponentially to ).

REMARK. It is obvious that for 0 < A <1 such states exist. However, it
is not the case for A > 1.

In the theorem below, we consider the infinite tensor product state with
the g-canonical injections considered in Example 3 of Section 4. We use the
notation Sy = Sy (?ﬁ\N }. Also note that due to invariance of A" with respect

to the symmetrizer S we can use unordered partitions in the expressions for
the limit moments.

THEOREM 6.1. Assume that the moments in the state ¢ satisfy Condition
E-A. Then
X CIRD
S={81,0,5r}EP{1,...,0}
where
Bs = {q‘ﬁp3<a51,”.,a5,)q if g>1,
g @S g, .. s V-t if @< 1.
Proof. Tt is clear that Condition B-) for the moments implies Condition
E for the correlations. Besides, Condition H is satisfied by the definition of
the embeddings and the tensor product state. Therefore, for ¢ > 1 we get
from Theorem 5.1 the following:
a2 go(as,, ..., ag, | @) ME(vP)
e qy(s’a’ﬁ)_y-(S’a’ﬁ)gﬂ(asly - ’asr i q)Ar
=q za:l(aSmﬁ-ﬁSm)gﬂ(aSu BERERL T | Q)’\T
= q—ﬁf’(asl, sy bg, YA
This finishes the proof for ¢ > 1 since the symmetrizer does not affect A",
The proof for g < 1 is similar. = '
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Note that in the limit as g — 1 the correlations become infinite since

lim{cg,,..., a5, )q = 00.
g—1

One would like to obtain a law with finite limit for ¢ -~ 1. An easy modifi-
cation of Theorem 6.1 is close at hand. Namely, we can replace A by (g—1)A
for ¢ > 1 and by {1 — g) for ¢ < 1. Both cases are analogous, therefore we
restrict our attention to ¢ > 1 and assume for simplicity a =1, 8 =0.

COROLLARY 6.2. Let g > 1 and suppose that 0 < A < 1/(g —1). Then,
if the moments decay exponentiolly to (¢ — 1)A with o = 1, 8 == 0, we obtain

for & = ¢®>,

lim $(Sy) = b Ss1 -+ s ¥8]ad"
N—oo
§={51,....5- P {1,000}
where (vs,, - ..,7s,) is the signature of the partition S, which, in turn, gives

—~ )\'f‘
lim+ A}im H(%) = —
gt e S={81,., 5y €P{L,...p} 151 TEr
Proof. The first part follows directly from Theorem 6.1 and the second

part is a consequence of Proposition 2.1. w

REMARK 1. Note that for any A > 0 there exists g close to 1 for which
the assumptions of Corollary 6.2 hold, and therefore the second part of the
corollary gives a state for arbitrary A > 0. Moreover, the moment problem is
well-posed since Carleman’s condition holds by comparison with the series
for the Poisson law.

REMARK 2. If ¢ < 1, then an analogous result holds which gives for
g — 1~ the same limit law.

One would like to obtain a g-analog of the Poisson limit theorem that
would give a continuous g-deformation of the Poisson law. Another modifi-
cation of Condition E-) seems obvious. [f welet ¢ > 1, a =1, § = 0 and
replace A by A(¢* — 1), then we would obtain

i AAPY —
Jim g(8%) = >
32{51,“.,37-}619{1,\..,}3}
which in the limit g — 1% gives the Poisson law by Proposition 2.1. However,

one can show that there is no siate ¢ that would satisfy such a version of
Condition E-A.

PROPOSITION 6.3. Let ¢ > 1 and let vV be hermitian elements in C.
Then for no A > 0 does there ezist o state ¢ € C* satigfying the exponential
decay condition

§[[731’ e v'YSr]]lIArs

im g*Vg((v™)F) = Mgt~ 1).

N-—o00
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Proof. Assume that the contrary is true. Then, by specific scaling (one
can take w™ = gV%u" as a rescaled hermitian generator), also the limits
my = (¢* — 1)\ must be the moments of a random variable w for some
positive normalized functional . This will contradict positivity as the cal-
culation below demonstrates. We have

n n 2n
#’(ijwj chwk) =l +23 (" -1) 3 go
=0 k=0 1=1

G-l

2n
= |CU|2 -+ AZ Z (qujchk —chk)

I=0 j+k=1
= Jeol® + A(|A]® = Jal?)
where

n k3
A=Y dg a=Y e,
j=0 =0

It is enough to take ¢1 =1, ca =2 € R and ¢; = 0 for 5 ¢ {1,2}. Then, for
g > 1, we have |4| = |g + 2¢*| and |a| = |1 + z|. We must have |4 > |a],
which gives
lg+2¢%| > [1+z|

for all z. Squaring both sides of the inequality we obtain

2 (¢ ~ D42 ~2)+¢° —1>0.
The discriminant is 4¢*(g—1)? > 0 for ¢ > 1. Hence, there exists = for which
the above inequality does not held, which is a contradiction. =

We would like to see what happens when we replace (C®>, $®>) by
(C*°,¢*°), the reduced free product of (C,¢), with the g¢-canonical
*-injections given by

i (o) = @B 4y )N
where j; are the canonical embeddings. We choose the simplest case satis-

fying Conditions H and E-), ie. @ = 1, 8 = 0. We obtain a free analog of
Theorem 6.1,

THEOREM 6.4. Let a = ¢*° be the reduced free product state on C**
and let vV be hermitian elements of C for which Condition BE-) holds. Then

Jim 3(5%) = > BEA™
P={P1,~:;Pm}€:p{1:---lp}

Bf = 3

S={51,.0,5p}P

where

Q,g'Pg('YSn LRS! 79r>‘1
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and the coefficients Qf;P come from the factorization law for free indepen-
dence.

Proof Essentially, the proof goes along the same lines as in the tensor
case. One only has to take into account the free factorization law instead of
the commutative one. If S is a noncrossing partition, then the correlation
associated with a partition into » blocks factorizes into r moments and
gives \". However, if S is a crossing partition, then it can be expressed as a
sum of products of at least » + 1 factors. With each of the summands one
can associate a refinement P of a given partition with m blocks and the
coefficient Qsp, therefore the contribution to the limit is A™. This finishes
the proof.

COROLLARY 6.5. Replacing A by (g — 1)} in Theorem 6.4 and assuming
that 0 < A < 1/(g—1), we obtain an analogous result, with [ys,,...,7s.lq
replacing (Ys,,-..,78,)q- Moreover, for A > 0 we obtain

-~ AT
lim Jim $(S%)= > —
g—1t N—oo S={S1, 0, St EPR{L, .0} YS1 VS,

where the summation extends over noncrossing partitions only.

Proof. The first part of the theorem follows immediately from Theorem
6.4. In the second part we only need to justify that the contribution from
the crossing partitions vanishes as ¢ — 17. This follows again from the fact
that the factorization law for crossing partitions § with r blocks produces
products of at least r+1 moments, hence at least (g—1)"* A"+ as N — oo.
Therefore, there is at least one extra power of g~ 1 left which is not included
in [vs,...,7s,]q- The latter tends to 1/(ys, ...vg,.) as ¢ — 1T, hence this
extra power of ¢ — 1 makes the term vanigh in the limit. =

Exampre. To illustrate this fact, take the reduced free product with
g-canonical injections for the crossing partition associated with the minimal
tuple if =i§ == 1, 4§ = i = 2. We have

L (™ )2y (W) v (0N Yz (o) = ¢ 26((M) (Y — G0,
Thus, if
lim ¢*V((v")*) = (g - 1)A
N—oo
then the contribution from this partition to the limit law is equal to
2[2,21%"(2(g — 1)X* = (¢~ 1)°2%),

which tends to zero as g — 1.
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7. Connection with partial Bell polynomials. In this section we
express the limit law obtained in Corollary 6.2,

. by
T(0P) = Z A
S {81100y S} EP{E,p} 12 T

and its characteristic function in terms of partial Bell polynomials [T].

Some additional combinatorics is needed. Note that we deal here with
unordered partitions. Let A = (ng,n,,...) range over all sequences of non-
negative integers almost all of which are zero. Define its length and weight
by

WNY =D, (W)=Y kg,

E>1 k21

respectively. As noted in [T], such a sequence A can be regarded as a par-
tition of the number w(N) into I(A) parts. A connection with (unordered)
partitions of sets can be given as follows. We can interpret ny as the num-
ber of blocks of k elements in a partition § € P(I), [{N) = r as the total
number of blocks in § and w{N') = p as the number of elements in I.

ExAMPLE. Let § = {81,852, 83, 84} be a partition of {1,...,8} with
Y8, = Y8: = 1, g, = 2 and g, = 4. With this partition we can associate
the sequence N = (2,1,0,1,0,...) of length I(A) = 4, meaning that we
have two l-element blocks, one 2-element block and one 4-element block.
The weight w(A) is 8.

The partial Bell polynomials are defined as

BP,T(h17h2:h3:“') = Z
w{N)=p, I{N)=r

bk

where
b 7!
N = -
iz drust(Rl)™}
and hy, hg, ... are indeterminates. As proved in [T}, by is equal to the num-

ber of ways to divide a set of p elements into = disjoint subsets, where the
number of subsets containing k elements is nj for & > 1.

BN = nphe .,

PROPOSITION 7.1. The moments U (TP) can be written in terms of partial
Bell polynornials as follows:

e 11 1
() =D N By, 1,5,5,...,5 )

ra=]



Proof. We have
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11 1 1\™ /1\™
Bp,'l"(lj'i)g:--'g_): Z lenl(-i) “:'3'
PI wan=pian=r

R ORORON

S={Sl ,...,ST}E’P{I,..-,]}}

i

where (n1,n2,13,...) in the last formula is associated with 5, i.e. it is the
sequence of integers which shows the number of blocks consisting of 1,2,3,...
elements in S. Thus

(B0 (2) -
2 3 P M-V
which finishes the proof. =

Thus, we can see that the difference between this law and the Poisson
law is that we need to evaluate the partial Bell polynomials at 1,1/2,1/3,...
instead of 1,1,1,...

‘We wish to compute the characteristic function of this law. For compar-
ison, let us look at the Poisson law first. Tts moments are given by

iy = )3

§={51,....5-}EP{L,....P}

Note that Bp,r(1,...,1) = S}, where S are the Stirling numbers of the

second kind. Using the composition formula from [T]:

p
A= > N Bpa(l,. 1),
=1

oo P
P = Y2 3 1 Byl )
p=0*%" r=1

for formal power series
z'ﬂ. z?‘l
1= fam, h(&) =) ha—,
n>0 nzl
we see that we can take
2" 2 z"
f(z)=ZAn'_nT:eA ’ h(z):zms
>0 ; nzl

to obtain the characteristic function of the Poisson law as
Yp(t) = F(A(it)) = "2,

‘We now write the characteristic funiction of our limit law in a similar fashion.
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THEOREM 7.2. The logarithm of the characteristic function ) of the limit
law of Proposition 7.1 is given by

1
; 1
logw(t) = /\S (e 1~ itw);:—z-p(dm) + it
i

where pu(da) = %—d(mg) is the Lebesgue-Stielties measure, i.e. the limit pro-
cess i3 an infinitely divisible process of mean A and variance u[0,1] = 1/2.

Proof. Take the same f{z) as in the Poisson case and define

T
hiz) = L ﬁT,
s
which gives
boim
-1
h(it) = | - da.
‘ 0
By changing variables, x — tz, we obtain
Igtte 1 Lttt 1 gt
wit) = | S de = it 4 | 5 (de)
I 5 =

where u(de) = }d(z?). The formula for ¢ (2) is obtained from the composi-
tion formula. The second part is clear from the canonical representation for
the characteristic functions of infinitely divisible processes. m
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Extremal perturbations of semi-Fredholm operators
by

THORSTEN KRONCKE (Berlin)

Abstract. Let T be a bounded operator on an infinite-dimensional Banach space X
and 7 a compact subset of the semi-Fredholm domain of 7. We construct a finite rank
perturbation F such that min[dim N(T 4+ F — A), codim B{T'+ F -~ \)] =0 for all A € 2,
and which is extremal in the sense that F? = 0 azd rank F = max{min[dim N (T' — X),
codim R(T — A)]: A € £2}.

0. Introduction. Let X and Y be complex Banach spaces and B(X,Y)
the space of bounded operators from X to Y. An operator T € B(X,Y) is
called semi-Fredholmn if its range R(T) is closed and its minimum index is
finite. That is,

min.ind(T") = min{dim N(T'), codim R(T)] < oo.

(Here N(T) denotes the kernel of T'.) In this case the index of T is well
defined as

ind(7") = dim N{T) — codim R(T').
For two operators 5, T € B(X, Y’} the semi-Fredholm domain is the set
osr(T:8) ={AeC:T - AS is semi-Fredholm}.

It is well known that gs.p(T : 5} is open and that on its connected
components the mapping A ~ ind{T" — AS) is constant. The mapping A —
minind(?" — A8), however, is constant on each connected component of
og-n(T 1 §) except for a discrete subset where its value jumps up (see [Ka66],
Chap. IV, §5). Those exceptional points are called Kato’s jumps or jumps of
A =+ minind(T" — AS). They are precisely the points of discontinuity of the
mapping A ~ y(T' — A8) in ge.pr(T : §); here v(T'— AS) = inf{|| (T — AS)z| :
dist[z, N (T'=A8)] = 1} denotes the minimum modulus of T~ A8 (see [Ka58],
Thm. 3 in §6 and Thm. 4 in §7).

An analytic, B(X, Y )-valued function A — A(X) is called uniformly requ~
lor on the open set D C Cif A — y(A(N)) is strictly positive and continuous
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