Functions with derivatives in spaces of Morrey type and elliptic equations in unbounded domains

by

ANNA CANALE, PATRIZIA DI GIRONIMO and ANTONIO VITOLO (Salerno)

Abstract. We introduce a sort of "local" Morrey spaces and show an existence and uniqueness theorem for the Dirichlet problem in unbounded domains for linear second order elliptic partial differential equations with principal coefficients "close" to functions having derivatives in such spaces.

Introduction. In [TTV] the space $M^{p,\lambda}(\Omega) = M^{p,\lambda}(\Omega, 1)$ was introduced, for an open subset Ω of \mathbb{R}^n, with $p \in [1, \infty]$ and $\lambda \in [0, n]$, where $M^{p,\lambda}(\Omega, t), t \in \mathbb{R}_+$, is defined as the space of functions $g \in L^{p,\lambda}_0(\Omega)$ such that

$$
\|g\|_{M^{p,\lambda}(\Omega, t)} = \sup_{\tau \in [0, t]} \left(\int_{\Omega} |g(x)|^p \frac{1}{(\frac{1}{\tau})^\lambda} \right)^{1/p} < \infty.
$$

We observe that, when Ω is a bounded set, the space $M^{p,\lambda}(\Omega)$ reduces to the classical Morrey space, denoted by $L^{M,\lambda}_p(\Omega)$ (see [KJF]) or $L^{p,\lambda}(\Omega)$ (see [CF], [CFR]).

Subsequently in [V] the subspace $W^{1,1}M^{p,\lambda}(\Omega)$ of the functions $g \in W^{1,1}_0(\Omega)$ such that $g, g_\alpha \in M^{p,\lambda}(\Omega)$, equipped with the norm

$$
\|g\|_{W^{1,1}M^{p,\lambda}(\Omega)} = \|g\|_{M^{p,\lambda}(\Omega)} + \|g_\alpha\|_{M^{p,\lambda}(\Omega)},
$$

has been defined, where

$$
g_{\alpha_i} = \frac{\partial g}{\partial x_i}, \quad g_\alpha = \left(\sum_{i=1}^{n} g_{\alpha_i}^2 \right)^{1/2}.
$$

It turns out (see Theorem 4.1 and Corollary 4.2 of [V]) that, if Ω is sufficiently regular, then there exists a bounded linear extension operator

$$
p : W^{1,1}M^{p,\lambda}(\Omega) \rightarrow W^{1,1}M^{p,\lambda}(\mathbb{R}^n).
$$

1991 Mathematics Subject Classification: Primary 35J25, Secondary 46E35.
Here we define more general spaces, denoted by $W^1 M_{p_0}^{\alpha}(\Omega)$, whose functions are required to be in $W^1 M_{p_0}^{\alpha}(\Omega)$ only when multiplied by functions of a suitable sequence in $C_0^\infty(\mathbb{R}^n)$, as specified in Section 1.

Actually, the extension operator p can be defined on $L^1_{\text{loc}}(\Omega)$: in Section 2 we show that

$$p(W^1 M_{p_0}^{\alpha}(\Omega)) \subset W^1 M_{p_0}^{\alpha}(\mathbb{R}^n),$$

and that, if $g \in L^1_{\text{loc}}(\Omega)$ satisfies certain bounds in Ω, then the same bounds hold for $p(g)$ in a suitable neighbourhood of Ω.

Then, for $n \geq 3$, we consider the Dirichlet problem

(3) \[u \in W^2(\Omega) \cap W^1_0(\Omega), \quad Lu = f, \]

for the linear operator $L : W^2(\Omega) \to L^2(\Omega)$ defined as

(4) \[Lu = -\sum_{i,j=1}^n a_{ij}x_i x_j + \sum_{i=1}^n a_i x_i + au, \]

where $a_{ij} = a_{ji} \in L^\infty(\Omega)$, a_i belongs to $M_0^{\alpha,n-s}(\Omega)$, the closure of $C_0^\infty(\Omega)$ in $M_0^{\alpha,n-s}(\Omega)$, for some $s \in [2,n]$, and a belongs to $M^{p,\alpha}(\Omega)$, the closure of $L^\infty(\Omega)$ in $M^{p,\alpha}(\Omega)$ for a suitable $p \in \mathbb{R}_+$.

We recall that, when Ω is bounded, problem (3) has been dealt with by F. Chiarenza–M. Franchi in [CF] under the following assumption, which is a generalization of the classical one due to C. Miranda [M]:

$$(a_{ij}) \in V L^{\alpha,n-s}(\Omega) \quad \text{for some } s \in [2,n], \quad i,j = 1, \ldots, n,$$

where $V L^{\alpha,n-s}(\Omega)$ is the subspace of $L^{\alpha,n-s}(\Omega)$ of functions g such that $\|g\|_{M^{p,\alpha}(\Omega)} \to 0$ as $t \to 0$.

Successively the problem has been studied when Ω is unbounded: 1) in [CLM1] with

$$a_{ij} \in M_0^{\alpha,n-s}(\Omega) \quad \text{for some } s \in [2,n], \quad i,j = 1, \ldots, n;$$

2) in [CLM2] with

$$a_{ij} \in W^1_0 M_0^{\alpha,n-s}(\Omega) \quad \text{for some } s \in [2,n],$$

where $W^1_0 M_0^{\alpha,n-s}(\Omega)$ is a suitable subspace of $W^1 M_0^{\alpha,n-s}(\Omega)$ which will be specified in the next section.

In this paper we are concerned with problem (3) when Ω is an unbounded open set, and with more general assumptions on the coefficients a_{ij} of the operator L in comparison to [CLM1] and [CLM2].

We suppose that the coefficients a_{ij} are sufficiently close to uniformly elliptic coefficients c_{ij} belonging to $W^1 M_0^{\alpha,n-s}(\Omega)$ for some $s \in [2,n]$, and that both a_{ij} and c_{ij} are convergent at infinity.

We use the extension operator in order to get an approximation of the functions a_{ij} by means of regular coefficients a_{ij}^0, which we take to define, according to (4), a sequence of operators L_k, $k \in \mathbb{N}$.

We obtain an a-priori bound for the operators L_k and L_k. By using such bounds and a classical method due to M. Chicco (see [C1], [C2]) and applied in other papers (see [TT2], [TT3]), and assuming that

$$\text{ess inf } a > 0$$

we find a solution u of (3) as limit of solutions u_k of related Dirichlet problems for L_k.

By Fredholm theory and compactness results for the multiplication operator

$$u \in W^1(\Omega) \to g u \in L^2(\Omega),$$

when g belongs to $M^{p,\alpha,n-s}(\Omega)$ for some $s \in [2,n]$, we finally prove an existence and uniqueness theorem for (3).

1. The spaces $M^{p,\alpha}(\Omega)$ and $W^1 M^{p,\alpha}(\Omega)$.

We denote by $\Sigma(\Omega)$ the σ-algebra of Lebesgue measurable subsets of Ω and, for every $E \in \Sigma(\mathbb{R}^n)$, by $|E|$ the Lebesgue measure of E and by χ_E the characteristic function of E. For every $t \in \mathbb{R}_+$, we let $B(x,t)$ be the open sphere centred at x with radius t, and for $E \in \Sigma(\mathbb{R}^n)$ we put $E(x,t) = E \cap B(x,t)$, also setting $E(x) = E(x,1)$.

If $E \in \Sigma(\Omega)$, $p \in [1,\infty]$ and $g \in L^p(\Omega)$, we put

$$|g|_{p,E} = \|g\|_{L^p(E)}.$$

We denote by $L^p_0(\Omega)$ the class of measurable functions g on Ω such that $\zeta g \in L^p(\Omega)$ for every $\zeta \in C_0^\infty(\mathbb{R}^n)$, and by $W^1_0(\Omega)$ the subspace of functions $g \in L^\infty(\Omega)$ such that $g \zeta \in L^p_0(\Omega)$, $i = 1, \ldots, n$.

For each $p \in [1,\infty]$ and $\lambda \in [0,n]$, with the above notations, we recall that $M^{p,\alpha}(\Omega,t)$ is the space of functions $g \in L^p(\Omega,t)$ such that

$$\|g\|_{M^{p,\alpha}(\Omega,t)} = \sup_{E \subseteq \Omega,t} \|g\|_{L^p(E)} < \infty,$$

and

$$M^{p,\alpha}(\Omega) = M^{p,\alpha}(\Omega,1).$$

We also set $M^{p,0}(\Omega) = M^{p}(\Omega)$.

We recall that $g \in M^{p,\alpha}(\Omega)$ if and only if there exists a function $\sigma : \mathbb{R}_+ \to \mathbb{R}_+$, convergent to zero as $\delta \to 0$, such that

$$\|\chi_E g\|_{M^{p,\alpha}(\Omega)} \leq \sigma(\delta)$$
for each \(E \in \Sigma(\Omega) \) such that \(\sup_{x \in \Omega} |E(x)| \leq \delta \). Such a function will be called a modulus of continuity of \(g \) and denoted by \(\sigma_g(\delta) \).

For \(r \in \mathbb{R}_+ \), we set \(B_r = B(0, r) \) and denote by \(\zeta_r \) a function of class \(C^0_0(\mathbb{R}) \) such that
\[
\text{supp } \zeta_r \subset B_{2r}, \quad 0 \leq \zeta_r \leq 1, \quad \zeta_r|_{B_r} = 1, \quad (\zeta_r)_x \leq 2/r.
\]

We also recall that
\[
\begin{equation}
M_0^{-\lambda}(\Omega) = \{ g \in \overline{M}_0^{P, \lambda}(\Omega) : \lim_{r \to \infty} \| (1 - \zeta_r)g \|_{M^{P, \lambda}(\Omega)} = 0 \},
\end{equation}
\]
also setting \(M_0^{0}(\Omega) = M_0^{\infty}(\Omega) \).

We shall employ results about the multiplication operator
\[
u \in W^1(\Omega) \rightarrow g u \in L^2(\Omega)
\]
with \(g \) belonging to some of the spaces defined above, which have been proved in [TTV], [TT1], [GTT].

\begin{lemma}
Let \(n > 2 \) and \(\Omega \) be an open subset of \(\mathbb{R}^n \) with the cone property.

If \(g \in M_0^{n-1}(\Omega) \) with \(n \) \in \([2, n] \), then \(g u \in L^2(\Omega) \) for any \(u \in W^1(\Omega) \), and the operator (1.4) is bounded.

If \(g \in M_0^{n-1}(\Omega) \), then there exists \(c(\epsilon) \in \mathbb{R}_+ \) such that
\[
|g u|_{2, \epsilon} \leq \epsilon |u|_{2, \epsilon} + c(\epsilon) |u|_{2, \epsilon} \quad \forall u \in W^1(\Omega).
\]

If \(g \in M_0^{n-1}(\Omega) \), then there exists \(c(\epsilon) \in \mathbb{R}_+ \) and a bounded open subset \(\Omega(\epsilon) \) of \(\Omega \) such that
\[
|g u|_{2, \epsilon} \leq \epsilon |u|_{W^1(\Omega)} + c(\epsilon) |u|_{2, \Omega(\epsilon)} \quad \forall u \in W^1(\Omega),
\]
and the operator (1.4) is compact.
\end{lemma}

\begin{lemma}
Let \(\Omega \) be an open subset of \(\mathbb{R}^n \) with the cone property. Let \(k \in \mathbb{N} \) and \(p \in \mathbb{Z}_{>0} \) be such that
\[
p = 2 \quad \text{if } n < 2k, \quad p > 2 \quad \text{if } n = 2k, \quad p = n/k \quad \text{if } n > 2k.
\]

If \(g \in M^{P}(\Omega) \), then for any \(u \in W^k(\Omega) \) we have \(g u \in L^2(\Omega) \), and the operator
\[
u \in W^k(\Omega) \rightarrow g u \in L^2(\Omega)
\]
is bounded.

If \(g \in \overline{M}^{P}(\Omega) \), then there exists \(c(\epsilon) \in \mathbb{R}_+ \) such that
\[
|g u|_{2, \epsilon} \leq \epsilon \sum_{|\alpha| = k} |D^\alpha u|_{2, \epsilon} + c(\epsilon) |u|_{2, \epsilon} \quad \forall u \in W^k(\Omega).
\]
\end{lemma}

If \(g \in M_0^{P}(\Omega) \), then there exist \(c(\epsilon) \in \mathbb{R}_+ \) and a bounded open subset \(\Omega(\epsilon) \) of \(\Omega \) such that
\[
|g u|_{2, \epsilon} \leq \epsilon |u|_{W^{1}(\Omega)} + c(\epsilon) |u|_{2, \Omega(\epsilon)} \quad \forall u \in W^k(\Omega);
\]
in this case the operator (1.5) is compact.

\begin{remark}
We recall [see [TTV]] that \(g \in M_0^{P, \lambda}(\Omega) \) if and only if \(g \in M_0^{P}(\Omega) \) and
\[
\lim_{r \to 0^+} \| g \|_{M^{P, \lambda}(\Omega, r)} = 0, \quad \lim_{r \to \infty} \| g \|_{M^{P, \lambda}(\Omega, r)} = 0.
\]
We also remark that, if \(\Omega \) is bounded, then \(M_0^{P, \lambda} = \overline{M}^{P, \lambda}(\Omega) \).
\end{remark}

Now, we introduce (see [CLM]) a more general class of spaces by setting
\[
M_0^{P, \lambda}(\Omega) = \{ g \in L^{1, \lambda}_{\text{loc}}(\Omega) : \zeta \in M_0^{P, \lambda}(\Omega) \}
\]
defined in [V], can in turn be generalized by letting
\[
\begin{align*}
W_1^{1, \lambda}_{\text{loc}}(\Omega) &= \{ g \in L^{1, \lambda}_{\text{loc}}(\Omega) : \zeta g \in M_0^{P, \lambda}(\Omega) \}, \\
W_1^{1, \lambda}_{\text{loc}}(\Omega) &= \{ g \in L^{1, \lambda}_{\text{loc}}(\Omega) : \zeta g \in \overline{M}^{P, \lambda}(\Omega) \}.
\end{align*}
\]

\section{The extension operator \(p \in B(W^1, M_0^{P, \lambda}(\Omega), W^1, M_0^{P, \lambda}(\mathbb{R}^n)) \).

We shall consider an open subset \(\Omega \) of \(\mathbb{R}^n \) with the following regularity property (see [AD]):

\begin{itemize}
\item[(1)] for \(\Phi \) there exist a locally finite open covering \(\{ U_h \}_{h \in \mathbb{N}} \) of \(\partial \Omega \) and homeomorphisms \(\Phi_h : (\Phi_h, U_h) : U_h \rightarrow B_1, \ h \in \mathbb{N} \), with constants \(\delta, M \in \mathbb{R}_+ \), \(N \in \mathbb{N} \), such that
\[
\bigcup_{h \in \mathbb{N}} \Phi_h^{-1}(B(0, 1/4)) \subset \Omega_h^{-} = \{ x \in \Omega \cap \partial \Omega : \text{dist}(x, \partial \Omega) < \delta \};
\]
\item[(2)] every \(x \in \mathbb{R}^n \) belongs to at most \(N \) of the \(U_h \)'s;
\item[(3)] for every \(h \in \mathbb{N} \), \(\Phi_h(U_h \cap \Omega) = B_1 \), \(\Phi_h(U_h \cap \partial \Omega) = \{ x \in B_1 : x_n = 0 \} \),
\item[(4)] for every \(h \in \mathbb{N}, (\Phi_h, \Phi_h^*) \in L^\infty(U_h), (\Phi_h, \Phi_h^*)_{x_i} \in L^\infty(B_1), i = 1, \ldots, n, \) and
\[
\| \Phi_h^* \|_{L^\infty(U_h)}, \| \Phi_h^* \|_{L^\infty(B_1)}, \| (\Phi_h, \Phi_h^*)_{x_i} \|_{L^\infty(U_h)}, \| (\Phi_h, \Phi_h^*)_{x_i} \|_{L^\infty(B_1)} \leq M;
\]
\end{itemize}
In [V] (Theorem 3.3) the following extension result is proved, where
\[\gamma : (x_1, \ldots, x_n) \in \mathbb{R}^n \rightarrow (x_1, \ldots, -x_n) \in \mathbb{R}^n, \]
and \(p \in [1, \infty[, \lambda \in [0, n] \).

Theorem 2.1. Let \(\Omega \) be an open subset of \(\mathbb{R}^n \) with property \((\Phi)\). Let \(E \subset \Sigma(\mathbb{R}^n), E_0 = E \cap \Omega, \) and \(E_h = (E \cap U_h) \cup F_h \gamma (\Phi_h(E \cap U_h)) \cap \Omega, \)
h \in \mathbb{N}, where \(\{ U_h \}_{h \in \mathbb{N}} \) and \(\Phi_h : U_h \rightarrow B_1, \) \(h \in \mathbb{N}, \) are respectively the open covering of \(\partial \Omega \) and the homeomorphisms of \((\Phi)\), satisfying (2.1)-(2.4). Then there exists a linear extension operator
\[p : L^1_{\text{loc}}(\Omega) \rightarrow L^1_{\text{loc}}(\mathbb{R}^n) \]
such that \(p(W^1_{\text{loc}}(\Omega)) \subset W^1_{\text{loc}}(\mathbb{R}^n) \), and

(A) if
\[\chi_{E_0} g, \chi_{E_h} g \in M^{p, \lambda}(\Omega), \]
then
\[\| \chi_{E_0} p(g) \|_{M^{p, \lambda}(\mathbb{R}^n)} \leq c \sup_{h \in \mathbb{N}_0} \| \chi_{E_h} g \|_{M^{p, \lambda}(\Omega)} \]
with \(c \in \mathbb{R}_+ \) depending on \(n \) and on the constants implied in \((\Phi)\);

(B) if also
\[\chi_{E_0} g, \chi_{E_h} g \in M^{p, \lambda}(\Omega), \]
then
\[\| \chi_{E_0} p(g) \|_{M^{p, \lambda}(\mathbb{R}^n)} \leq c \| g \|_{M^{p, \lambda}(\Omega)}, \]
with \(c \in \mathbb{R}_+ \) depending on \(n \) and on the constants implied by \((\Phi)\).

The extension operator \(p \) maps \(W^1 M^{p, \lambda}(\Omega) \) into \(W^1 M^{p, \lambda}(\mathbb{R}^n) \), as a consequence of the following

Corollary 2.2. Let \(\Omega \) be an open subset of \(\mathbb{R}^n \) with property \((\Phi)\). Then
(A) \(g \in M^{p, \lambda}(\Omega) \Rightarrow p(g) \in M^{p, \lambda}(\mathbb{R}^n), \)
and we have
\[\| p(g) \|_{M^{p, \lambda}(\mathbb{R}^n)} \leq c \| g \|_{M^{p, \lambda}(\Omega)}, \]
Moreover,
(B) \(g \in W^1 M^{p, \lambda}(\Omega) \Rightarrow (p(g))_z \in M^{p, \lambda}(\mathbb{R}^n), \)
and we have
\[\| p(g) \|_{W^1 M^{p, \lambda}(\mathbb{R}^n)} \leq c \| g \|_{W^1 M^{p, \lambda}(\Omega)}, \]
whence, by (A), \(p(g) \in W^1 M^{p, \lambda}(\mathbb{R}^n) \) and
\[\| p(g) \|_{W^1 M^{p, \lambda}(\mathbb{R}^n)} \leq c \| g \|_{W^1 M^{p, \lambda}(\Omega)}, \]
with \(c \in \mathbb{R}_+ \) depending on \(n \) and on the constants implied by \((\Phi)\).

Corollary 2.3. Let \(\Omega \) be an open subset of \(\mathbb{R}^n \) with property \((\Phi)\). Then \(g \in L^\infty(\Omega) \Rightarrow p(g) \in L^\infty(\mathbb{R}^n), \)
and we have
\[\| p(g) \|_{L^\infty(\mathbb{R}^n)} \leq c \| g \|_{L^\infty(\Omega)}, \]
Moreover,
\[g \in W^{1, \infty}(\Omega) \Rightarrow p(g) \in W^{1, \infty}(\mathbb{R}^n), \]
and we have
\[\| p(g) \|_{W^{1, \infty}(\mathbb{R}^n)} \leq c \| g \|_{W^{1, \infty}(\Omega)}, \]
whence, by (A), \(p(g) \in W^{1, \infty}(\mathbb{R}^n) \) and
\[\| p(g) \|_{W^{1, \infty}(\mathbb{R}^n)} \leq c \| g \|_{W^{1, \infty}(\Omega)}, \]
with \(c \in \mathbb{R}_+ \) depending on \(n \) and on the constants implied in \((\Phi)\).

Proof. (A) If \(g \in L^\infty(\Omega) \), then \(g \in M^{p, \lambda}(\Omega) \) for every \(p \in [1, \infty[, \lambda \in [0, n] \). By using Corollary 2.2(A) with \(p = 1, \lambda = n \), for every \(x \in \mathbb{R}^n \) and \(t \in [0, 1] \) we have
\[\frac{\omega_n}{|B(x, t)|} \int_{B(x, t)} |p(g)| &\leq c \| g \|_{M^{1, n}(\Omega, t)} \leq c \omega_n \| g \|_{L^\infty(\Omega)}, \]
with \(\omega_n = |B_1| \), whence (2.10) follows as \(t \rightarrow 0 \) by the Lebesgue theorem.

(B) The proof of (2.11) is similar, with \((p(g))_z \) instead of \(p(g) \), applying (B) of Corollary 2.2 instead of (A). \(\square \)

Remark 2.4. By construction of the extension \(p \) (see the proof of Theorem 3.3 of [V]), there exists \(\eta \in \mathbb{R}_+ \) such that certain bounds, if satisfied by \(g \in L^1_{\text{loc}}(\Omega) \) on \(\Omega \), hold for the extended function \(p(g) \) on
\[\Omega(\eta) = \{ x \in \mathbb{R}^n : \text{dist}(x, \Omega) < \eta \}. \]
Indeed, if \(x \in \Omega(\eta) \), then there exist \(x_1 \in U_{h_1} \cap \Omega, \ldots, x_h \in U_{h_h} \cap \Omega, \) with \(h \in \{ 1, \ldots, N \} \), such that for every \(g \in L^1_{\text{loc}}(\Omega) \),
\[p(g)(x) = \theta_{h_1}(x)g(x_1) + \cdots + \theta_{h_h}(x)g(x_h), \]
where \(\theta_{h_1}, \ldots, \theta_{h_h} \in C^\infty_0(\mathbb{R}^n) \) and \(\theta_{h_k}(x) + \cdots + \theta_{h_h}(x) = 1. \)
Moreover, since the \(U_f \)'s are uniformly bounded, there exists \(\bar{r} \in \mathbb{R}_+ \) such that, for \(r \geq \bar{r}, \)
\[|x| \geq r \Rightarrow |x_h| \geq r - \bar{r}, \]
for every \(\bar{x} \in \Omega(\eta) \). Reciprocally, every \(y \in \Omega \) occurs, with its image \(g(y), \) in at most \(N \) of the values \(p(g)(x), x \in \Omega(\eta) \). We also remark that, if \(\text{supp} \, g \) is bounded, then \(\text{supp} \, p(g) \) is compact.
COROLLARY 2.5. Let \(\Omega \) be an open subset of \(\mathbb{R}^n \) with property (\(\Phi \)). Let \(\mu \in \mathbb{R} \). If
\[
g \geq \mu \quad \text{(resp. } g \leq \mu) \quad \text{in } \Omega,\]
then
\[
p(g) \geq \mu \quad \text{(resp. } p(g) \leq \mu) \quad \text{in } \Omega(\eta),\]
with \(\Omega(\eta) \) given by Remark 2.4.

Proof. Let \(x \in \Omega(\eta) \setminus \overline{\Omega} \). Then
\[
p(g)(x) = \theta_1 g(x) + \ldots + \theta_h g(x) \geq (\theta_1 + \ldots + \theta_h) \mu = \mu,
\]
if \(g \geq \mu \) in \(\Omega \); and analogously \(p(g)(x) \leq \mu \) if \(g \leq \mu \) in \(\Omega \).

COROLLARY 2.6. Let \(\Omega \) be an open subset of \(\mathbb{R}^n \) with property (\(\Phi \)). If
\[
g_\infty = \lim_{|x| \to \infty} g(x) \quad \text{in } \Omega(\eta),
\]
then
\[
g_\infty = \lim_{|x| \to \infty} p(g)(x) \quad \text{in } \Omega(\eta).
\]

Proof. We prove the result when \(g_\infty \in \mathbb{R} \), the other cases being similar. We fix \(\varepsilon \in \mathbb{R}_+ \). Then there exists \(r_\varepsilon > \overline{r} \) such that
\[
g_\infty - \varepsilon \leq g(x) \leq g_\infty + \varepsilon
\]
for every \(x \in \Omega \) such that \(|x| \geq r_\varepsilon - \overline{r} \). By reasoning as in Corollary 2.5, and observing that
\[
x \in \Omega(\eta) \setminus \overline{\Omega} \text{ and } |x| \geq r_\varepsilon + \overline{r} \Rightarrow x_k \in \Omega \text{ and } |x_k| \geq r_\varepsilon, \quad k = 1, \ldots, h,
\]
we obtain
\[
g_\infty - \varepsilon \leq p(g)(x) \leq g_\infty + \varepsilon
\]
for each \(x \in \Omega(\eta) \) such that \(|x| \geq r_\varepsilon \).

COROLLARY 2.7. Let \(\Omega \) be an open subset of \(\mathbb{R}^n \) with property (\(\Phi \)). Then
\[
g \in M^\Phi_{loc}(\overline{\Omega}) \Rightarrow p(g) \in M^\Phi_{loc}(\mathbb{R}^n);
\]
\[
g \in W^1 M^\Phi_{loc}(\overline{\Omega}) \Rightarrow p(g) \in W^1 M^\Phi_{loc}(\mathbb{R}^n).
\]

Proof. (A) Let \(g \in M^\Phi_{loc}(\overline{\Omega}) \). Let \(r \in \mathbb{R}_+ \). Since \(E = B_{2r} \cap F \) in Theorem 2.1.

Since the \(E_j \)'s, \(j \in \mathbb{N}_0 \), are bounded (because of (2.4) of property (\(\Phi \)) and of the definition of \(\gamma_j \)), for every \(h \in \mathbb{N}_0 \) there exists \(r_h \in \mathbb{R}_+ \) such that \(\chi_{E_h} \leq \gamma_{h} \), and therefore
\[
\chi_{E_h} g \in M^\Phi_{loc}(\overline{\Omega}), \quad h \in \mathbb{N}_0.
\]

Hence we can apply Theorem 2.1(A) to get
\[
||\chi_{E}(g)||_{M^\Phi_{loc}(\mathbb{R}^n)} \leq c \sup_{h \in \mathbb{N}_0} ||\chi_{E_h} g||_{M^\Phi_{loc}(\Omega)}.
\]

Since, by property (\(\Phi \)), \(B_{2r} \) intersects a finite number of \(U_j \) (see [V]), there exists \(N_r \in \mathbb{N} \) such that
\[
||\chi_{E}(g)||_{M^\Phi_{loc}(\mathbb{R}^n)} \leq c \max_{h=0,1,\ldots,N_r} ||\chi_{E_h} g||_{M^\Phi_{loc}(\Omega)}.
\]

We observe that
\[
E_0 = (B_{2r} \cap F) \cap \Omega = B_{2r} \cap (F \cap \Omega) = B_{2r} \cap F_0,
\]
and that, since \(U_j \) are bounded, there exists \(\overline{r} \in \mathbb{R}_+ \) such that \(B_{2r} \cup \bigcup_{h=1}^{N_r} U_h \subset B_{\overline{r}} \) and
\[
E_h = [(E \cap U_h) \cup \psi_{j_h}^{-1}(\gamma(\psi_j(E \cap U_h)))] \cap \Omega
\]
\[
\subset \bigcup_{h=1}^{N_r} (B_{2r} \cup \bigcup_{h=1}^{N_r} U_h) \cap \Omega
\]
\[
\subset B_{\overline{r}} \cap F_0.
\]

Therefore, from (2.15) we deduce that
\[
||\chi_{F \cap \psi^{-1}(\gamma)}(g)||_{M^\Phi_{loc}(\mathbb{R}^n)} \leq ||\chi_{F \cap B_{2r}}(g)||_{M^\Phi_{loc}(\mathbb{R}^n)} = ||\chi_{E}(g)||_{M^\Phi_{loc}(\mathbb{R}^n)}
\]
\[
\leq c \max_{h=0,1,\ldots,N_r} ||\chi_{E_h} g||_{M^\Phi_{loc}(\Omega)}
\]
\[
\leq c \max_{h=0,1,\ldots,N_r} ||\chi_{B_{2r} \cup \bigcup_{h=1}^{N_r} U_h} g||_{M^\Phi_{loc}(\Omega)}
\]
\[
\leq c \max_{h=0,1,\ldots,N_r} ||\chi_{B_{\overline{r}} \cap F_0} g||_{M^\Phi_{loc}(\Omega)}
\]
for any \(F \in \Sigma(\mathbb{R}^n) \). Applying (2.16) with \(F = \mathbb{R}^n \), we obtain \(\zeta_{\psi^{-1}(\gamma)}(g) \in M^\Phi_{loc}(\mathbb{R}^n) \).

(B) If we assume that also \(g_\ast \in M^\Phi_{loc}(\overline{\Omega}) \), then by the same argument, but using (B) instead of (A) of Theorem 2.1, we get the inequality
\[
||\chi_{F \cap \psi^{-1}(\gamma)}(g)||_{M^\Phi_{loc}(\mathbb{R}^n)} \leq c \max_{h=0,1,\ldots,N_r} ||\chi_{E_h} g||_{M^\Phi_{loc}(\Omega)} + \max_{h=0,1,\ldots,N_r} ||\chi_{B_{2r} \cup \bigcup_{h=1}^{N_r} U_h} g||_{M^\Phi_{loc}(\Omega)}
\]
which, applied with \(F = \mathbb{R}^n \), yields \(\zeta_{\psi^{-1}(\gamma)}(g) \in M^\Phi_{loc}(\mathbb{R}^n) \).

COROLLARY 2.8. Let \(\Omega \) be an open subset of \(\mathbb{R}^n \) with property (\(\Phi \)). Then
\[
g \in M^\Phi_{loc}(\overline{\Omega}) \Rightarrow p(g) \in M^\Phi_{loc}(\mathbb{R}^n);
\]
\[
g \in W^1 M^\Phi_{loc}(\overline{\Omega}) \Rightarrow p(g) \in W^1 M^\Phi_{loc}(\mathbb{R}^n).
\]

Proof. (A) Suppose \(g \in M^\Phi_{loc}(\overline{\Omega}) \). From Corollary 2.7(A), we deduce that \(p(g) \in M^\Phi_{loc}(\mathbb{R}^n) \). Let \(\delta \in \mathbb{R}_+ \). Since the \(U_j \) are uniformly bounded, by
reasoning as in [V], Corollary 4.3, there exists $\xi = \xi (n, M) \in \mathbb{R}_+$ such that
\[\sup_{x \in \mathcal{N}} |F_h(x)| \leq \delta, \quad h \in \mathbb{N}_0, \]
for any $F \in \Sigma (\mathbb{R}^n)$ with $\sup_{x \in \mathcal{N}} |F(x)| \leq \delta$, and a fortiori if $\sup_{x \in \mathbb{R}^n} |F(x)| \leq \delta$.

Therefore, by (2.16) we get
\[(2.18) \quad \sigma [\xi, p(g), \mathbb{R}^n] (\delta) \leq c \sigma [\xi, g, \Omega] (\delta) \to 0 \quad \text{as } \delta \to 0, \]
whence $\xi, p(g) \in \widehat{M}^{p, \lambda} (\mathbb{R}^n)$.

(B) If we also assume that $g_\gamma \in \widehat{M}^{p, \lambda} (\mathbb{R}^n)$, then by Corollary 2.7(B),
p(g) \in \mathcal{W}^1 \mathcal{M}^{p, \lambda} (\mathbb{R}^n). By proceeding as in case (A), from (2.17) we obtain
\[(2.19) \quad \sigma [\xi, p(g)]_{\mathbb{R}^n} (\delta) \leq c \sigma [\xi, g, \Omega] (\delta) + \sigma [\xi, g_\gamma, \Omega] (\delta) \to 0 \quad \text{as } \delta \to 0, \]
whence $\xi, p(g) \in \widehat{M}^{p, \lambda} (\mathbb{R}^n)$.

3. A-priori bounds. Denote by $\mathcal{E}(\nu, \Omega)$, for any $\nu \in \mathbb{R}_+$, the class of $n \times n$ real matrix-valued functions (e_{ij}) such that
\[e_{ij} = e_{ji} \in \mathcal{L}^\infty (\Omega), \quad (e_{ij})_0 \in \mathcal{M}^{s, n-s}_0 (\Omega), \quad i, j = 1, \ldots, n, \]
for some $s \in [2, n]$, and
\[\sum_{i,j=1}^n e_{ij} \xi_i \xi_j \geq \nu |\xi|^2 \quad \forall \xi \in \mathbb{R}^n \text{ a.e. in } \Omega. \]

Moreover, we set
\[\mathcal{G}(\Omega) = \{ g \in \mathcal{L}^\infty (\Omega) : \text{ess inf}_\Omega g > 0 \}. \]

Consider the operator L defined by (4) with real coefficients satisfying
\[(3.1) \quad a_{ij} = a_{ji} \in \mathcal{L}^\infty (\Omega), \quad i, j = 1, \ldots, n, \]
\[(3.2) \quad a_i \in \mathcal{M}^{s, n-s}_0 (\Omega), \quad i = 1, \ldots, n, \quad \text{for some } s \in [2, n], \]
\[(3.3) \quad a = a' + a'' \in \widehat{M}^2 (\Omega), \quad a' \in \mathcal{M}^{s, n-s}_0 (\Omega), \quad \text{ess inf}_\Omega a' > 0, \]
where $t = 2$ if $n = 3$, $t = 2$ if $n = 4$, and $t = n/2$ if $n > 4$.

We also set
\[L_0 u = - \sum_{i,j=1}^n a_{ij} u_{x_ix_j}, \quad u \in \mathcal{W}^2 (\Omega). \]

Furthermore, suppose that (a_{ij}) satisfies the following condition:
\[(a) \text{ there exist } \nu \in \mathbb{R}_+ \text{ and } (e_{ij}) \in \mathcal{E}(\nu, \Omega) \text{ such that } \]
\[g = \sum_{i,j=1}^n e_{ij} a_{ij} g_{ij} \in \mathcal{G}(\Omega), \quad \text{ess sup}_\Omega \sum_{i,j=1}^n (e_{ij} - g_{ij})^2 < \nu^2. \]

We also need a non-negative function
\[(3.4) \quad \beta \in \widehat{M}^2 (\Omega) \quad \text{such that } \beta \in \beta, \gamma \in \mathcal{M}^{s, n-s}_0 (\Omega) \text{ for some } s \in [2, n]. \]

\textbf{Theorem 3.1.} Suppose that Ω has property (Φ) with the homeomorphisms θ_h of class C^2, the coefficients of the operator L satisfy (3.1)–(3.3) and β is given by (3.4). Also assume that (a_{ij}) satisfies condition (a) with
\[(e_{ij})_0 \in \mathcal{M}^{s, n-s}_0 (\Omega), \quad i, j = 1, \ldots, n, \]
and
\[\lim_{|x| \to \infty} a_{ij} (x) = a_{ij}^0 \in \mathbb{R}, \quad i, j = 1, \ldots, n, \]
\[\lim_{|x| \to \infty} e_{ij} (x) = e_{ij}^0 \in \mathbb{R}, \quad i, j = 1, \ldots, n. \]

Moreover, set
\[g_0 = \lim_{|x| \to \infty} g(x) \]
and denote by g a non-negative function on \mathbb{R}_+ such that
\[\text{ess sup}_{\Omega \setminus \mathcal{B}_r} \sum_{i,j=1}^n |g_{ij} - g_{ij}^0| \leq \rho (r) \quad \forall r \in \mathbb{R}_+, \]
\[\lim_{r \to \infty} \rho (r) = 0 \]
and by ρ, the modulus of continuity of $\sigma \sum_{i,j=1}^n (e_{ij})_x$. Then there exist a bounded open subset Ω_0 of Ω and a constant c depending only on Ω, a_i, a', a'', ν, β, a_{ij}^0, e_{ij}^0, $|\alpha|_2 (\mathcal{L}^\infty (\Omega))$, $|\alpha|_2 (\mathcal{L}^\infty (\Omega))$, ψ, σ, such that
\[(3.7) \quad |u|_{\mathcal{W}^2 (\Omega)} \leq c (|Lu + \lambda g|_{\mathcal{L}^\infty (\Omega)} + |u|_{\mathcal{W}^2 (\Omega)}), \quad \forall u \in \mathcal{W}^2 (\Omega) \cap \mathcal{W}^1 \mathcal{B}_1 (\Omega), \quad \forall \lambda \geq 0. \]

\textbf{Proof.} We proceed as in [CLM9], Theorem 4.1, remarking that property (Φ) implies the existence of a $\tau \in \mathbb{R}_+$ such that, for any $x \in \mathbb{R}_+$, either $B (x, \tau) \cap \Omega = \emptyset$ or $B (x, \tau) \cap \partial \Omega = \emptyset$ and $B (x, \tau) \subset U_h$ for some $h \in \mathbb{N}$.

We consider a function $\phi \in C_0^\infty (\mathbb{R}^n)$ such that
\[\phi \in B_{1/3} = 1, \quad \text{supp } \phi \subset B_1, \]
and, for $x \in \Omega$,
\[\psi = \psi_x : y \in \mathbb{R}^n \to \phi \left(\frac{x - y}{\tau} \right) \]
where τ is defined above.
So, if \(u \in W^2(\Omega) \cap W_0^1(\Omega) \), then \(v = \psi u \in W^2(\Omega) \cap W_0^1(\Omega) \) and either \(\text{supp} v \notin \Omega \) or \(\text{supp} v \subset U_h \) for some \(h \in \mathbb{N} \).

As a consequence of the results in Section 7 of [CLM2], (see (7.5)–(7.7), (7.9), (7.10), Lemmas 7.1 and 7.2 in [CLM2]), for any \(\lambda \geq 0 \) we get

\[
\|v - \tilde{\eta}\|_{H^2(\Omega)}^2 \leq \int_{\Omega} \left(\sum_{i,j=1}^n \epsilon_{ij} \nabla_{x_i} v \nabla_{x_j} + \lambda \delta v \right)^2 + c_1(\varepsilon) \|fv\|_{L^2(\Omega)},
\]

where

\[
f = 1 + \gamma + \sum_{i,j=1}^n (\epsilon_{ij}).
\]

So, if we set

\[
h = \text{ess sup}_{\Omega} \left[\sum_{i,j=1}^n |\epsilon_{ij} - ga_{ij}|^2 \right]^{1/2},
\]

for \(\varepsilon < \nu - h \) we have

\[
\|v - \tilde{\eta}\|_{H^2(\Omega)}^2 \leq \sum_{i,j=1}^n (\epsilon_{ij} - ga_{ij}) \nabla_{x_i} v \nabla_{x_j} - gL_0 v + \lambda \delta v \bigg|_{\Omega} + c_1(\varepsilon) \|fv\|_{L^2(\Omega)}
\]

\[
\leq h \|v\|_{L^\infty(\Omega)} L_0 v + \lambda g^{-1} \delta v \bigg|_{\Omega} + c_1(\varepsilon) \|fv\|_{L^2(\Omega)},
\]

from which, by condition (\(\alpha \)),

\[
\|v\|_{L^\infty(\Omega)} \leq c_2(\|L_0 v + \lambda g^{-1} \delta v\|_{L^2(\Omega)} + \|fv\|_{L^2(\Omega)}).
\]

Fix \(r \in \mathbb{R}_+ \) and set \(w = \zeta_r u \). Then, by applying the above inequality with \(v = \psi w \), we get

\[
\|\psi w\|_{L^\infty(\Omega)} \leq c_2(\|L_0 \psi w + \lambda g^{-1} \delta \psi w\|_{L^2(\Omega)} + \|f(\psi w)\|_{L^2(\Omega)}).
\]

The first term of the right hand side can be bounded as follows:

\[
\|L_0 \psi w + \lambda g^{-1} \delta \psi w\|_{L^2(\Omega)} \leq \|\psi L_0 w + \lambda g^{-1} \delta w\|_{L^2(\Omega)}
\]

\[
+ 2\|a_{ij}L_0 \psi w\|_{L^\infty(\Omega)} + 2\|a_{ij}L_0 \psi w\|_{L^\infty(\Omega)} \|\psi w\|_{L^2(\Omega)}
\]

\[
\leq c_3(\|L_0 w + \lambda g^{-1} \delta w\|_{L^2(\Omega)} + \|w\|_{L^2(\Omega)}) + \|w\|_{L^2(\Omega)}.
\]

The second term can be estimated by means of Lemma 1.1.

Hence from (3.8) we deduce the inequality

\[
\|\psi w\|_{L^\infty(\Omega)} \leq c_4(\|L_0 w + \lambda g^{-1} \delta w\|_{L^2(\Omega)} + \|w\|_{L^2(\Omega)}).
\]

Therefore, applying Lemma 1.1 of [CLM], we obtain

\[
\|\zeta_r u\|_{L^\infty(\Omega)} \leq c_5(\|L_0 (\zeta_r u) + \lambda g^{-1} \delta \zeta_r u\|_{L^2(\Omega)} + \|\zeta_r u\|_{L^2(\Omega)}),
\]

from which, since \(a'' \in \bar{M}(\Omega) \), by Lemma 1.2, we get

\[
\|\zeta_r u\|_{L^\infty(\Omega)} \leq c_6(\|L_0 (\zeta_r u) + (a'' + \lambda g^{-1} \delta) \zeta_r u\|_{L^2(\Omega)} + \|\zeta_r u\|_{L^2(\Omega)}).
\]

On the other hand, by Theorem 4.2 of [CLM2], there exists a bounded open subset \(R_0 \) of \(\Omega \) such that

\[
\|((1 - \zeta_r) u)\|_{L^2(\Omega)} \leq c_7(\| - g_0 e^{1 - (1 - \zeta_r) u}_{x_i x_j} + (ga'' + \lambda \delta)(1 - \zeta_r) u\|_{L^2(\Omega)}
\]

\[
+ (1 - \zeta_r) u\|_{L^2(\Omega)}
\]

\[
\leq c_8(\|u\|_{L^2(\Omega)} + \|g\|_{L^\infty(\Omega)}
\]

\[
\times L_0((1 - \zeta_r) u + (a'' + \lambda g^{-1} \delta)(1 - \zeta_r) u\|_{L^2(\Omega)} + \|u\|_{L^2(\Omega)}).
\]

We deduce, by (3.6), that there exists \(r_0 \in \mathbb{R}_+ \) such that

\[
\|((1 - \zeta_{r_0}) u)\|_{L^2(\Omega)} \leq c_9(\|L_0((1 - \zeta_{r_0}) u + (a'' + \lambda g^{-1} \delta)(1 - \zeta_{r_0}) u\|_{L^2(\Omega)} + \|u\|_{L^2(\Omega)}),
\]

From (3.9) and (3.10) we get

\[
\|u\|_{W^2(\Omega)} \leq c_9(\|L_0 u + (a'' + \lambda g^{-1} \delta) u\|_{L^2(\Omega)} + \|u\|_{L^2(\Omega)}),
\]

with \(D_{r_0} \subset (B_{r_0} \cap \Omega) \).

By using Lemmas 1.1 and 1.2, the result follows.

From Theorem 3.1, proceeding as in [TT], Corollary 4.2, we have

Corollary 3.2. Under the hypotheses of Theorem 3.1 (if \(\beta \in L^\infty(\Omega) \)), there exist \(\lambda_0, c \in \mathbb{R}_+ \) such that

\[
\|u\|_{W^2(\Omega)} \leq c_0(L_0 + \lambda g^{-1} \delta u\|_{L^2(\Omega)} \forall u \in W^2(\Omega) \cap W_0^1(\Omega), \forall \lambda \in [\lambda_0, \infty[,
\]

with \(c_0 \) a constant depending on \(\Omega, a, a', a'', \nu, \beta, e_{ij}, e_{ij}, \), \(\|a_{ij}\|_{L^\infty(\Omega)}, \)

\[
\|e_{ij}\|_{L^\infty(\Omega)}, \beta, \sigma_r.
\]

4. Regularization of coefficients. Let \(\{J_k\}_{k \in \mathbb{N}} \) be a sequence of mollifiers, i.e.,

\[
J_k \in C_0^\infty(\mathbb{R}^n), \quad J_k \geq 0, \quad \text{supp} J_k \subset B_{1/k}, \quad \int J_k = 1.
\]

For \(k \in \mathbb{N} \) we set

\[
a_j^k = J_k * p(a_{ij}), \quad i = 1, \ldots, n,
\]

\[
e_j^k = J_k * p(e_{ij}), \quad i = 1, \ldots, n.
\]

Lemma 4.1. Let \(\Omega \) be an open subset of \(\mathbb{R}^n \) with property (\(\Phi \)). If \(\{(e_{ij})\} \in E(\nu, \Omega) \) for some \(\nu \in \mathbb{R}_+^n \), then

\[
((p(e_{ij}))) \in E(\nu, \Omega(\eta)),
\]

where \(\Omega(\eta) \) is given by Remark 2.4.
Proof. Let \(\{(e_{ij})\} \in E(\nu, \Omega) \). From Remark 2.4 we deduce that for almost every \(x \in \Omega(\eta) \setminus \Omega \) there exist \(x_1 \in U_{k_1} \cap \Omega, \ldots, x_h \in U_{k_h} \cap \Omega \), with \(h \in \{1, \ldots, N\} \), such that
\[
p(e_{ij})(x) = \theta_{k_1}(x)e_{ij}(x_1) + \ldots + \theta_{kh}(x)e_{ij}(x_h)
\]
for \(i, j = 1, \ldots, n \), where \(e_{ij}(x_1), \ldots, e_{ij}(x_h) \) are symmetric and positive with lower bound \(\nu \).
Then
\[
p(e_{ij})(x) = \theta_{k_1}(x)e_{ij}(x_1) + \ldots + \theta_{kh}(x)e_{ij}(x_h) = p(e_{ij})(x),
\]
i.e. \(\{p(e_{ij})\} \) is symmetric a.e. in \(\Omega(\eta) \), and
\[
\sum_{i,j=1}^{n} p(e_{ij})(x) \xi_{ij} \xi_{ij} = \left(\sum_{i,j=1}^{n} \theta_{k_1}(x) e_{ij}(x_1) \xi_{ij} \right) + \ldots + \left(\sum_{i,j=1}^{n} \theta_{kh}(x) e_{ij}(x_h) \xi_{ij} \right)
\]
\[
\geq \left(\theta_{k_1}(x) + \ldots + \theta_{kh}(x) \right) \nu |\xi|^2 = \nu |\xi|^2,
\]
i.e. \(\{p(e_{ij})\} \) is uniformly positive definite a.e. in \(\Omega(\eta) \) with lower bound \(\nu \).
From Corollary 2.3 we know that
\[
e_{ij} \in L^\infty(\Omega) \Rightarrow p(e_{ij}) \in L^\infty(\mathbb{R}^n),
\]
and moreover
\[
\|p(e_{ij})\|_{L^\infty(\mathbb{R}^n)} \leq c \|e_{ij}\|_{L^\infty(\Omega)}
\]
for \(i, j = 1, \ldots, n \), with \(c \in \mathbb{R}^+ \), depending only on \(n \) and the constants implied in \((\Phi) \).
From Corollary 2.7 we deduce that
\[
e_{ij} \in L^\infty(\Omega), \quad (e_{ij})_x \in M^{s,n-s}_\text{loc}(\Omega) \Rightarrow (p(e_{ij}))_x \in M^{s,n-s}_\text{loc}(\mathbb{R}^n).
\]
The result follows from (4.3)–(4.6). ■

Lemma 4.2. Let \(\Omega \) be an open subset of \(\mathbb{R}^n \) with property \((\Phi) \), and \(\{(a_{ij})\} \) satisfy condition \((\alpha)\) with associated \(\{(e_{ij})\} \in E(\nu, \Omega) \). Then there exists a \(k_1 \in \mathbb{N} \) such that, for every \(k \geq k_1 \), \(\{(a_{ij})\} \) satisfies condition \((\alpha)\) with associated \(\{(e_{ij})\} \in E(\nu, \Omega) \).

Proof. Let \(\{(e_{ij})\} \in E(\nu, \Omega) \); so by Lemma 4.1, \(\{p(e_{ij})\} \in E(\nu, \Omega(\eta)) \). Let \(k_1 = k_1(\eta) \in \mathbb{N} \) be such that
\[
x \in \Omega, \ y \in B_1/k_1 \Rightarrow x - y \in \Omega(\eta).
\]
Suppose \(k \geq k_1 \). From the properties of \(p(e_{ij}) \) stated in Lemma 4.1, we have
\[
e_{ij}^k = J_k \ast p(e_{ij}) = J_k \ast p(e_{ij}) = e_{ij}^k,
\]
and so \(\{(e_{ij})^k\} \) is symmetric. Moreover,
\[
\sum_{i,j=1}^{n} e_{ij}^k \xi_{ij} = J_k \ast \left(\sum_{i,j=1}^{n} p(e_{ij}) \xi_{ij} \right) \geq (J_k \ast 1) \nu |\xi|^2 = \nu |\xi|^2,
\]
whence \(\{(e_{ij}^k)\} \) is uniformly positive definite with lower bound \(\nu \).
From (4.5) we get
\[
\|e_{ij}^k\|_{L^\infty(\Omega)} \leq \|p(e_{ij})\|_{L^\infty(\mathbb{R}^n)} \leq c \|e_{ij}\|_{L^\infty(\Omega)},
\]
so \(e_{ij}^k \in L^\infty(\Omega) \). For any \(r \in \mathbb{R}_+ \), it turns out that
\[
\zeta_r(e_{ij}^k) \in C_0^\infty(\mathbb{R}^n),
\]
and a fortiori \(\zeta_r(e_{ij}^k) \in M^{s,n-s}(\Omega) \) for any \(s \in [2, n] \).
By collecting (4.7)–(4.10) we can conclude that
\[
\{(e_{ij}^k)\} \in E(\nu, \Omega) \quad \text{for} \quad k \geq k_1.
\]
Suppose that \(\{(a_{ij})\} \) satisfies condition \((\alpha)\) with associated \(\{(e_{ij})\} \in E(\nu, \Omega) \). For \(x \in \Omega \) we have
\[
e_{ij}^k(x) - a_{ij}^k(x) = \int_{\mathbb{R}^n} J_k(y)p(e_{ij} - a_{ij})(x - y) \, dy
\]
and so, if \(k \geq k_1 \),
\[
\left(\sum_{i,j=1}^{n} |e_{ij}^k(x) - a_{ij}^k(x)|^2 \right)^{1/2} \leq \text{ess sup}_{\Omega(\eta)} \left(\sum_{i,j=1}^{n} |p(e_{ij} - a_{ij})|^2 \right)^{1/2}.
\]
By proceeding as in Corollary 2.5 and applying the triangle inequality, we get
\[
\left(\sum_{i,j=1}^{n} |p(e_{ij} - a_{ij})|^2 \right)^{1/2} \leq \text{ess sup}_{\Omega(\eta)} \left(\sum_{i,j=1}^{n} |e_{ij} - a_{ij}|^2 \right)^{1/2} \quad \text{a.e. in} \ \Omega(\eta),
\]
and so
\[
\sup_{\Omega(\eta)} \left(\sum_{i,j=1}^{n} |e_{ij}^k - a_{ij}^k|^2 \right)^{1/2} \leq \text{ess sup}_{\Omega(\eta)} \left(\sum_{i,j=1}^{n} |e_{ij} - a_{ij}|^2 \right)^{1/2} < \nu.
\]
From (4.9) and (4.11) we deduce that
\[
\|a_{ij}^k\|_{L^\infty(\Omega)} \leq \|e_{ij}^k\|_{L^\infty(\eta)} + \nu \leq c \|e_{ij}\|_{L^\infty(\eta)} + \nu.
\]
Setting
\[
\nu_1 = \nu - \text{ess sup}_{\Omega(\eta)} \left(\sum_{i,j=1}^{n} |e_{ij} - a_{ij}|^2 \right)^{1/2} > 0,
\]
from (4.8) and (4.11) we have
\begin{equation}
\sum_{i,j=1}^{n} a_{ij}^k x_i x_j = \sum_{i,j=1}^{n} e_{ij}^k x_i x_j - \sum_{i,j=1}^{n} (e_{ij}^k - a_{ij}^k) x_i x_j \\
\geq \nu |x|^2 - (\nu - \nu_1) |x|^2 = \nu_1 |x|^2,
\end{equation}
and so \((a_{ij}^k)\) is uniformly positive definite a.e. in \(\Omega\) with lower bound \(\nu_1\) independent of \(k\).

From (4.9), (4.12), (4.13), it follows that
\begin{equation}
g_k = \sum_{i,j=1}^{n} e_{ij}^k a_{ij}^k \in L^\infty(\Omega).
\end{equation}
Furthermore, by (4.11), we obtain
\begin{equation}
\sum_{i,j=1}^{n} \left((e_{ij}^k)^2 + (a_{ij}^k)^2 - 2 e_{ij}^k a_{ij}^k \right) < \nu^2,
\end{equation}
whence, by (4.8) and (4.13),
\begin{equation}
\sum_{i,j=1}^{n} e_{ij}^k a_{ij}^k > \frac{1}{2} \left(\sum_{i,j=1}^{n} (e_{ij}^k)^2 + \sum_{i,j=1}^{n} (a_{ij}^k)^2 - \nu^2 \right) \\
\geq \frac{1}{2} (n \nu^2 + n \nu_1^2 - \nu^2) > 0,
\end{equation}
which, together with (4.14), yields
\begin{equation}
g_k \in G(\Omega).
\end{equation}
Finally, since
\begin{equation}
\sum_{i,j=1}^{n} (e_{ij}^k - g_k a_{ij}^k)^2 \leq \sum_{i,j=1}^{n} (e_{ij}^k - a_{ij}^k)^2,
\end{equation}
from (4.11) we have
\begin{equation}
\sum_{i,j=1}^{n} (e_{ij}^k - g_k a_{ij}^k)^2 < \nu^2,
\end{equation}
whence we can conclude that \((a_{ij}^k)\) satisfies (a) with associated \((e_{ij}^k)\).

Below and in the sequel we assume that the hypotheses of Lemma 4.2 are satisfied.

Remark 4.3. If (3.5) holds, then
\begin{equation}
\lim_{|x| \to \infty} e_{ij}^k(x) = e_{ij}^0.
\end{equation}

Proof. From the second equality of (3.5) and Corollary 2.6 we deduce that
\begin{equation}
\lim_{|x| \to \infty} p(e_{ij})(x) = e_{ij}^0.
\end{equation}
Then, if \(k \geq k_1\), for any \(\varepsilon > 0\) there exists \(r_\varepsilon \in \mathbb{R}_+\) such that
\begin{equation}
|e_{ij}^k(x) - e_{ij}^0| \leq \int_{\mathbb{R}^n} J_k(x-y) |p(e_{ij})(y) - e_{ij}^0| dy \\
< \varepsilon \int_{\mathbb{R}^n} J_k(x-y) dy = \varepsilon \quad \forall x \in \Omega \text{ and } |x| > r_\varepsilon.
\end{equation}
From (3.5) we also deduce that
\begin{equation}
\lim_{|x| \to \infty} p(\sigma g_{ij})(x) = g_0 a_{ij}^0.
\end{equation}
If we set
\begin{equation}
\varrho(r) = \sum_{i,j=1}^{n} \text{ess sup}_{\Omega, |x| \leq r} |p(\sigma g_{ij}) - g_0 a_{ij}^0|, \quad r \in \mathbb{R}_+,
\end{equation}
then (3.6) is satisfied.

By reasoning as in Remark 4.3, we obtain the following

Lemma 4.4. If (3.5) holds, then for any \(k \geq k_1\) we have
\begin{equation}
\text{ess sup}_{\Omega, |x| \leq r} \sum_{i,j=1}^{n} |a_{ij}^k - g_0 a_{ij}^0| \leq \varrho(r), \quad r \in \mathbb{R}_+.
\end{equation}

Let \(r, r_\varepsilon \in \mathbb{R}_+\) be such that
\begin{equation}
\varrho(x+y) \leq \varrho(x) \quad \forall x \in \mathbb{R}^n, y \in B_1
\end{equation}
and let \(\tilde{r} \in \mathbb{R}_+\) be as in Corollary 2.7.

Let \(\xi \in \mathbb{R}_+\) be as in the proof of Corollary 2.8 and define
\begin{equation}
\sigma_\varrho(\delta) = \sum_{i,j=1}^{n} (\sigma[\xi e_{ij}, \Omega](\xi) + \sigma[\xi e_{ij}, \Omega](\Omega) - \sigma[\xi e_{ij}, \Omega](\delta)).
\end{equation}
Since \(e_{ij} \in L^\infty(\Omega) \subset \tilde{M}^{n,n-s}(\Omega), \) if \((e_{ij}) \in \tilde{M}^{s,s}_{\text{loc}}(\Omega),\) then
\begin{equation}
\lim_{\delta \to 0} \sigma_\varrho(\delta) = 0.
\end{equation}

Lemma 4.5. If \((e_{ij}) \in \tilde{M}^{s,s}_{\text{loc}}(\Omega), i,j = 1, \ldots, n,\) then for any \(k \geq k_1,\)
\begin{equation}
\sigma[\xi e_{ij}^k, \Omega](\delta) \leq c \sigma_\varrho(\delta), \quad \delta \in \mathbb{R}_+, \quad \varepsilon \in \mathbb{R}_+, \quad i,j = 1, \ldots, n,
\end{equation}
where \(c\) is a constant depending only on \(n\) and on the constants appearing in \(\varrho.\)
Proof. Let E be a measurable subset of Ω such that $|E(x)| \leq \delta$ for any $x \in \Omega$. Setting $p = s, \lambda = n - s$, for any $x_0 \in \mathbb{R}^n$ and $t \in [0,1]$, we have
\[
\frac{1}{t^{\lambda/p}} \left(\int_{B(x_0,t) \cap \Omega} \left| \chi_E(x) \zeta_r(x)(e_i^k)_x(x) \right|^p \, dx \right)^{1/p} = \frac{1}{t^{\lambda/p}} \left(\int_{B(x_0,t) \cap \Omega} \chi_E(x) \zeta_r(x) \left(\int_{B_1} J_k(y)(p(e_i))_y(x-y) \, dy \right)^p \, dx \right)^{1/p} \leq \frac{1}{t^{\lambda/p}} \int_{B_1} J_k(y) \left(\int_{B(x_0,t) \cap \Omega} \chi_E(x) \zeta_r(x)(p(e_i))_y(x-y) \, dx \right)^{1/p} \, dy \leq \frac{1}{t^{\lambda/p}} \int_{B_1} J_k(y) \left(\sup_{p \in B_1} \| \chi_E(x) \zeta_r(p(e_i))_y \|_{M^p,\Lambda(\Omega-y)} \right)^{1/p} \, dy \leq \sup_{p \in B_1} \| \chi_E(x) \zeta_r(p(e_i))_y \|_{M^p,\Lambda(\Omega-y)}.
\]

Then, by proceeding as in Corollary 2.8, we get the inequality
\[
\| \chi_E(x) \zeta_r(x)(e_i^k)_x \|_{M^p,\Lambda(\Omega)} \leq c(\sigma(\zeta_\delta e_i, \Omega)(\delta) + \sigma(\zeta_\delta e_i, \Omega)(\delta)),
\]
from which we have the assertion. ■

5. Existence and uniqueness theorem. In this section we shall give an existence and uniqueness theorem for the solution of the problem
(5.1) \[u \in W^2(\Omega) \cap W^1_0(\Omega), \quad L_0 u = f, \quad f \in L^2(\Omega), \]
for the operator L defined in (4).

Theorem 5.1. Suppose that Ω has property (\textit{g}) with the homeomorphisms Φ_n of class C^∞, and the coefficients of the operator L satisfy the assumptions of Theorem 3.1. Then the operator
\[
L : u \in W^2(\Omega) \cap W^1_0(\Omega) \to L_0 u \in L^2(\Omega)
\]
is a Fredholm operator with index zero. Furthermore, if
(5.2) \[a_0 = \operatorname{ess} \inf_{x \in \Omega} a > 0, \]
then problem (5.1) is uniquely solvable.

Proof. Set, for each $k \geq k_1$,
\[
L_k u = \sum_{i,j=1}^n a_{ij}^k u_{x_i x_j} + \sum_{i=1}^n g_{a} u_{x_i} + g a u.
\]

From (3.5) we have
\[
\lim_{|x| \to \infty} (a_{ij}^k)_x(x) = 0
\]
and so, by Remark 1.3, $(a_{ij}^k)_x \in M^{n-\epsilon}(\Omega)$.

Since L_k satisfies the hypotheses of Theorem 6.2 of [CLM1], there exists a unique solution u_k of the problem
(5.3) \[u \in W^2(\Omega) \cap W^1_0(\Omega), \quad L_k u = g f, \quad f \in L^2(\Omega). \]

Furthermore, by (4.13), (4.17), (4.12), (4.9) and Lemmas 4.4–4.5, the operator L_k satisfies the hypotheses of Theorem 3.1 uniformly with respect to k. Then there exists a constant c independent of k such that
\[
\| u_k \|_{W^2(\Omega)} \leq c(\| g f \|_{L^2(\Omega)} + \| u_k \|_{L^2(\Omega)}).
\]

Suppose that $f \in L^2(\Omega) \cap L^\infty(\Omega)$. As above, the operator L_k satisfies the hypotheses of Theorem 2.1 of [CLM2], and so $u_k \in L^\infty(\Omega)$ with
\[
\| u_k \|_{L^\infty(\Omega)} \leq c_1 \| g f \|_{L^\infty(\Omega)},
\]
whence
(5.4) \[\| u_k \|_{W^2(\Omega)} \leq c_1 (\| f \|_{L^2(\Omega)} + \| f \|_{L^\infty(\Omega)}), \]
where c_1 is a constant independent of k.

From (5.4) it follows that there exists a subsequence $(u_{k_n})_{n \in \mathbb{N}}$ of $(u_k)_{k \in \mathbb{N}}$ weakly convergent in $W^2(\Omega)$ to a function $u \in W^2(\Omega) \cap W^1_0(\Omega)$, and therefore also $L_0 u_{k_n} \to g L u$ in the sense of distributions. It follows that u is a solution of problem (5.1) if $f \in L^2(\Omega) \cap L^\infty(\Omega)$.

Denote by $R(L)$ the range of the operator
\[
L : u \in W^2(\Omega) \cap W^1_0(\Omega) \to L_0 u \in L^2(\Omega).
\]
Then $L^2(\Omega) \cap L^\infty(\Omega) \subset R(L)$. On the other hand, as a consequence of (3.7) and known results, $R(L)$ is a closed subspace of $L^2(\Omega)$; but $L^2(\Omega) \cap L^\infty(\Omega)$ is dense in $L^2(\Omega)$, and so $R(L) = L^2(\Omega)$. Hence it is sufficient to show that L is a Fredholm operator with index zero.

For this purpose we consider the problem
(5.5) \[
\begin{cases}
L_0 u + \sum_{i=1}^n \lambda_i u_{x_i} + (a'' + \lambda g^{-1} \beta) u = f, & f \in L^2(\Omega), \\
u \in W^2(\Omega) \cap W^1_0(\Omega),
\end{cases}
\]
with $\lambda \geq 0$ and $\beta(x) = (1 + |x|^2)^{-1}, x \in \mathbb{R}^n$.

By means of the same technique used above for problem (5.1), we can show the existence of solutions for problem (5.5), as $a'' + \lambda g^{-1} \beta > 0$. Moreover, since β satisfies (3.4) and $\beta^{-1} \in L^\infty(\Omega)$, from Corollary 3.2 we deduce that the solution is unique, provided that λ is large enough.

So the operator $L_0 + \sum_{i=1}^n \lambda_i \partial/\partial x_i + (a'' + \lambda g^{-1} \beta)$ is a Fredholm operator with index zero.

Finally, since $a', \beta \in M^1(\Omega)$, by Lemma 1.2 the operator
\[
u \in W^2(\Omega) \to (a' - \lambda g^{-1} \beta) \nu \in L^2(\Omega)
\]
is compact, and from known results we have the assertion. ■
Maximal functions and smoothness spaces in $L_p(\mathbb{R}^d)$

by

G. C. KYRIAZIS (Nicosia)

Abstract. We study smoothness spaces generated by maximal functions related to the local approximation errors of integral operators. It turns out that in certain cases these smoothness classes coincide with the spaces $C^p_s(\mathbb{R}^d)$, $0 < p \leq \infty$, introduced by DeVore and Sharpley [DS] by means of the so-called sharp maximal functions of Calderón and Scott. As an application we characterize the $C^p_s(\mathbb{R}^d)$ spaces in terms of the coefficients of wavelet decompositions.

1. Introduction. Maximal operators play an important role in various aspects of harmonic analysis and approximation theory, such as interpolation and differentiation. A paradigm is the so-called sharp maximal function, of Calderón and Scott [CS], given by

$$f^*_\alpha(x) := \sup_{Q \ni x} \frac{1}{|Q|^{1 + \alpha/d}} \int_Q |f - f_Q|, \quad 0 < \alpha < 1,$$

where $f_Q := |Q|^{-1} \int_Q f$ is the average of f over Q, and Q ranges over all cubes containing x. When $\alpha > 0$, f^*_α is related to classical differentiation; for instance it is well known that

$$f \in \text{Lip}_\alpha(\mathbb{R}^d) \iff f^*_\alpha \in L_\infty(\mathbb{R}^d), \quad 0 < \alpha < 1,$$

where Lip$_\alpha$ is the Lipschitz space of smoothness α.

The extension of (1.1) to functions of higher smoothness was given by DeVore and Sharpley [DS]. For every $\alpha \geq 1$ they replaced the average f_Q by a best polynomial approximation from $W_{[\alpha]}$ (the space of polynomials of degree at most $[\alpha]$) and they introduced the spaces $C^p_s := C^p_s(\mathbb{R}^d)$.

For $0 < p \leq \infty$ and $\alpha > 0$, C^p_s is defined to be the collection of all functions $f \in L_p := L_p(\mathbb{R}^d)$ such that:

Key words and phrases: maximal functions, approximation by operators, wavelets, smoothness spaces.