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On local injectivity and asymptotic linearity
of quasiregular mappings

by

V. Ya. GUTLYANSKII (Donetsk), 0. MARTIO (Helsinki),
V. . RYAZANOV (Donetsk) and M. VUORINEN (Helsinki)

Abstract. It is shown that the approximate continuity of the dilatation matrix of a
quasiregular mapping f at mg implies the local injectivity and the asymptotic linearity of
[ at zo. Sufficient conditions for log |f{x) — f(zn)| to behave asymptotically as log |z — wol
are given. Some global injectivity results are derived. :

1. Introduction. The well known stability result for space quasiregular
mappings states that for each n > 3 there exists @ > 1 such that every
nonconstant Q-quasiregular mapping f: D — R™ is a local homeomorphism
(see [Gol], [MRV3]). In [Fer] it is shown that the same result holds if the
dilatation tensor Gy of f is C; in [BIK] it is shown that the continuity of
Gy suffices. In the case D = R, thanks to the well known result of Zorich
[Z], local injectivity may be replaced by global injectivity.

It is also well known that if G belongs to C*+%(D), k>0, 0 < & < 1,
then f € C*tet1(D) (see [Tw]). Simple examples show that the continuity
of the complex dilatation in the plane and of the dilatation tensor in space
does not imply the differentiability of f (see [B], p. 41, [GMRV1]). Thus the
important case o = 0 = & should be studied separately.

In [GMRYV}], studying this problem, we replaced differentiability by the
concept of asymptotic linearity and conformality by weak conformality. Our
results were formulated in terms of the local dilatation

(L.1) Eg(z)=[f(2)|"/Js(z) ae.
In this paper, we use the normalized Jacobian matrix
(1.2) Mp(a) = f/(2)/ T (@)"" ae.

and the symmetrized normalized Jacobian matrix
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244 V. Ya. Gutlyanskii e al.

(1.3) Gy (z) = M} (2)M(a)

as convenient tools to examine the local behavior of f. We call My(x) and
G#(x) the matrix dilatation and the dilatation tensor of f at x, respectively
(see [A1], [Aa]).

Our first result says that the condition

(1.4) S K¢(z)do =1

lim ————r
-0 mes B(0,7) B(o.r)
implies that f is homeomorphic in a neighborhood of 0. This enables us
to extend the results in [GMRVy], concerning quasiconformal mappings,
to quasiregular mappings satisfying (1.4}. In particular, (1.4) implies that f
preserves angles between rays emanating from 0 and that f preserves moduli
of infinitesimal annuli centered at 0. Condition (1.4) also yields that f is
spherically analytic at 0; see Section 5 for the definitions of these concepts.

Next we prove that f is locally injective at a point zg provided that the
dilatation tensor or the matrix dilatation is approximately continuous at
xg. We also show that, under the same assumptions and the normalization
2o = 0 = f(0), the mapping f is agymptotically linear at 0, ie.

(1.5) flaz) ~ af(z), aeR\{0},
and
(1.6) flz+y) ~ flz}+ fv)

as ¢ — 0 whenever z +y = 2 = y. For the definitions of the symbols
~and ~ see Section 5. Finally, we show that

log|f(=)] _
25 log | Mz =1

where M = M;(0). In particular, if | Ms(0)| = 1, i.e. M is orthogonal, then
log | f(z)| ~ log |z.

All these results remain valid also when the matrix dilatation is approx-
imately continuous only up to left rotations.

Our method enables us to relax the above assumptions somewhat: We
show that f is locally injective even if the dilatation temsor or the ma-
trix dilatation is only close to a matrix-valued function that is everywhere
approximately continuous or, simply, continuous. We also consider global
injectivity in Section 4. In particular, we show that if D is a domain in R?,
n > 3, and if C is a compact subset of D, then each Q-quasiregular local
homeomorphism f : D — R™ is injective in C provided that K;(z) is close
to 1 in the mean over D, Section 4 also contains some examples.
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2. Dilatation tensor and matrix dilatation. ¥t is well known that
a nonconstant quasiregular mapping f : D — R is differentiable and the
Jacobian determinant Jr(z) # 0 almost everywhere in D (see [Res ], [MRV],
[BI]). The matriz dilatation of f is defined by

1) My (@) = £/(a) /Ty (a)

at every regular point z € D of f, i.e. at points z where f is differentiable

and Jy(z) # 0. We set My(x} = I (= identity) at the other points of D.
Thus, by definition, M;(z) is a unimodular matrix, ie. its determinant

|Mg(z)| is 1 for all z € D. Moreover, if f and g are quasiregular and non-
constant and if f o g is well defined, then the composition rule

(2-2) Mjyoq(z) = My (g(x)) My(x)
holds a.e.

The matrix
(2.3) Gr(z) = M;(z)M;(x)

is called the diatation tensor of f at . Here M} (z) denotes the transpose
of My (z). The matrix G¢(z) is symmetric, positive definite and unimodular.

Approximate continuity plays an important role in what follows. We
recall that a real-valued measurable function ¢ : D — R is called ap-
prozimately continuous at a point mo € D if ¢(x) is defined at zp and
w(x) — @(xo) as £ — xp in a measurable set £ C D such that

(2.4) lim mes(E N B(zg, 0))
' e—0  mes B(zo, o)

= 1.

Here, as usual, B{zq, ¢) denotes the ball in R* centered at zp with radius p.

If (2.4} holds, then zg is called a point of density for E. In other words,
Zo is a point of approximate continuity for f if the function is continuous
at Ty along some measurable set for which z; is a point of density.

It is well known that every measurable function is approximately con-
tinuous almost everywhere (see [S], p. 132). It is clear that the continuity of
a function ¢ at a point xg implies its approximate continuity at that peint.

It is easy to see that for a bounded measurable function ¢ : I? — K" the
approximate continuity of ¢ at a point z, € D implies the integral condition

(2.5) i —— {

) — p(xo)|de = 0.
2—0 mESB(GITQ,Q) B(mo,g)hp( ) ( 0)|

This condition means that ||$,| z,(z) — 0 as ¢ — 0 for the function family
(2.6) $,(y) = w(zo + oy) — w(za), Pp:B—- R, ¢>0.

Hence $, — 0 as g — 0 in measure in the unit ball B = B(0,1).
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Tf (2.5) holds, then g is called a Lebesgue point for f. Thus, for bounded
measurable functions the points of approximate continuity and the Lebesgue
points coincide.

We say that the dilatation tensor Gy is approzimately continuous at
a point g € D if all its elements g, I,k = 1,...,n, are approximately
continuous at zp.

Let Ot (n) and O(n) denote the groups of n X n orthogonal matrices U,
defined by U*U = I = UU™, with determinant 1 or 1, respectively.

In what follows, we make use of the following two norms in the space of
n x n matrices A = {a;;}, aij ER:

e = (3 )" = arays,
ii=1

I N )

(see [H], p. 178). Now

(2.9) IAB||2 < [|All2] Bl2

holds for arbitrary matrices A and B and

(2.10) [ABll2 = || All2[| B2

whenever A or B € O(n). If A, = {af;}, k=0,1,..., then 4x — Ao means,
unless otherwise stated, that

Ak ~ Aoll; — O,

or a¥; — af; for each 4, j.

In these terms the approximate continuity of the dilatation tensor G'¢{z)
at a point z¢ € D for Q-quasiregular mappings is equivalent to the following
integral condition:

[=1or2,

1
211 lim ——————
(2:11) o—0 mes B(zg, ¢) B(}U 2

because by definition ||Gf(z)]|]z < Q%™ a.e. and hence all its elements are
bounded by Q%™ a.e. The continuity of G § at ©o € D simply means that

Jim [|G¢(e) = Gr(2o)ll = 0.

|G (z) — Gflzo)lrdz =0

For the proofs of the main results, it is more convenient to use the matrix
dilatation than the dilatation tensor because of the multiplicativity property
(2.2).

We need some facts from the theory of matrices and their symmetriza-
tions.
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The special linear group SL(n) is the multiplicative group of all n x n
unimodular matrices over R. The collection of all the symmetric positive
definite matrices of SL(n) is denoted by S(n). Note that S(n),n > 2, is
not a group because the product of two symmetric maltrices need not be
symmetric (see [Bell], p. 24).

For a matrix M € SL(n), set

(2.12) G=M"Me S(n)
where M™ is the transpose of M. The matrix & is called the symmetrization
of M.

2.13. PROPOSITION. Let M1, My € SL(n), n > 2, and let G1 and Gz be
the symmetrizations of M1 and Ma, respectively. Then Gi = Gs if and only
if My = UM where U € OF{n).

In other words, G determines the corresponding M from (2.12) up to
left rotations.

2.14. LEMMA. Let M; € SI{n), n > 2, § =0,1,2,... Then lim;_,,, G;
= Gy if and only if lim;_, U;M; = My for some orthogonal matrices U;
€ 0*(n).

Proof. Indeed, the second relation implies the first because

G = M; My = MU UsM; = (UsM;) (UsM3).

Conversely, for N; = M; My we have

Dj = NjN; = (Mg) ™" M; M; M
= (M3)T'GiMy — (M) TN GoMy T =1
as j — oQ.

Now it is well known from algebra (see, e.g., [Bell], p. 54) that D; =
V;‘A?Vj where V; € O(n),j = 0,1,2,. .., and A} are diagonal matrices with
the eigenvalues of D; on their diagonals. By Proposition 2.13, N; = W;4,V;
where W; € O(n), j =0,1,2,...

Next, since the eigenvalues of D, are continuous functions of the elements
of D; (see [O]), we have A; — I as j — oo.

Set U; = V;*W? € O(n). Then the maximal element of the matrix

Ay = UsN; — I = V{4 - D)V
does not exceed the maximal element of A; — I because V; € O(n). Thus,
we obtain the “only if” part of the lemma with the U; given above.

We say that two nonsingular matrices My and M, are orthogonally equiv-
alent and write :

(2.15) M1 ~ Mz
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if ,
(2.16) MM =U € OF(n).

Later on, F(n) denotes the space of all the orthogonal equivalence classes
M(M) of matrices M € SL(n), n > 2.

By the well known diagonalization theory for symmetric matrices (see,
e.g., [Bell], p. 54), for all G € S(n),
(2.17) G =V*A2V = N*N, N =AY,
where V € OF(n) and A= [A1,...,An), A1 2 ... > Ax > 0, is a diagonal
matrix with the eigenvalues of G on its diagonal such that
(2.18) Al An =1

Proposition 2.13 implies that each M in (2.12), corresponding to G, can be
expressed as

(2.19) M =UAY,

where U € O (n) is another orthogonal matrix.

Thus there is a natural one-to-one correspondence between S(n) and
E(n).

In E(n), the norms (2.7) and (2.8) induce the metrics

(220 (I, M) = Milégm | My — Ma]|a,
MaeMy
{2.21) ra(2001, M) = log | My M5 ||2 + log | Ma M |2

where the right side in (2.21) does not depend on the choice of M; € 91,
and M; € M, in view of (2.10). Note that the second term in (2.21) is added
only for symmetry. In terms of the representation (2.19) for M = M; M;*
we have by (2.18) the inequalities

1< MMy 2 == (Do An) ™ < (1/A,)772,

(2.22)
and
(2.23) TS MM 2 =20 = Are o g < A27L

Hence the first term in (2.21) converges to 0 if and only if the second does.
Thus, convergence in the second metric (2.21) is already defined by the first
term.

C. Earle (see, e.g., [A1]) introduced a third norm

: n 1/2
ra(00, Ma) = 2[ > (log ]

g=1

where A;’s are taken from the representation (2.19) for M = My My ! and
do not depend on the choice of M; € 9y and My € M.

(2.24)
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2.25. REMARK. Convergence in the first metric implies convergence in
the second metric because

MM I < nlMiM;Y - I))s.

In view of (2.22) and (2.23), convergences in the second and third metrics
are equivalent.

Denote by FE4(n) the subspace of E(n) corresponding to the matrices
M € SLg(n) C SL(n) with ||M|j2 < g. Note that the matrix dilatations
My (z) of Q-quasiregular mappings f belong to Ey(n) with ¢ = Q.

2.26. PROPOSITION. The metrics (2.20), (2.21) and (2.24) generate the
same convergence in Fy(n), ¢ > 1. The space Ey(n) is sequentially compact
with respect to this convergence.

Indeed, if M € SL(n) belongs to SLy(n), then its column vectors M(#),
s = 1,...,n, belong to the closed ball B(0,q) in R*, and thus Ey(n) is
sequentially compact with respect to the first metric. In view of Remark
2.25, arguing by contradiction, we obtain the conclusion.

Later on, we simply say that a sequence SM; € Egy(n), j =
converges to M € Ey(n) and write M; -+ M if rg (D, M) — 0, k
as j — oo.

A sequence M; € SLy(n), j = 1,2,..., is said to converge up to left
rotations to M & 9Lg(n) if the corresponding equivalence classes converge,
ie M(M;) — M(M) as j — oo. In a similar way we also make use of the
concepts of continuity and of approximate continuity up to left rotations for
measurable matrix-valued functions M{z) € SLg(n), = € D.

By Lemma 2.14 and Proposition 2.26 we obtain the following.

2.27. PROPOSITION. Let M, M; € SLy(n), n > 2,j =1,2,... Then the
following assertions are equivalent:

1,2,...,
=123,

1)G; — G as j— oo,

2) U; Mj — M as j — oo for some U; € OF(n).

3) M; converges up to left rotations to M as j — oo.

Note that in view of Proposition 2.13 and the representations (2.17) and
(2.19) we obtain a one-to-one correspondence P between

G € 8p2(n) = 8(n) N SLpa(n) € S(n)

and

M = M(M) € Ey(n), M € SLy(n),
because
(2.28) il = M3 = X2,
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As Proposition 2.27 shows, the correspondence is continuous if in Sq2(n}
we introduce the metric ¢ induced by the first matrix norm in the linear
space L{n) of all n x n matrices over R.

Since by Proposition 2.26 the metric space E,(n) is sequentially compact
so is Sp2(n) = P(FKy(n)). Hence, by Proposition 2.27 and the well known
general topological theorem (see, e.g., [D], p. 234) we come to the following
lemma.

2.29. LEMMA. The operator P : Spz(n) — Ey(n) and its inverse P~ .
Ey(n) — Sg2(n) are uniformly continuous,

From (2.22), (2.23) and the above lemma we obtain, in particular, the
following consequence.

2.30. COROLLARY. For every ¢ > 0 there exists § = 8(e,q,n} > 0 such
that for all G1,Gz € Sy (n) the inequality

1G1— Gl <&
implies the inegquality
log || My My |2 < &
for the corresponding My, My € SLy(n). The converse is also true.

We summiarize some useful consequences concerning dilatations of quasi-
regular mappings.

2.31. COROLLARY. Let f: D — R", n > 2, be a quasiregular mapping.

Then the dilatation tensor Gy is approzimately continuous ot a pointzy € D

if and only if the matriz dilotation My is approzimately continuous at g Up
to left rotations.

2.32. COROLLARY. Let f : D — R"*, n > 2, be a quasiregular mapping.

Then Gy is approzimately continuous at zo € D if and only if
1
2.33 lim ———— -1 ~1
(2.33) e s B (o0, 0) VoM (@) M7 (o) 2 de = 1
B(=,0)

2.34. COROLLARY. Let f : D — R™, n > 2, be a quasiregular mapping.
Then Gy is approzimately continuous at 2¢ € D if and only if
1

2.35 7y (e ——
(2.85) P mes B(0, o) B

| Ky(@)de=1

0,¢)

where g = fo A1 and A: B — R" is the affine mapping corresponding lo
Mo = My (x0), Alz) = My - (& — ).

Here and later on, we say that some measurable function has a property
if it can be redefined on a set of measure zero so that the new function has
the property.
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3. Local injectivity. We start with a result on the local injectivity
of a quasiregular mapping f : D — R", n > 3, that is closely related to
a statement proved in [BIK] to the effect that the continuity of Gy in I
implies that f is either a comstant or a local homeomorphism. The local
injectivity of quasiregular mappings has been studied, for instance, in [Gol],

3.1. THEOREM. Let f : D — R"™, n > 3, be a nonconstant quasiregular
mapping and let the dilatation tensor Gy or the matriz dilatation M; be
approzimately continuous at zp € D. Then f is o homeomorphism in a
netghborhood of .

3.2. CoroLLARY. Let f : D — R™, n > 3, be a nonconstant quasireg-
ular mapping and let Gy or My be continuous at zyp € D. Then f is a
homeomorphism in a neighborhood of xg. '

3.3. COROLLARY. Let f: D — R"*, n > 3, be a nonconstant quasiregular
mapping and let Gy or My be approzimately continuous everywhere in D.
Then f is a local homeomorphism.

3.4. CorROLLARY, Let f: D — R* n > 3, be a nonconstant quasiregular
mapping and let Gy or My be continuous everywhere in D. Then f is @ local
homeomorphism.

The procf of Theorem 3.1 follows immediately from Corcllaries 2.31, 2.34
and the next lemma.

3.5. LEMMA. Letn > 3 and let g : D —~ R"® with g(0) =0 € D be a
nonconstant quastregular mapping satisfying

(3.6) | Kylzyde=1.

ey
e—0 mes B(0, o) B
Then g 15 homeomorphic in a neighborhood of the origin.

To prove Lemma 3.5 we need other auxiliary statements.
Let f: D — R"™ be a nonconstant @-quasiregular mapping, and let
zp € D. If 0 < p < dist(zq, D), we set
l(wﬂafag):l inf |f(m)_'f(m0)|a

z—zp|m=g

L(mm f: Q) = sup |f(m) - f(mﬂ)l

oo =g

(3.7)

Recall that for a Q-quasiregular mapping f, at every point xo € D,

(3.8) Jim sup 2420:£,)

<O < oo
g0 l(m0=f= Q) :
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Here C depends only on n and on the product is(wq)Q where i¢(zo) denotes
the local topological index of f at zo. In other words, (3.8) says that the
distortion of infinitesimal spheres is bounded by the constant C.

A similar statement holds for the distortion of infinitesimal spherical
rings.

3.9. LEMMA. Let f : D — R™, n > 2, be o nonconstant Q-quasiregular
mapping. Then for all xq € D the inequalities

l!(35'0) fy QA)

3.10 C724° < liminf ——221=270 < AP
( ’ ) g—0 L(E'va) Q) -
and

(3.11) A* < lim sup L(zo, f,04) < G2 AP

e—0  Hzo, f,0)
hold for all A > 1 on the left side and for all A >« on the right side where
(312)  a=Q7 B=(sE@)QYCY, y=cRs1,

Here C' is the same constant as in (3.8) and depends only onn and if(z0)Q.

Proof. Without loss of generality we may assume that f(0) = 25 = 0
€D,

Let ¢ > 0 and let E, 4 be the condenser (B(0, o), B(0, 0A4)). Then, by
[MRV4], pp. 15 and 29,

cap f(E, ) < Q" cap Eg 4.
Now
W
capE, 4 = ——
P7ed = Tlog Ayn=T
and, on the other hand, by the monotonicity of capacities,
Wn—1
oo f(Ban) 2 T e
1(0,f.g)

where w,_1 is the (n~ 1)-dimensional surface area of the unit sphere in R®,
Thus,

(0 f ’ QA) 1/Q

10.5,0 =°
and the left inequality of (3.11) follows. Using (3.8) we obtain the left in-
equality in (3.10).

Denote by U, the connected component of the preimage f~1(B(0,t))
containing the origin. By Lemma 2.9 of [MRV,], pp. 9-10, the diameter
d{U:) tends 0 as ¢ — 0, and there exists § > 0 such that {7; is a normal
domain and 8U; = Us 1 f~1(8B(0,t)) for ¢t & (0,6], and Uy, C Uy, and
Uy, \ Uy, is a ring domain for all 0 < ¢; <ty < 4.
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Next, for A > v = C*? the left hand side in (3.8) is greater than 1.
Hence, for small p, the condensers

Eo,a = (U L(0,1,0); Usgo, Frod))
and

F(&e,a) = (B(0,L(0, £, 0)),

are well defined. Moreover,

B(0,1(0, £, 0A}))

Wp—1
(3.13) cap f (&) = (log {0TeA)n=1
L(0.f.@)
and the monotonicity of capacities implies
p—1
. Egp 2> i —.
(3 14) cap [ (].Og/l)n_l

Theorem 6.2 of [MRV;] yields

(3.15) oD Eqa < i£(0)@cap F(Eq 1)
Comparing (3.13)-(3.15) we see that
10, f, 04)
Lo, f,e) ;

which proves the upper bound in {3.10).
Finally, using again the inequality (3.8} we come to the right hand side
of (3.11) and complete the proof.

Using the maximum principle for open mappings we deduce the following
consequence of Lemma 3.9.

3.16. PROPOSITION. Under the hypotheses of Lemma 3.9,
. BUP s oi< o £ (2) — F{o))]

3.17 lim sup —
BIT) D e 1£) — F(z0)]

Passing in (3.17) to the limit as A — v we come to the following conclu-
sion.

<C?A forall A> .

3.18. ProrosiTioN. Under the hypothesis of Lemma 3.9,

. SUP g | < oy ]f(w) - f(-TD)l
(319) 111;’15313 infifn“wc|=2 |f(.’1:) . f(mo)!

Proof of Lemma 8.5. The condition {3.6) can be rewritten as

S Kolz)dz =1
B

< G,

(3.20) i

0,1) and Kp(z) = Ky(ox

where B = B( }. In other words,
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(3.21) lim [Kg — 1|22y =0

and, consequently, Ko(z) — 1 as o — 0 in measure in the unit ball B.
Consider the family of Q-quasiregular mappings

90(%) = g(0z)/L(0, g, 0).

By the construction M (z) = My (pz}, z € B, and consequently K, (z) is the
local dilatation of g, and X,(z) — 1 as ¢ — 0 in measure in B.

Now g,(B) C B and hence by the well known criterion the family of the
@-quasiregular mappings g,, 0 < g < 4, is equicontinuous (see [MRVy], p.
10). Thus by the Arzela-Ascoli theorem the family is normal. Moreover, by
the Reshetnyak theorem the limit functions are @-quasiregular mappings
(see [Rei], p. 180). Next, all the limit functions f are nonconstant. More
precisely, f(0) = 0 and by Lemma 3.9 (the right side of (3.11)), |f(z)| >
C~?|z|® at least for 0 < |z| < C~3Q where f = (i,(0)Q)/{n-D).

Thus, there exists a sequence p,, — 0 as m — 00 such that Ko (z) =1
a.e. and g, (z) — go(z) locally uniformly where go is a nonconstant Q-
quasiregular mapping. By Theorem 3.1 of [GMRV3), gp is a 1-quasiregular
mapping. Hence by the Liouville theorem, gy is a M&bius mapping. Finally,
by Theorem 2.21 of [GMRV;] on the continuity of the injectivity radius, we
see that all g, for large m are injective in some neighborhood of the origin.
Consequently, g is also injective in some neighborhood of 0. The proof is
complete. '

3.22. THEOREM. Let n > 3, Q@ > 1 and let a matriz-valued function
Go(z), = € D, be approzimalely continuous, or simply continuous, every-
where in D. Then there exisis § > 0 such that a nonconstant Q-quasiregular
mapping f : D — R" is a local homeomorphism if

(3.23) I1G¢(z) — Gol)[ls < &

In other words, Theorem 3.22 says that local injectivity holds as soon as
the dilatation tensor is close to some continuous matrix-valued function.

In view of Corollary 2.30, the proof of Theorem 3.22 reduces to the
following lemma.

a.e. in D.

3.24. LEMMA. Let n > 3, Q > 1, and let o matriz-valued function
My(z) € SL(n), = € D, be approzimately continuous, or simply continu-
ous up to left rotations. Then there exists ¢ > 0 such that a nonconstant
Q-guasiregular mapping f : D — R is o local homeomorphism if

(3.25) log [{ M (2) Mg ()2 < &

In particular, in view of Proposition 2.26, we now obtain the following
consequence.

a.e. in D.
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3.26. COROLLARY. If My is elementwise continuous or approzimately
continuous and if

(3.27) 1M (2) — My(2)|s <6 aee. in D,
then f is @ local homeomorphism on D.

Proof of Lemma 8.24. Suppose that the statement is not true. Then there
exists a sequence of (-quasiregular mappings f; with

(3.28) log || My, (z)My Y z)ll < 1/j ae inD
and a sequence of points z; € D such that (see [MRVj], p. 23)
(3-29) 2 < iy () <9Q™

Let A; be the affine mappings A;(2) = Nz, z € R", where N; = Mp(z;).
Since, by Proposition 2.26, the space E,(n), ¢ = @'/, is sequentially com-
pact we may assume that

(3.30) lim [Nj o N7H|p =1
Joo

where N € SL,(n). Later on, A(z) = Nz denotes the corresponding affine
mapping of k™.
In view of the approximate continuity of My we alsc have

(3.31) lhm e | | Mo(2) M o) = 1

-0 mes B(z;, ) Blep.es)

provided g; are chosen small enough for every j. Thus, comparing (3.28),

(3.30) and (3.31) we see that
1
(3.32) lim ———— |

joro0 TES B(w:i’ Qj) B(xj,05)

Consider the sequences of Q-quasiregular mappings
oo = ML, e,
and Q"-quasiregular mappings h;(y) = gjo A (y), y € A(B). Then My, (2)
= Mj,(0;2), z € B, and, by definition,
Mi(y) = My, (y) = M, (0 A7 ()N
Now by (3.32),

- 1
) jl—l*rg" M A(SB)
where {2,, is the volume of the unit ball. Consequently, the local dilatations
K;(y) of h; satisfy K;(y) ——= 1 as j — oo in the ellipsoid A.(B). Hence,
without loss of generality, we may assume that K;(y) — 1 a.e. in A(B).

|84, (@) N o do = 1.

y € A(B).

M6 dy = 3y A ds = 1

i
:
i
i
:
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Since, by construction, h;(A(B)) C B, the sequence A; is equicontinuous
(see [MRV3], p. 10). Hence, by the Arzela—Ascoli theorem the family (hs)
is normal. Thus, without loss of generality, we may assume that hj -+ h as
J — oo locally uniformly in A(B), where h, by the Reshetnyak theorem (see,
e.g., [Req], p. 180), is Q"-quasiregular, with A(0) = 0. In view of Lemma
3.9, we obtain from (3.11),

(3.34) hy)| = C2yl" for 0 < |y < 0297,
where
(3.35) B =(9Qn" )/ (=1,

Hence h cannot be constant.

By the space variant of the Strebel theorem (see [GMRV;]) we conclude
that £ is a Mébius mapping. In particular, the above conclusion implies that
in(0) = 1. Hence, in,(0) = 1 for large j (see [MRV3)], p. 24). This contradicts
the assumption (3.29) and the assertion of Lemma 3.24 follows.

4. Global injectivity. The results in Section 3 imply several global
injectivity results. Our first result is a direct consequence of Corollary 3.3

and the Zorich theorem (see, e.g., [Z]) on locally homeomorphic quasiregular
mappings in R*, n > 3.

4.1. THEOREM. Let f: R* — R™, n > 3, be a nonconstant quasiregular
mapping whose dilatation tensor Gy or matriz dilatation M F is approzi-
mately continuous in R*. Then f is a homeomorphism of R™ onto R™.

Note that the assumption of Theorem 4.1 holds, in particular, if Gy is
continuous in R™. Note also that the conclusion of Theorem 4.1 holds if
f:R* - R* n >3, is anonconstant quasiregular mapping such that there
exists a sequence of quasiregular mappings f; : R* — R" whose matrix
dilatations satisfy the assumption of the theorem and fi — f locally uni-
formly in R (see [GMRV;], Theorem 2.21). It would be interesting to know
if for each quasiconformal mapping f : R* — R™ there exists a sequence
of quasiconformal mappings f; : R* — R™ such that & t, is continuous and
fi = f locally uniformly. Note that for n == 2 this is true (see [LV]).

Our next theorem gives a kind of global injectivity result for quasiregular
mappings defined on an arbitrary domain D of R™, n > 3. We set

(4.2) I(f,D) = | (K¢(2) — 1) dz
D

if f: D — R" is a quasiregular mapping.
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4.3, THECREM. Letn >3, @ > 1, D be a domain in B and G C D be
a compact set. Then there is § = §(C, D, Q) > 0 such that a locally injective
Q-quasiregular mapping f: D - R® is injective in C provided that

(4.4) I(f,D) <.

4.5. REMARK. To guarantee the local injectivity in Theorem 4.3, any of
the sufficient conditions of the previous section may be used.

4.6. COROLLARY. Letn > 3, @ > 1, D be a domain inB* and ¢ C D be
a compact set. Then there is & = §(C, D, Q) > 0 such that a Q-quasiregular
mapping f : D — R™ whose matriz dilatation is continuous in D, s injective
in C provided that I(f, D) < 4.

4.7. EXAMPLES. Let (r,9, z) denote the usual cylindrical coordinates of
R™. Set

D= {(T,’l?,Z) ir 20, I'ﬁ] <m 2= (33"'-:'271)}
and
fQ(rmﬂ: z) = ("'"119’13’) = (7" Q‘IQ,Z)-

It is easy to see that for all ) > 1 the mapping fq is @™ -quasiregular and
is not injective in D, although it is locally injective.

The authors do not know if the assumption of Theorem 4.3 that f is
locally injective in D is really needed. However, the following example shows
that for quasimeromorphic mappings, i-e. for mappings onto R™ = R™U{co},
this condition is necessary. Let f : R* — R", n > 3, be the mapping

(’l“, 3"'-’72:)1 "U' < 7['/2,
f('r,'u,z) = {(r,v+7r,z): "> iu[ >?T/2,

and f(oo) = co. Then f is topologically equivalent to the ordinary wipding
mapping around the z-axis. Note that Ks(z) = 1 in R* \ H where H is the
half plane H = {z € R™ : x; > 0}. Next, for each ¢ € {0,1) let . be_la
Mébius mapping sending H to the ball B(0,e) and write f. =po foprh
Then f, : R* — R" is a 3" l-quasimeromorphic mapping W.ltlll Ky, (m) =1
in R* \ B(0,¢). Thus I(f;,R") — 0 as & — 0 but f. is not injective in the
unit ball.

For the proof of Theorem 4.3 we need a number of lemmas. The first is
a variant of Lemma 2.12 of [Rez], p. 153

4.8. LEMMA. Let n > 8 and Q@ > 1. Then there is an increasing fwnctvlon
A=Ay g (0,00) = [0,00] and g € (0,1) with the following properties:
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(a) A(t) = 0 ast~ 0 and
(b) for each locally homeomorphic Q-quasiregular mapping f : Bz, )
— R”™ there is o Mdbius transformation ¢ with

(4.9) o f)(z) — | <rA(t), t=1I(f,B(zg,r))/mes(B(zq,r)),
for |z — zg| < gr.

Proof. Since f is locally homeomorphic, the proof of Theorem 3.12 of
[MSA] can be adapted to our situation. First by [MRV 3], Theorem 2.3, there
is 1 = q1{n, Q) € (0,1) such that a locally homeomorphic @-quasiregular
mapping f : B — R*, B the unit ball, is injective in B(0,¢). Set ¢ = ¢1/2
and for such mappings f write

5(f)= 2i11f{|m|%x l( o fF)(z) — 2| : ¢ Mdbius}
w|<yg
and for ¢ € [0, 00) define

M) = sup{d(f) : I(f, B) < t}.
To show that A and g satisfy (a) and (b) is a repetition of the normal family
argument in [MSA], p. 393. The only difference is the use of [GMRV],
Theorem 3.1, to conclude that the limit mapping is a M&bius transformation.

The change from the unit ball to B{zg, r) gives the additional factor to the
integral I{f, B(zg,r)). The lemma follows,

Next we recall an approximation lemma of Reshetnyak [Rep], Lemma,
2.10, p. 146.

4.10. LEMMA. Let h > 1. Then there exist numbers 6, > 0 and L > 1,
both depending only on h and n, such that a Mébius transformation p of R®
satisfies

(4.11) lo(x) — | < Lér  in Bla,rh)
provided that 0 < § < &y and that ¢ satisfies
ip(x) —z| < 6r  in Bla,r).

We also employ a topological result (see e.g. [Rep), Lemma 2.11, p. 148).

4.12. LeMMA. Suppose that U is a bounded open set in ®", f: T — R®

is continuous and a € U. If |f(z) — z| < |a — | for oll z € 8U, then there
18 a pont b € U such that f(b) = a.

Proof of Theorem 4.3. To show the injectivity of f on C let y1,y2 € C
and suppose that f(y1) = f(y2). Since € is a compact subset of D and since
f is locally quasiconformal by the well known theorem [MRV3], Theorem
2.3, on locally homeomorphic quasiregular mappings it follows that

(4.13) 1 —y2| > c>0
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where ¢ depends on n, @, C' and D but not on f. Next we employ a modi-
fication of the method introduced in [MSA]. It suffices to show that there
exists a Mdbius transformation ¢ such that

(4.14) (@0 f)w) —wl <l ~wal/2, i=12
Indeed, if (4.14) holds, then (¢ o f)(y1) = (po Flys) yields

ltn = v2l < ly1 = {0 Hw) |+ (2 0 £)(v2) — 1)
<y = 9l/24 [ — 12l/2 = n — 1l

a contradiction. The proof of (4.14) will also produce the desired number
d>0.

To prove (4.14) under the assumption (4.13) we first choose balls B(z;, ),
i=1,...,m, such that

(8) T1 = Y1, Tm = Y2,

(b) zit1 € B(wi,qr/8), ¢=1,...,m—1, and

(c) Bz, r} C D.
Here g is the constant of Lemma 4.8. It is easy to see that r and m have
upper bounds which only depend on C and D but not on %1,y € C. We
write B; = B(zi, qr).

Fixi=1,...,m and write

1

= es Blanr) | (Ki(2) - 1)de.

Blae;,r)
By Lemma 4.8 there is a Mobius transformation ¢; such that

(4.15) (i 0 F)(z) — 2l < rAG:)
Next let g; = py0 f and 6; = ;1 0 t,o;“l. Then g;i—1 = 8; ¢ g;. We let
A; = B(w;,qr/4). Then A; contains B{m;_1, gr/8) U B{z;, ¢r/8).

Next we show that fori =1,...,m,
(4.16) |0i(z) —z| £ 2Ar, =z €A,
provided that A = A(J{f, D)/({2,r™)) is small enough. To prove (4.16) con-

sider y € 8(B;-1 N B;). Since y € By, by (4.15) we have

for |@ — ;| < gr.

{417) loi(y) ~ vl < rA(k).
Since y € 8541, we have
(4.18) |y — 2| 2 3gr/8

and the same holds if y € 4B;. Thus

(4.19) l94(3) — | S PA() < 3gr/8 < o ]
provided that A(%;) < 3¢/8, and this last condition is satisfied if
(4.20) X = \(I(f, D)/ (22.™)) < 34/8
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because ¢; < I(f, D)/ (£2,r"). Thus
(4.21) Alt) € X< 3q/8
and condition (4.20) is satisfied. Note that condition (4.20) for I{f, D) holds
if I(f, D) < 6 where § > 0 is independent of the points y; and y,.
From Lemma 4.12 and (4.19) we obtain a point & such that
9:(Z) = .
Thus
|6:(z) — 2| < |6:i(} - F| + |7 — 2| = [(6: 0 9:)(&) — & + |F ~ g:(3))|
=|gi—1(F) — F| +|F — gu(®)] < rAltiz1) + rA(8;) < 2rA
if A= AI(f,D)/(2,r™}) (see (4.21)). We have shown. that (4.16) holds.
Now we can employ Lemma 4,10 and deduce from (4.16) that
(4.22) |0i(z) — x| < 2LAr <)
for all z € C'+ B(0,m(c+r)). Note that 6; is a Méhius transformation and

that ¢ and m depend only on n, @, C' and D.
Next we show that for i =1,...,m,

(4.23) |9:(Zm) — Tm| < cA(m — (i — 1))
where ¢ and ) are as in (4.22). We proceed by induction. By (4.15) this
holds for ¢ = m. Suppose that (4.23) holds for some 7 > 2. Then by (4.22)
and (4.23),
19i-1(%m) — Zm| = [(6: 0 g:)(2m) — |
< |0i{gi(zm)) — gil@m)| + |gi(zm) ~ zm]
Lerteh(m— (i —1)) = (m — (i —2))eA

where we have also used the fact that g;(z.,) € C+ B(0,m(c+r)), following
from

dist{g;(Zm), C) < |gi(%m) — 1] = |gi(Tm) — 21|

m
< gi(zm) ~ zm| + Z |z5 — 2511
J=2

< eam +mr < mle+ ).
This proves (4.23) and hence, in particular,
g1{Zm) ~ Tm| < cmA.
Since ., = ya, we have from this and from (4.17),
o1 0 lwe) —wal Semd,  [(p1 0 FHwm) —w| < rA(tL) < em.

These inequalities hold if X is chosen small enough. The constants ¢ and m
depend only on n, @, ' and D. Choosing now A = A(I(f, D)/(£2,r™)), i.e.
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I(f, D), small enough we obtain

(e © F)(ye) ~ il <1/2,
This is (4.14) and the proof is complete.

P12

The previous considerations lead to a general principle. It is well known
that convergence in meagure of measurable functions generates a metrizable
topology. Let r be a metric generating convergence in meagure in a domain
DcCR®.

4.24. THEOREM. Let § be a sequentially compact family of nonconstant
Q-quasiregular mappings f : D — R*, n > 3, and let C € D be o subdomain
of D. Then there exists § = §(F,C) > 0 such that the inequality

(4.25) r(L, K¢(z)) <d
implies the injectivity of f € F in C.

In particular, choosing D = B, the unit ball of R", n > 3, we have the
following consequence.

4.26. COROLLARY. Let &y be the family of all Q-quasiregular mappings
f: B — B with f(0) = 0 and f(zo) = 2o € B, 29 # 0. Then for all
0 < p < 1 there exists § = 8(n,Q,0) > 0 such that the inequality (4.25)
implies the injectivity of f € §o in B(0,0).

Indeed, Fo is equicontinuous (see [MRV], p. 10) and by the Arzela—
Ascoli theorem, §p is normal. Further, by the Reshetnyak theorem the limit
functions for the class Fo are in Fo again (see [Rei], p. 180), i.e. Fp is a se-
quentially compact family of nonconstant (J-quasiregular mappings in view
of the normalization. Thus, Theorem 4.24 yields the conclusion of Corollary
4.26,

For the proof of Theorem 4.24 we employ a lemma relating local and
global injectivity.

4.27. LEMMA. Let f, f; : D — R*, n > 2, be continuous discrete map-
pings, either all sense-preserving or all sense-reversing, end let f; — f lo-
colly uniformly as j — co. Then for every subdomain C € D, [ is injective
in C if and only if for some jo all f;, § 2 jo, are injective in C.

Proof of Theorem 4.24. Suppose that there exist a compact subdomain
C C D and a sequence of mappings f; € ¥ that are not injective in C and
(4.28) r(1, Ky, (2)) < 1/3.

Without loss of generality we may assume that f; — f € § locally uniformly
as j — co. Then by Theorem 3.1 of [GMRV3], K¢(z) = 1 a.e,, and by the
Liouville theorem, f is a Mobius mapping. Thus, the above assumption
contradicts Lemma, 4.27.
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Proof of Lemma 4.27. Without loss of generality we may assume that
the mappings are sense-preserving.

1) Let f be injective in C. Then there exists ¢ > 0 such that if § = C.
is the connected component of the e-neighborhood of C which contains C,
then § € D and f is injective in § (see [Rei), p. 190}.

Then f(C) is a compact subset of f(8)\ f(dS5). Thus, by Corollary 2.17
of [GMRV2] we have the following equality for the topological index:

for j > jpand z € C. .
If there exist ©1 # 2o € C such that fi(z1) = fj(x2) for some j > jo
then
w(fi(21), £3,8) 2 gy (1) + g (m2) 2 2
because f; are sense-preserving. This contradicts (4.29). Thus, all the f;,
§ > g, are injective in C. .
2) Conversely, let f;, j 2 jo, be injective in C. Suppose that’

(4.30) f(zy) = flze) =y
for some xy # w3 € C. Since f is discrete, there exists ¢ > 0 such that
y e R*\ f(8C.), €. C D, where C; is as above. Thus,

(4’31) ,u(y, f: CE) 2 i.f("‘vl) + 'if(.'l’.'z) =2
since f is sense-preserving.
Further, _
M(yifj7C€) :1: .7 2.7‘01

because f; is injective in C (see [RR], p. 133) and by Proposition 2.12 of
{GMRV;] we have

M(y,fj,c’e)zﬂ(y:faoe)zla .72.71
Thus, u(y, f, Ce) = 1, which contradicts (4.31), and the proof is complete.

5. Asymptotic linearity. We first recall the definition of asymptotic
linearity and recall some of its properties from [GMRV].

Let U be a domain in R" containing the origin and let v,w : U — R™
be not necessarily continuous. We say that v(z) = o(w(x)) if for each g > 0
there is a neighborhood V' of 0 such that |ju(z)|| < ellw(z)|| for all z € V\{0}.

Here the norm || - || need not be the usual Euclidean norm.
The functions v and w are said to be equivalent as z — 0, denoted as
(5.1) v{z) ~ w(a),
if
(5.2) lv(e) - wi@)| = ol w(a)] + [(=)]).
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It is easy to show that v(z) ~ w(z) is an equivalence relation and it is
equivalent to either of

(5.3) v(z) —w(z) = ofv(z))
and
(5.4) v(z) — w(z) = o{w(z)).

Moreover, if m = 1 then we have the usual equivalence of real quantities.

Later on, the usual Euclidean norm and the usual inner product of R™
are denoted by | | and (, ), respectively. It is shown in [GMRV;] that the
equivalence v(z) ~ w(x) with the respect to the usual Euclidean metric is
equivalent to the following two geometric conditions:

(5.5) lv(z)] ~ lw(=)|
and
(5.6) {v(z), w(z)) ~ |v(z)| - lw(z)]-

The first means the equivalence of the lengths of the vectors v(z) and w(zx),
and the second means that the angle between them converges to zero as
z — 0.

We write v(z) =~ w{x) and say that v and w have the same order of
smallness at the origin if

(5.7) lo(@)l/e < [w(a)] < clv(@)]

for some ¢ > 1 as x — (.
Moreover, we have shown that both equivalence relations (5.1) and (5.7)
are quasiconformal invariants. Now we are ready to give the main definitions.
A mapping f: U — R™ with £(0) = 0 is said to be asymptotically linear
at 0 if for each a € R\ {0},

(5.8) flaz)~af(zx) asz—0

and

(59)  flet+y)~ fl=)+ W)

If (5.8) holds unjformly with respect to ¢, ¢! < |o| < ¢, foreach 1 < ¢ < o0,
then we say that f is uniformly asymptotically linear at 0.

We have proved in [GMRV,] that, for quasiconformal mappings, asymp-
totic linearity always implies uniform asymptotic linearity.

We denote by Hy(r) the greatest lower bound of the numbers £ > 1 such
that

(5.10) sup |f(z)| € t|ni:1|1=fr’f($)|’

|w|=r

as £ — 0 whenever z +y =z~ .

3
§
%
§
&
k]
H
+
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where 0 < r < d{0,0U). The origin is called a point of spherical analyticity
for fif

(5.11) }%Hf(r) =L

Later on we say for brevity that a mapping f: U — R™ with f(0) =0
is weokly conformal at the origin if it is, simultanecusly, uniformly asymp-
totically linear and spherically analytic there.

We have proved in [GMRYV;] that weak conformality at the origin of
a discrete mapping f implies that f preserves the moduli of infinitesimal
annuli centered at (, i.e.
=) =]

—  for |z) = |y,

RO

and preserves the angles between rays emanating from 0 in the sense that

Lo (), £()  (a,0)
-0 [f(ta)}- £ (t0)| o] - [B]
Moreover, for quasiconformal mappings, by Thecrem 5.1 of [GMRV;],

condition (3.6) implies weak conformality at the origin. Thus, in view of
Lemma 3.5 the following result is valid for quasiregular mappings.

(5.12)

(5.13)

for all a,b e R™ \ {0},

5.14. LEMMA. Letn > 3 and let g : D — R™ with g(0) = 0 € D be a
nonconstant guastregular mapping such that

(5.15) K,(z)dz = 1.

lim L S
e—0 mes B(0, o) B(o.0)

Then g is weakly conformal at the origin.
Finally, in view of Corollary 2.34, we obtain the following theorem.

5.16. THEOREM. Let f : D — R™, n > 3, be a nonconstant quasiregular
mapping and let the dilatation tensor Gy or the matriz dilatation My be
approgimately continuous at xg € D. Then f is asymptoticelly linear at z.
Moreover, f can be represented in the form

(5.17) flz) = f(zo) + g(Al=)),

where A(z) = My - (& — o), Mo = My(0), s an affine volume-preserving
mapping and the quasiregular mapping g : A(D) — R™ is weakly conformal
at the origin.

5.18. COROLLARY. Let f : D — R™, n > 3, be a nonconstant quasiregular
mapping and let Gy or My be continuous at zo € D. Then f is asymptoti-
cally linear at xy with representation (5.17).
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In general, Lemma 3.5 enables one to extend the main results of [GMRV]
concerning quasiconformal mappings to the case of quasiregular mappings
satisfying the integral condition (5.15).

5.19. COROLLARY. Under the conditions of Theorem 5.16 with =g = 0,
£(0) = 0, the following relations hold:

T
(5:20) o) " ] © T O
(.21 lim LULTED)  Mom Mob) oy ¢ e g0,

=0 |f(ta)] - [£(tb)]  |Moal - |Mob]

In other words, the moduli of infinitesimal spherical rings centered at
zg = 0 and the angles between rays emanating from the origin in the direc-
tion of the corresponding point pairs are changed in the same way as under
the affine mapping A(z) = Myz.

5.22. COROLLARY. Under the conditions of Theorem 5.16 with zo = 0,
f0)=0,
(5.23) flz) ~ A(|Moz|) Moz

where the matriz-valued funclion A(t) sotisfies

asx — 0,

{5.25) A(t) ~ Alr) ast—0, r=1,
and, finally, A(t) is asymptotically orthogonal, that is,
At

111l = 1.
|z|=ly[=t—0 |A(t)y|

In other words, the asymptotic behavior of f at the origin is close to
that of the affine mapping A(z) = Myz.

6. Behavior of the modulus. We begin with a general statement that
holds under weak conformality of the discrete mappings.

6.1. THEOREM. Let f : D — B™ with 0 € D and f{0) = 0 be discrete
and weakly conformal af the ovigin. Then

(6.2) i (0B EN
20 log ||

6.3. COROLLARY. If a quasiregular mapping f : D — R* with f(0) =0
is weakly conformal at the origin, then (6.2) holds.

From Corollary 6.3 and Theorem 5.16 we obtain the following.

6.4. COROLLARY. Let f: D — R™, n > 3, be a nonconstant quasiregular
mapping and let the dilatation tensor Gy or the matriz dilatation My be
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approzimately continuous af £o € D. Then

. log|f(z) — flmo)| _
(6.5) Mo (7 —0)] |

where My = My (z0). In particular, if My is an orthogonal matric then
1 —
(6.6) i 1081F(2) — f(zo)]
a—az0  log|z — 20
Proof of Theorem 6.1. Suppose that (6.2) does not hold. Then there
exists £ > () and a sequence z; — 0 such that
log|f{z;)| 4
log ||
for all j =1,2,... Define t; = —log|z;| and 7; = —log {f(z;)|. Then (6.7)
can be rewritten as

(6.8)

= 1.

(68.7) >e

4. ll >e.
iz
By passing to a subsequence if necessary, we can assume that ¢; —¢;_; > 1.
Moreover, putting between neighboring elements of the sequences ¢; and 7;,
J=1,2,..., their arithmetic means one can always attain that t; —¢;_1 < 2.
Then the inequality (6.8) is preserved for an infinite number of elements of
the new sequence. Thus we may additionally suppose that the sequence
0; = |z;] = ™% satisfies
e™? < g;/0j-1 <e
However, by (5.12),
exp('rj_l — Tj) e= exp(tjwl - tj) + @y,

where e;; — 0 as § — oo. In other words,
(6.9) oxp(7y-1 — 75) = (14 B;) exp(tj—1 — t;),
where 8; — 0 as j — oo because exp(t;_; — t;) > e™2.

From (6.9) we have 751 —7; = (t;_1 —t;) +y;, where v; — 0 as j — o0,
and hence

lim 2Ty
d=eo by —tj1
since £; — ¢;;3 > 1. From the Stolz theorem (see, e.g., [Fi], p. 55) we now

deduce that

j—oo 4

This contradicts (6.8) and completes the proof.

7, Appendix: continuity of the injectivity radius. In what follows
we assume that all mappings f : D — R™, n > 1, considered are continuous.
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We say that a domain § C D is a compact subdomain of D and write
§ € J(D) if its closure 5 is a compact subset of D. Denote by u(y, f, S) the
topological index of the triple (y, f, S) where

(1.1) Jf:D-R', SeJ(D), yeR"\f(58S).

The definition of the index given in [RR] is based on algebraic topology.
However, we employ a sequential approach based on approximation of any
continuous function f by regular functions (see [FG]).

We need the following property of u(y, f,5); it is an immediate conse-
quence of [FG], Theorem 2.3.

7.2. LEMMA. Lei D be a domain inR™ and f; : D —R", =1,2,..., a
sequence of continuous functions such that f; — f locally uniformly in D.
IfS € J(D) and if C is a compact subset of D such that f(CYN f(8S) =B,
then there is jo such that

(7.3) n(fi(@), £, 8) = u(f(z), £, 9)
forall x € C.

A mapping f : .D — R™ is gaid to be sense-preserving (resp. sense-
reversing) if u(y, £,.8) > 0 (resp. p(y, £, 5) < 0) for all y € f(5)\ f(85) and
all S as above. It is well lknown that if f is one-to-one then f is either sense-
preserving or sense-reversing and, moreover, p(y, f,S) =1 or u(y, f,5) =
—1, respectively (see [RR], pp. 133-134).

A mapping f is called discrete if the set f~*(y) consists of isolated points
for every y € f(D). A mapping f is called open if f(A) is open whenever
A4 C D is apen.

Note that nonconstant quasiregular mappings are discrete, open and
sense-preserving (see, e.g., [Res], [MRVy)).

If f is discrete then the topological index u(f(z), f,S) is independent of
the choice of a compact subdomain § C D with SN f~{f(z)) = {z} and
it is then denoted by if(x) (see [MRVy], p. 6).

We need the following formula (cf., e.g., [RR], p. 126, [Vu], p. 123):

k
(7.4) wly, £,9) =Y iz(m),
[==1

Whilch holds for discrete mappings f : D — R™ where {z1,...,zx} = SN
= ).

Let f: D — R*, A c D,y € R, and N{y, f, A) be the number of
points in A N f~1(y). We set Ny(4) = sup{N(y,f, A}y € R*"}. I [ is
continuous, open, discrete and sense-preserving, then every point ¢ € ) has
a neighborhood V such that Ny (U) = iz(2) for each neighborhood U C V
of 5. Moreover, z € D\ By if and only if i7(z) = 1 (see [MRV], p. 11}. Here

Rl FREHNe
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the branch set By of f is the set of all points of D at which f fails to be a
local homeomorphism. Note that by the definition D \ By is an open set. If
f is, simultaneously, open and discrete then, by the well known Chernavskif
theorem, dim By < n — 2 (see, e.g., [V1]). Hence D \ By is connected, i.e.
D\ By is a domain.

For every mapping f : D — R® and z € D we define the radius of
injectivity By (z) of f at x as the supremum over all ¢ > 0 such that f(z;) #
Flza) for zy # T2 in the ball B(z, 0) C D.

7.5. THEOREM. Let f, f; : D — R*, n > 2, be continuous discrete map-

pings, either all sense-preserving or all sense-reversing. If f; — f locally
uniformly as j -+ oo, then for every ¢ € D,

(76) Ryle) = Jim Ry, (z).

Moreover, the limit (7.6) is locally uniform with respect to x € D.

In particular, choosing special sequences f;(z) = f(z + z; — %o), z; —
xg € D, we obtain the following consequence of Theorem 7.5.

7.7. COROLLARY. Let f : D — R™ be conbinuous, discrete and sense-
preserving. Then the injectivity radius Ry(z) is a continuous function of
zeD.

Proof of Theorem 7.5. Without loss of generality we may assume that
the mappings are gense-preserving.

1) First we show the upper semicontinuity of Ry with respect to f, i.e.
for every fixed =y € D,

(78) Rf (:1’.‘0) < lim inf Rfj (2:0)

J—o0
If Ry¢(zo) = 0, then (7.8) is obvious. Let
O0<ra<m <T02Rf(x0)> S=B(Z}0,T‘1), C=B(.’.’Go,"’2)‘

Now f is injective in § and hence f(C) C #(8)\ f(85) and by Lemma 7.2
forall j > jpand z € C,
(79) lu‘(f.'l (CC), fJ1 B(xt:h Tl)) = H’(.f(m)v f: B(mﬂa rl)) = 1L

If there exist z; # =y € B{zg,r2) such that f;(z1) = f;(2x2) for some
3 2 jo then in view of (7.4),

s i@}, f5, Bmo,m1)) 2 ig; (1) +ig, (22) 2 2

because f; are sense-preserving. However, this inequality contradicts (7.9).

We hence obtain (7.8) since ra € (0,70) was arbitrary.
2) Next we show the lower semicontinuity:

(7.10) R¢(2o) 2 lim sup Ry, (o).
Jj—oo

icm
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This is obvious if the limit on the right hand side is zero and so we need
only consider the case

limsup Ry, (zg) =r > 0.
J—o0
Suppose that f(x1) = f(wz) = y for some &, # z4 € B(zp,r). Since f is
discrete, there exists ry € (rg,7) where
ro = max{|zy — @pl, |2z — @[}

such that y € R™ \ f(8B(xo,r1)) and by (7.4} we have

(7.12) Wy, £, B(wo,m)) 2 ip(m1) +ig(zz) 2 2
because f is sense-preserving.
Let
= klwlqn;lo Rfik (wo),
where fj,, k=1,2,..., are injective in B(xzg,1). Then

ru*(yv fjk’ B(.’Bg, Tl)) =1
and by Lemma 7.2,

(Y, Fins B(wo, 1)) = uly, f, B(wo, 1))
for & > ko and thus pufy, f, B(zo,71)) = 1. This contradicts (7.11). Hence
(7.10) holds.
3) The inequalities (7.8) and (7.10) imply (7.6).
4) The limit (7.6) is locally uniferm in D. Indeed, suppose that there
exist a compact subset €' C D and a sequence x; € C such that

(7.12) | Ry, (w;) — Ry(a;)| 2 >0
and z; — zp € C. Then
| Fi(x) = fi(a; + %) — F(z) = f{zo + =)
as j ~ oo locally uniformly end by 3) we obtain Rp;(0) — Rp(0). This
contradicts (7.12).

7.13. REMARK. The upper semicontinuity (7.8) of the injectivity radius
was first established in [Sar] for locally homeomorphic quasiregular map-
pings f: B(0,1) — R*, n > 3.
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