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Entropy numbers of embeddings of Sobolev spaces
in Zygmund spaces

by

D. B EDMUNDS (Brighton) and Yu. NETRUSOV (Londen)

Abstract. Let id be the natural embedding of the Sobolev space W},(n) in the Zyg-
mund space Lg{log L)o{£2), where 2 = (0,1)", 1 < p < o0, l € N, 1/p = 1/g +I/n and
8 <0, a % —l/n. We consider the entropy numbers ey, (id) of this emhedding and show
that

ep(id) = k77,

where 7 = min(~a,l/n). Extensions to more general spaces are given. The results are
applied to give information about the behaviour of the eigenvalues of certain operators of
elliptic type.

1. Introduction. Over the years, the idea of the entropy of a set has
attracted a great deal of attention, as has the related notion of the entropy
numbers of embeddings between function spaces. An early significant result
was that of Kolmogorov and Tikhomirov [KT] {see also Vitushkin [V]) con-
cerning the embedding 4d; of C*{[0,1)") in C([0, 1]*), where [ € N. In terms
of entropy numbers this stated that

ex(id) = K/,

where e (idy) is the kth entropy number of idy. Vitushkin and Henkin used
ideas like this in their work on the superposition of functions related to
Hilbert’s thirteenth problem: see [VH], and also the interesting article by
Lorentz [I.], where further references will be found. Then there was the
pioneering work of Birman and Solomyak [BiS1], in which they considered
the embedding

idy : Wi{2) — Lg(02),
where {2 is a bounded domain in R" with smooth boundary, l € N, 1 < p <

00, 1 < g < 00, I > n(l/p—1/q)4+ and W}(12) is the usual Sobolev space of
order [, based on Ly, (£2). They introduced the (by now) standard method of
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piecewise polynomial approximation and showed that the entropy numbers
e (idy) satisfy
€k (’Ldz) s i,

A remarkable feature of this estimate is that the exponent of k& which appears
is independent of p and ¢, although [ is constrained by the inequality [ >
n(1/p—1/¢)4+ in which p and ¢ do appear. Sharp two-sided estimates of the
entropy numbers of embeddings involving a wider range of function spaces
(including Besov and Lizorkin-Triebel spaces) are established in [ET], where
further historical remarks will be found.

When I = n(l/p — 1/¢) the embedding id; is continuous but not com-
pact, and it is natural to enquire into its nature by approaching this limiting
situation by means of more finely tuned scales of spaces. This was investi-
gated in [ET], using the Zygmund space Ly (log L), (£2): we recall that this
is simply the set of all those functions f such that

{I£(@)P1og® (2 + | £(=)]) dz < oo
2

It is shown in [ET] that if a < 0, then the embedding
idg : Wi(£2) — Lq(log L)a{£2)

is compact when 1/p = 1/¢g + I/n, and that

(1) ex(ida) = k™

if a < —21/n. Two-sided estimates were also obtained when —2{ /mn<a<,
but in this case the upper and lower bounds involved different powers of k
and the results could not be claimed to be optimal.

The principal object of the present paper is to find the largest d such
that {1) holds when a < d. Throughout it is assumed that 2 = (0,1)"™, but
this is for convenience and simplicity rather than necessity. We show that
this largest d is —I/n, and that

€ (tda) = k*

if ~I/n < @ < 0. These resulfs are obtained by a different method from that
of [BT], which largely depended upon accurate estimates of the constants
generated by various intermediate embeddings; here we rely more on the
construction of e-nets different from those used earlier. Our technique works
equally well if the Sobolev spaces W;(Q) are replaced by fractional Sobolev
spaces HJ((2) or logarithmic Sobolev spaces H(log H)4(12) (see [ET]): when
s =1 €N, Hy(log H)o(£2) is just {u: D € L, (log L}a(£2) if |a| < I}, the
Sobolev space of order I based on Ly(log L),{f2). It turns out that for the
embedding

id : H}(log H)o(£2) — Ly{log L)(£2),
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wherel<p<g<oo, —o<b<a< oo,leNanda—b+#/n=1/p-1/q,
we have

ek(’f;d) = k™7,
where 7 = min(a — b,I/n). This extends the work of [ET] concerned with
such embeddings. We formulate and prove analogues of the results described
above for embeddings between spaces of Lizorkin—Triebel type.

One of the steps in the proof of these estimates is the derivation of bounds
for the entropy numbers of embeddings between finite-dimensional spaces
with symmetric bases; see Theorem 4.2. The technique used to do this is
well known to specialists, but the result is new, so far as we are aware.

It may also be of interest to remark that the celebrated Cwikel-Lieb—
Rozenblum result about the negative spectrum of the Schrédinger operator
and its generalisations (see, for example, [BiS2]) may be interpreted in the
following way:

Let s € N, s <n/2 and let V € Ly(R™), V > 0, where 1/g = 2s/n.

Then for some constant ¢ > 0,

(2) em{id : WE(R™) — Ly(Vdz)) < em™3/™,

In this situation our Theorem 3.1, together with an appropriate form of
Holder’s inequality, gives a weaker result, namely:

Let s € N, s < n/2 and let V' & Ly(log L), (R"), where 1/q = 2s/n,
u > 28/n and supp V' C (0,1)*. Then (2) holds.

This loss of sharpness, in our opinion, is connected with the fact that
to prove Theorem 3.1 we construct e-nets independent of the particular V'
satisfying

(a) supp V' C (0, 1)";
(b) V € Ly(log L) (R™), where 1/q = 23/n, u > 2s/n;
(¢) V| Lq(log L)u(R™)|| < c1.

These e-nets depend only on the constants ¢, ¢y, s and n. It thus appears
that the loss of sharpness is related to some additional information which
we have in our result, This is the possibility to construct e-nets which work
uniformly well for all weights V satisfying conditions (a)-(c). Moreover, it is
also an easy consequence of our result that if u < 2s/n, then such a uniform
estimate iz iImposgible. ‘

Finally, we indicate how these results may be applied to give information
about the behaviour of the eigenvalues of certain elliptic operators.

me N

2. Definitions and preliminary results. First, some notation. Given
two (quasi-) Banach spaces X and V', we shall write X Y if X C ¥ and
the natural embedding of X in Y is continuous. For non-negative expres-
sions (that is, functions or functionals) Fy, Fy the notation Fy =< Fy is used



74 D. E. Edmunds and Yu. Netrusov

to mean that Ch Fy € Fy < Oy F; for some positive constants C, Cy indepen-
dent of the variables in the expréssions Iy, Fa. By @ we shall always mean
the unit cube (0, 1)* in R™, and we shall consistently write Qi = 27 (k+Q),
keZ i€Z and xix = X@,, (the characteristic function of @, ). More-
over, given a function ¢ defined on R™, we shall write

For any p, 1 € p < 00, L,{R") will stand for the usual Lebesgue space with
respect to Lebesgue measure u, and equipped with the norm

IAL®) = ( § I az) .
Rﬂ

DEFINITION 1. Let f be a function defined on R™. The non-increasing
rearrangement of f is the function f* defined on (0, cc0) by

) =inf{r > 0: p{{z e R" : |f(z)| > 7}) < t},
The function f** is defined on (0, co) by

t>0.

L
)= ; S fr(s)ds, t>0.
0

The idea of the rearrangement of a function is very important in con-
nection with the Zygmund space Ly (log L), (R™) which we now define.

DEFINITION 2. Let 1 < p < o0 and o € R. Then L,(log L), (R") is the
set of all measurable functions defined on R® such that

) T * -1 a\p %4
©  NfiLp(og La(®) | = ( § (£ ()log(t™ + 2P dt) " < oo.
0
Moreover, Lo (log L), (R™) is the set of all measurable functions on IR™ such
that

| F1Leollog Lo (R = sup £*(e)og(t™ +2))° < o0

We shall also need the logarithmic Sobolev space Wl’i(log W), introduced
in [ET] and denoted there by H](log H),:" ‘

DEFINITION 3. Let 1 < p < 00,1 € N, a € R. Then W] (log W).(R")
is the set of all measurable functions defined on IR™ such that for every
multi-index o = (ay,...,05) € ({0,1,..., )" with |o] = oy + ... + an <,
the weak derivative D*f belongs to the space L,(logL),(R"), This is a
Banach space with the norm 37\ o; | D% f|Lp(log L) (R™)|]-
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All the spaces introduced so far may be defined on open subsets of R™
rather than R™ itself by the standard process of restriction. We shall mainly
be concerned with spaces defined on @.

REMARK 1. It can be shown (see for instance [BeS]) that when 1 < p <
00, then f € Ly(log L)o(Q) if, and only if,

V1£(@)PQog(1£(=) + 2))% de < oo.
@

The expression in (1) is, in general, a quasi-norm but use of a convenient
form of the Hardy inequality shows that the analogue of (1) with. f* replaced
by f** is a norm on Lp(log L),(Q) equivalent to the quasi-norm (1); with
this norm the space is complete. We shall suppose that L, (log L)o(Q) is
equipped with the quasi-norm corresponding to (1) and shall regard it as a
Banach space.

‘REMARK 2. Other characterisations of L,(log L),.(Q) when 1 < p < o0
are given in [ET]. For example, it is shown that if @ < 0 then the space is
just the set of all measurable functions defined on @ such that '

& 1
) (21 Ly @IF) " <o,

je=Jd
where J € N, J > p, 1/p(§) = 1/p + 277 /n. Moreover, the quantity in
(2) is an equivalent norm on the space. If instead ¢ > 0, the space can be
characterised as the set of all those measurable functions g defined on Q
such that there is a representation

. imr
JeN, J>p, such that 95 € Lyt (Q) with
: > 1/p
(4) (3@ llgy Lan(@IF) " <0
=

and 1/g(§) = 1/p = 279 /n. The infimum of the quantity (4), taken over all
admissible representations (3), is an equivalent norm on Ly (log L){Q).

Next we introduce spaces of Marcinkiewicz and Lorentz type.

DEFINITION 4. Let 1/ be a non-negative, increasing, continuous function
defined on [0, 00) and such that
(i) %(0) = 0,
{ii) %(t) > 0if ¢t > 0,
(iii) the function 1n, v¥1(t) = t/1(t), is increasing.



icm

76 D. E. Edmunds and Yu, Netrusov

‘Denote by My (R?) the set of functions f defined on R™ such that
I f | My(B)] = sup [ (t)(t) < oo,
P<t<eo

and let My (Z) stand for the space of all sequences {a;}jez such that

0o
> Xl € My(R).
=00

Equipped with the norm || - [My{R"™)|, My(R™) is a Banach space. If we
identify {a;}jez with the function ¥o0  a;x[j,+1; we may regard My (Z) as
a subspace of My (R) and give it the induced norm. We may define M,,(I"),
when I' is any finite set, in the same way by identifying I' with a subset
of Z.

DerFINITION 5. Let % be a non-negative, continuous, concave function
defined on [0, co) such that conditions (i) and (ii) from. the previous definition
hold. Denote by Ay(R™) the space of all measurable functions defined on
R™ such that

o0

1| A (R = § £7(8) dp(t) < oo.

0
Using the formula

IF14p R = = § £+ (e (¢) de + bl | Lo (R™) ],
0

where b = lim;..0 ¥’ (2), it is not hard to check that the space is a Banach
space with the norm || - [Ay(R™)||. The spaces Ay(Z) and Ay (I") may be
defined as for the spaces My (Z) and My (I"). It is very well known that

(A ()" = My, (Z),

where the function ¢, is defined by the relation 11 (t) = ¢/¢:(¢). In the case
of the spaces A,;(I') and My (I") we also have the relations

(Ap(D))* = My, (), (My, ()" = Ay ().
DEFINITION 6. Let K > 0. We say a non-negative function ¢ defined on
[0, 00} is K-increasing if 1(s) < K+{t) whenever 0 < s < ¢,

LemMA 1. Let 4y be a non-negative function defined on [0, 00) such that
(1) ¢1(0) =0,
(i) o1(t) >0 it >0,

(iil) the functions ¥1 and 1o, Ya(t) = t/11(t), are K-increasing for some
K >0,
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Then there are a concave, continuous function ¢ defined on [0, 00) and
positive constants cy, ¢z (independent of ¢y and K) such that for all t > 0,

er < Y(t) /i (t) < caK2.

This Jemnma is well known in the mathematical folklore; we give a proof
of it in the Appendix.

REMARK 3. Let 1) and ¢y be functions satisfying the conditions of Defi-
nition 4 and suppose ¢y £ /1 < ¢ for some positive constants ¢; and cp.
Then for every finite set I" the estimates ¢y < || |My()|/|| - | Mo ()| < e2
hold.

REMARK 4. Let 44 and 1o be functions such that the conditions of Defi-
nition 5 are satisfied and ¢y < /4y < cq for some positive constants ¢;, ca.
Then for every finite set I', the estimates ¢y < ||- [Ap(I)||/I| - |Awo (D] < ¢2
hold.

In view of Remarks 3 and 4 and the assertion of Lemma 1 we may and
shall suppose in the definition of the spaces A, and My that i1, where
P1(t) = t/1(2), is K-increasing for some K > 0; of course, we also suppose
that (0) = 0, that ¢(¢) > 0 if ¢t > 0 and that 1 is increasing.

LEMMA 2, Let By be a finite-dimensional Banach space with uncondi-

tional basis {ej};.‘;“} B1, Denote the set {1,...,dm By} by I'

(i) Let o be as in Definition 4. Suppose there are numbers € > 0 and
K > 0 such that the function t — t*75/3(t) is K-increasing, and assume
there is o constant ¢ > 0 such that for every set I C I, the following

inequality holds:
|5 o oip.
Jer

Then for every sequence {a;}jer of scelars the estimate

| = ages || 2 aliashieribu ()l
Jel
holds, where ¢y (> 0) depends on the parameters €, K and ¢ only.
(ii) Let +p be as in Definition 5 and suppose that there is a constant ¢ > 0
such that for every set I C I' the following inegquality holds:

H Z ej’EIH < cy(#0).
Jjen

Then for every sequence {a;}jer the estimate
” Z“J‘ej‘EIH < exf{a;}jeridy (D)
Jjer

holds, where ¢y (> 0} depends on the parameters e, K and ¢ only.
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When the basis of E; is symmetric, this lemma is well known: see, for
example, [BeS]. As we prove a more general result in §4, Lemma 4.1, we
shall not give a proof here.

Turning now to entropy numbers, we give the formal definition.

DEFINITION 7. Let X and Y be Banach spaces with X compactly em-
bedded in Y, and let ¢d : X — Y Dbe the natural embedding. Given any
k € N, the kth entropy number of id, written ex(¢d), is the infimum of all
those ¢ > 0 such that there are 2*~* balls in Y of radius e which cover
{id(z) € Y : [lz|X]|| < 1}. More generally, if K is any compact subset of ¥’
and k € N, we write

ex(K,Y) =inf{e > 0: K can be covered by 2°! balls in ¥ of radius ¢}.

For properties of entropy numbers in general we refer to [ET], Chapter 1.

LEMMA 3. Let s € K, m € No, s(4) € N, forj =0,...,m, s = 371" 5(4),
and let E, F be Banach spaces of sequences, with F' «— B, which both have
an unconditional basis {e;}ien. Suppose that Tp, T, ..., Ty are disjoint
subsets of N with union N, let BE(T};), F(T;) be the subspaces of B, F re-
spectively which are spanned by those e; with i € Ty, and let id : F — E,
id; : Fj — E; be the natural embeddings. Then

m
es(id) < Y ea(s(id;) + llidmaa|

J=0
Proof. This follows in much the same way as the subadditivity of the
entropy numbers is proved (see [ET], p. 8, for example).

LEMMA 4. Let I' be a finite set, let m € N satisfy m < #I", and let
£>0,0 <~ < 1. Suppose that i1, ¢ : [0,00) — [0,00) are continuous and
such that _

(i) (t), 2(E) > 0 9 ¢ > 05

{ii) 11 end v are increasing and the functions with values at £ > 0

given by t/11 (1), t/12(t), t75 /aha(t), a1 (8)/t7FE are C-increasing, for some
constant C > 0.

Let id : My, (I') = Ay, (I") be the natural embedding. Then there are
constants Ch, Cq, depending only on C, v and &, such that '
Cotpa(max(1, 81)/+1 (max(1, 9))
< em(id) < Ciypa(max(l, 5)) /41 (max(L, 8)) < C*Cagpa(S)/¥1(5)

where
m

" log(1+ #I/m)’
Proof We defer this until §4, after Theorem 4.2 has been proved.
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Levma 5. Letl € N, L < p < o0, b € R. Then there is a function

¢ € C5°(R™), with (g, ¢duw = 0, such that given any f € W, (log W) (Q)
there are numbers a , for eachi e Ny and all k € S(4), where

50) = {k=(k1, ... k) €Z": -2" Sk; <27 ~1, forj=1,...,n},
and a function fo € C§°(R"™), such that

(5) f= Z Z % s $ik T fo

i=l heS(i)

and

2 o 1/2 —
® (|22 X Jaalxis)) [Lotog L@ + 15l @)
i=1 kES()
< CIlAW, (log W)s(@).
Here C i3 a constant which depends on ¢, p and b only.
LuMMa 6. Letl e N, L <p < oo, b €R, ¢ € CPR), fo € CHY(Q)
and let oy, 4 € Ny, k € S(4) be numbers such that the left side of inequality

(6) 13 finite. Then the function [ defined by means of formule (5) belongs to
the Sobolev space W; log Wy (Q) and the following estimate holds:

| £|WElog Wi(Q)]]

sef(S( ¥

k&S(d)

asalrs)) [ Lallog (@) = ORI @)L

Here C i3 a constant which d.ej:ends on @, p and b only.

REMARK. Lemma 6 is still valid if we replace the Sobolev space
Wi(log W)s(Q) by the Zygmund space Lp(logL)»(Q) and require that
Su\n ddz = 0. Lemmas 5 and 6 are special cases of Lemma 4.2, and so will
not he proved here,

3. The main result. It is convenient to introduce some new notation
at this point. Let i(1) € Ng = NU {0}, i(2) € Np U {00}, @ = [-1,2]" and
define
I(i(1),4(2)) = {(i, k) : for each ¢ € N, i(1) <1 L (2),

k € Z" satisfies —2¢ < k; < 2M1—1 forj=1,...,n}.

In the notation of the last section (see Lemma 2.5)

ra,i@)y=|J s@.

i(1)<i<i(2)
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DEFINITION 1. Given 1 < r < 00, L £ # < 00, b € R, 4(1) € Ny and
i(2) € NU {oo}, i(1) < 4(2), define B = E,;9(i(1),i(2)) to be the space of
sequences of numbers indexed by I' = I'(i(1),4(2)} and given by

E={{oup)imer : [HouuH Bl < ool
where ’

i(2)

> ( Z |eti |X¢,k2£”‘/r)0)1/6 L,

i=i(1)  (Lk)el

[{ctik} Erpoll = ”( (log L)b(@)H.

LEMMA 1. Let I' € I'{0,00), 1 < r < o0, 1 £ 6 < oo and put e;p =
20/7x x for each (i,k) € I'. Then

(i) ‘ 1§6rem’ < {1 —27n/m)t (,,S;:;Ep €4k,
i) IS ) |2@)] = e

(i.B)er
Proof. (i) Let z € @, 2otikyer ik (@) # 0 and put
i(z) = max{j € Ny : there exists k € Z" with z € Q;, (4, k) € I'}.

Then
i(x)

Z &, k < Z gin/r _ oi(z) n/'r/( 2-—n/r)
(i,k)el’ i=—00
=(1-=2"""" sup e p(a)-
(ik)el’

{ii) Note that

sup ei,kg( Z (€ik) )1/0 2 €k

(i,k)el’

(hkjer (G k)er
and
e
BUp ek < e; < eup-
wer (h,ki)ér + ) (e,i«z);r .
Moreover,
/
[( % o) |z@] = oy
{(i,e)el

The result now follows from ().

LEMMA 2. Let 1 <r <00, 1 <0< 00, beR, i(l) € Ny, 4(2) € Ng. Let
I'=D(i(1),4(2)) and E = E,; 9. Define functions 1y, ¥z by

icm

Entropy numbers of embeddings 81
_ e when 3271 < ¢ < o0
'l/)l (t) = 1 . . !
117 (log, (3n2™(ME=1 4 2))  when 0 < ¢ < 3n2ni(D),
Ya(t) =t (logy (2P £ 2))% when 0 < £ < oo
Then
(1) A“PJ(P) —r E s M’JM(F} if b0,
(ii) /11/,1([’) e JT sz(lﬂ) if b S 0.

Moreover, the upper bounds of the norms of these embeddings may be chosen
independent of the parameters (1) and 4(2).

Proof. It is enough to deal with (i), as (ii) then follows from duality.
Due to Lemma, 2.2, it is enough to prove that for all I'y C I', the inequalities

H D ik Lellog L)s( H>‘01¢1 (#1),
(i1k)epﬂ
| 3 en|La0g (@) < cavalatTi)
(iﬁkf)er(l

hold for some positive constants ¢y and cp, where e; ), = 217 x; 1.
Put g = E(i,k)eﬂ; ey, By Lemma 1(ii),

g\ Lo (@Y = ea(FI0)Y"
for some ¢3 > 0. Also,
fin(sUpP g) < min(3", 27N 4 1y).
Hence
g1 Ze (@) = 9" | Lo (@) £ ll9" L1108 LYo 11X (0,10n (supp 013 oo (l0g L) b
< callg) Ly (log L)y min(1, (1 + flog(27™H 40)[™) ),

the first of the desired inequalities. For the second, put f = supy; xyer, k-
By Lemma 1,

|ALH@) = (#10)Y
also,
= | Loe(@) | < 2.
Let d be the Luxemburg norm of f in the Orlicz space Ly (log L(Q).

This norm is equivalent to that with Wthh we earlier endowed the space:
see Remark 2.1.
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1= l(f-%p—))r{log (2 + %@—i) }Mdm
(1) [ 5)

< ca(#Io)d"{log(2 + M(#I0) ")}
< et (#Ip) d™".
REMARK 1. If i(1) = k+27, i(2) = k+ 277" —~ 1, 0 < t < 2%, then
Pr () = a(t) < /{29 + logy(m/t)}°, where m = gkn

LEMMA 3. Letm,k e N, 1 < p < g<oo,m =2 0<6<1 and
dm e N. Then
ems{Ep,2,a(k + 2 k+ o+ 1}) e Eq,z,b(k! 400 fp 4 2dH 1))
S C(m5)_d(2j . logz é‘)b+d—a g C(mé)—dzj(b'l'd“a')

Then

where d = 1/p — 1/q and the constant c is independent of m, k, J and d.

Proof. From Lemma 3.2, Remark 1 and Lemma 2.4 it follows that
C1
27 + logy (m/t))*=°’

EmE(I) < id(

where
md

" Tog, (1 + 205750m (mé) 1)

and where I is the natural embedding of Epaa(k + 27,k + 29 — 1) in
Eqop(k + 27,k + 201 — 1)}, Hence

¢l ‘ 1
mill) S T loga L+ 2P (g0~ [ + Togy (m /O
But ‘
logy (1 + 20+2)m (1 5) 1) < 27 — log §
and

2/ + logg(m)/t) = 27 + log, (57 (logy (1 + 22'/5))
=27 — log, § + log, (logy (1 + 2% ”/5)) =< 20 —log .
Thus We have the estimate

ems(I) < J)d (27°= log, §)PFd—e.

(
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REMARK 2. Using the same calculations it is not hard to see that the
following inequality holds for all 4,k € Ny:
(1) NBpoalk+2k+ 274 —1) o Epgp(k4 29,k + 27H1 — 1)

< ey (k + 29) 7ot < gy 29009

From inequality (1 ) it follows that for all j,k € Ny, if & > b,
(2) 1 Ep2,0(k + 27, 00) = Byl + 2, 00)|| < c29=),
and hence ‘
(3)  |1EBpzalk+ 257 00) o Byoulk + 20711, 00)|| < c2Fn(B-9),

LeMMA 4. Letmk e Ny m=2" 1 <p<qg<oo,a,beR b—a #
1/q—1/p. Then

3mc(Ep,2,a(k + 2,(50) e Eq,z,b(k’ 4 2,00)) < Co,n,brmauvc(b—-c:,l/‘i"-I/i’J)7
where the consiants ¢, co are independent of the parameter k.

" Proof. Thanks to inequality (3) and Lemma 2.3 it is enough to prove
the following statement:

There are positive constants ¢y and ¢y such that for every k € Ny there
are numbers s(1),...,a(k) with

kn

(1) Y s(5) € ex2t,
j=1
kn . .
I > eany(Bozalk+ 20, k+ 277 —1) o Booplk+ 2, k+ 277~ 1))
J==1

< 622.’5 max(1/q—1/p,b—a) )

Let integers s(j) be such that
man , m2"
< < :
(min(j, kn — 5+ 1))2 = si) (min(j, kn —j +1))2
Then condition (1) is & trivial consequence of our construction. Condition
(II) follows easily from Lemma 3 and the relations

+ 1L

kn
Zc( () =i (btd=a) o g dme j,nk: 3+1))2d23(b+d a)
i=1 =

= m~ 4 max(1, 28+

= max(m ™%, mb~?)

whend=1/p~1/q and a — b # d.
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‘We need one more lemma.

LEMMA 5. (i) Let K1, K2 be compact subsets of a Banach space X and
let m € N. Then (see Definition 2.7)

62m(K1 + Kz,.X) < em(Kl,X) + Em(Kg,X).

(ii) Let 1 < p < g < o0, let a,b € (0, 00) and suppose that s € N satisfies
s>n(l/p—1/q). Let M > 0 and let

K ={f € Wy(logW)a(Q) : [ fIW; (log W) (@)l < M}.

Then there is a constant ¢, independent of M but depending onn, 5, p, q, a
and b, such that for all m € N,

em (K, Ly(log L)o{Q)) < eMm /™.,

Proof. (i) This follows in the same way as the subadditivity of the
entropy numbers is proved (see [ET], Chapter 2).

(ii) This is an easy consequence of the well-known result of Birman
and Solomyak [BiS1] concerning the entropy numbers of the embedding of
W2 (Q) in Lg, (Q) when 1 < py < g1 < o0 and s >n(l/p1 — /@)

Now we can give the main result of the paper.

THEOREM 1. Let 1 < p < g < 0o and suppose that L =n(l/p—1/q) € N
let —o¢ < b < a < 0o and assume that a— b3 1/p— 1/q. Let

id : Wy(log W)a(Q) ~ Ly{log L) (Q)
be the natural embedding. Then
em(id) < m,
where § = min(a ~b,1/p~1/¢q).
Proof. Let f belong to the unit ball of Wi(log W)e(Q), let m = 2%,

weN, let
f= fo-l-Z > ki

i=1 ke S(i)
be the decomposition given by Lemma 2.5, and put

A=fot Y, D Cixdik Z > ki

izl he (i) i=ud-1 EeS (1)
Note that fi is a smooth function. Now put
Ky ={f: |fW (log W)a(@)] < m}
and
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= Z > aipdis and

isurbl kES (i)

”{ai:k’Zil_m/p}i%u-l-l,m,oo;kES(i)lEp,2,a(U+ 1,00)|| € 1}.

{f & W (log W),

Then f1 and fz belong to suitable multiples of Ky and K, respectively. The
upper estimate in the theorem now follows from Lemma 5, Lemma 2.6 and
Lemma 4. The lower estimates follow from the inequalities

4)  em(Wy(logW)a(Q) = Lo(log L)u(Q))

= C1Em(

WHQ) = Lo(@)) = m™m,

where r is any number from the interval (p,q), and

en(Wp(log W)a(Q) = Ly(log L)s(Q))
2 coem (Ep9,0(m, m) < B, 9 5(m, m))
2 |27 8 o Lofl0g L)s /127 P of Loflog T)al| = b=,
The final relation in (4) is a particular case of the results of [BiS1] (see
also [KT], [V]). We refer to [ET] for a different explanation of the lower
estimates. When & = 0, the lower estimates are contained in Theorem 3.4.1

of [ET]; when a # 0, they follow from natural adaptations of the proof of
that theorem, as indicated in the proof of Theorem 3.4.2 of [ET]. -

4. More general results. Let X be a linear space and let 0 < p < 1.
Amap ||| : X — [0,00) is called a p-norm if it satisfies the usual norm
axioms except for the triangle inequality, which is replaced by the following:

[l + yll? < Jl2l” + [lo]”  for all 7,y € X.

If p = 1, the map is simply a norm.

Cauchy sequences are defined in the obvious way with respect to a p-
norm on X, and if every Cauchy sequence in X converges (to a point of X))
the pair (X, |- ]|} (or, more loosely, X) is called a p-quasi-Banach space.

DeErINITION 1. Let 0 < r € 1, 0 <t < 0o, Given a measurable function
f on R®, denote by fr*(t) the quantity

|

(2w aw)

0
We remark that when r = 1, then f¥* () = f** (see Section 2).

DerINITION 2. Tet 0 < 7 < p, 0 <r <1 and let ¢ be a non-negative,
continuous, increasing function defined on [0, 0o} and such that
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(1) (0) =0,
(i) w(t) > 0ift > 0,
(iii) there are constants ¢ > 0 and C; > 0 such that the function 1y is
Cy-increasing, where oy {t) = t1/7=% /ib(t).

Denote by Ay ,(R™) the space of all mcasurablc functions defined on R”
such that :

00 " 1/p
(1) 1£14p 5 (R = ( @) %%2) <0
0

REMARK 1. When p = 1, the space Ay ,(R™) is just the Lorentz space
Ay (R™) introduced in §2. When p = oo it coincides with the Marcinkiewicz
space My (R™) of §2, provided that we assume that there is € > 0 such that
the function 1, 91 (t) = t17¢/4(t), is K-increasing for some constant K. It
will be noticed that the definition of Ay ,(R™) involves a number r. However,
given any r1, 0 < r; < min(1, p), the space Ay ,(R™) is independent of the
particular r € (0,71) used to define it. Moreover, the quantity (1) will be
equivalent to the corresponding quantity obtained by repla,cement of f}*
Wlth fo¥ or f*. This follows from the inequalities

O0<ri<m <y,

f* e LE]
Ty — Jra?

and the Hardy inequality. Moreover, the expression in (1) is an r-norm on
Ay p(R™), which becomes an r-quasi-Banach space when endowed with it.
The spaces Ayp(Z"), Ay, p(I") and Ay p(Q) are defined just as their coun-
terparts in §2 were specified.

Finally, we observe that when 3} ig given by
() = /P (log(2 + 1/8))",
the space Ay, becomes the Zygmund space Ly(log L.

t> 0,

The next lemma is an analogue of Lemma 2.2 for the case of p-normed
Spaces.

LevMma 1. Let 0 < p < 1, let By, be a finite-dimensional p-guasi-Banach

space with unconditional basis {e(4) ;}L"{E”, and let 11 and 1y be non-

negative, continuous, increasing functions such that
(1) ¥1(0) = 42(0),
(i) ¥1(t) > 0, ¥o(t) > 0 when £ > 0,

(iif) there are positive constants & and K such that the functions ¥s and
Y4 are K-increasing, where

Pa(t) = P ha (1), ahalt) = £ fupn(t).
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Suppose also that for every set I' < {1,2,...
holds:

(2) CIVES DY
jer

.dim Ep} the following estimate

j)|Ep”_S o (#I).

Then we have the embeddings

Ay o0 D Ep D Ay, p.
Moreover, the norms of these embeddings depend only on the constants p, e
and K.

Proof. Let us prove the right-hand embedding. Define a sequence of
integers {i(s)}5%, as follows:
i(0)=0, #(1)=1, di(s+1)=inf{s: () = 2a(i(s))},
Then from the properties of our function ¥ it follows that
Yali(s +1))
3 2 PR T <0, seEN
@ EO
Denote by 3(0) the positive integer such that i(s(0)) < dim E, < i(s(0)+1).
Let zdim v a(1)e(4) be an element of our space Ay, p such that
dim Hy

| 3 ae(®) Auas

im=1
Without loss of generality we can assume that
a(l) 2 a(2) > ... 2 a(dim E;) 2 0.
Using inequalities {3) it is not hard to check that
4(0) min(dim By,i(j})

seN,

‘51.

ettt 2[5 3 a(i(3))e0) g
us=A(f =1)h1
2e (%a(zm)w(( )
Jurl
8(0)~1 . , . 1
2 32 (@)U + 1)+ ali6(0)Fp(dmEy))
8(30?1 i(5+1)
~a('E ]S sl
=

dim By,

+ (ai(s(0) )HZ e(w) [ Avs])") 1/1».
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Now apply the estimate (2) and after that the p-triangle inequality to obtain
the required estimate:
)

)"

s(0)—~1
o4y, ol 2 s

j=1

#(j+1)
(ait3))] > o(u)| By

dim By
+ (alis@))] X ety
u=:l,

2 (:3||m!E,,H.

The proof of the left-hand embedding is easy. Let
dim B,

T = Z a(i)e(i) € B,.
=1

Without loss of generality we assume that a(1) > ... > o(dim E,) > 0.
Then

J2/4gs 00l < crsup . (w)a(u) < ersupafu) | 3 eG)| By|| € callal B,
g==l

where the suprema are taken over all u € N with u < dim By

DEFINITION 3. Let a,l e R, 0 < p < 00, 0 < # < oo. A function
f € §'(R™) belongs to the space F]E,g(log F).(B*) if and only if there iz a
representation

o
(4) F=>#
i=0
(this representation converges in §') such that

(i) supp F fo C B(0,2),
(i) supp F fi C B(0, 2+1)\ B(0, 2¢-1),
(iii) the quantity

® I

is finite.

T+

0A129%) " Ly log La(RY)
=0

. REM{LRK' 2. The ?nﬁmum of the quantity (5) taken over all representa-
tions satisfying conditions (i), (ii) is equivalent to an r-quasi-norm, where
r may be taken to have the form min(1,p, #) — e, where ¢ is any posi-

tive number. Moreover, equipped with this quasi-norm our space becomes a
quasi-Banach space.
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The space F;i,g(log F)o(Q) is defined by restriction. If ¢ € S'(R"), the

restriction gl is an clement of D'(Q). We put
Fpolog F)a(@) = {f € D'(Q) : f = glq for some g € FY 5(log F), (R")}
and it iy quasi-normed by
11650 (log F)(Q)]] = inf || E} 5 (log F)a(R)]],

where the infimum is teken over all g € F} (log F)o(R™) such that glg = £,

REMARK 3. Bpocial cases of the spaces introduced in Definition 3 coincide
with known spaces. Thus Ffﬂﬁ(log F)g is simply the Lizorkin-Triebel space
F;,g. Moreover, the space ng(log L)4 coincides with the Zygmund gpace
Ly(log L)o when 1 < p < oo, while F} ,(log F), is just W(log W), when
leNand 1l <p <o,

LemMa 2. Let 0 < p<oo,a € R 0< <00, leR L elNu{-1},
L > ~l4+n/min(l,p,8) ~n, M € N, M > I. Then the following two
assertions hold:

1) There is a function @ € C§°(R™) such that
(a) We hove

(6) Scpm‘" de =0 for every o € N} with |a| < L.
(b) Buery function f & F}ﬁ,g(log F)a(@Q) has a representation
oQ
() F=fo+ Y Y cirpik
i=1 ke S(4)

where o € R, o = (- —k27%)/27%), i € N, k € §(3),
supp fo C [~1,2]". Here §(i) = {k = (k1,... ,kn) EZ" : -2 <
ky <2t -1, g =1,...,n}. Moreover,

® 1012 (30 (D leustzxsn) ) |Estiog D)

i=l keSS
< c1||f1Fy p(log F)a (@)

2) Let p € CY(R™) satisfy condition (8). Then every function f which
has a representation (7) such that the quantity on the left-hand side of (8)
is finite belongs to the space F) o(log F).(Q); moreover, an estimate reverse
to (8) holds.

When o = 0, the space Fi ;(log F'), is just the usual Lizorkin-Triebel
space ing and the result is known: see [FJ], [N1, 2]. When @ # 0, the proof
is essentially the same, with L, replaced by L, (log L)a: see [FJ], [N1,2], [T].
Due to Remark 3 above, Lemmas 2.5, 2.6 are special cases of Lemma 2.



90 D. B. BEdmunds and Yu. Netrusov

Now everything is ready for the generalization of our main result to the
case of Lizorkin—Triebel spaces.

THEOREM 1, Let a,b € R, 0 < 61,05 < 00, 0 < p,g < 00, I1,l2 € R,
L—l=n/p—nfg>0,a~b>0 a—bs#1/p~1/q Denote byid the
embedding

F (log F)a(Q) = Fyly, (log F)»(Q).

Then

Sm(%‘dl) = m~min(a—b,1/p—1/q)‘

Proof. This follows exactly the same lines as the proof of Theorem 3.1,
using Lemma 1 instead of Lemma 2.2.

Before formulation of the next result, some additional notation and def-
initions are required.

DEFINITION 4. Let E be an m-dimensional r-quasi-Banach space, We
say that a basis {f;}i, of E is symmetric if, and only if, for any sequence
{a;}7, of scalars and any permutation 7 of {1,...,m},

DEE)

A typical example of such a space with a symmetric hasig is the Lorentz
space Ay ,(I") introduced in Definition 2.

From now on in this section we shall suppose that B and F are d-
dimensional r-quasi-Banach spaces with a common symmetric basis { f;}&.,
Denote by idg,r the natural embedding of E in F.

2|

DEFINITION 5. Let s € N. We write u(E, F, 5) for the quantity

where the supremum is taken over all scalar sequences {o;}{

o1 > ... > ag > 0and ||§:1,,,J_cx,f1|ﬂ|| <1,

THEOREM 2. Let m € N, m < d/2, and let g be the unique integer such
that

supHimin(as,ai)ﬁ

.y such that

m m
e < —_— e,
log(1 + d/m) <ozl log(1 + d/m)
Then

em(idp,F) = u(B, F, ),
where the constants implicit in the symbol = depend only on 7.

To help in the proof of this result we need the following lemmas.

icm

HEntropy numbera of embeddings 91

LeMMA 3. Let m and g be as z’n‘ Theorem 2. Then:

(;) 20 maoreover, if 2™ 2 d then (3) < 2°°™, where ¢y, ¢y are
pommve conatants independent of d,m and s.

(ii) Let X be an r-quasi-Banach space of dimension s with a symmetmc
bagis { fiti.1, and let id : X — £oo be the natural embedding. Then

eu(id) < é/H S alx I
: ieml

where the constant ¢ depends only on .

(iif) There are positive constants a,v,c, K such that given any d € N,
any set I" with #1I" = d and ony v € N with v < d/K, there is a set
S P(Iu):={Iy CI': #Iy = v} such that

(a) if Uy, Us € 8, Uy 5 Us, then
(1 "FV)#(UJHU2)<#(U1UU2)
(b) #S’ >e(} ) .

Proof. (i) Computations using Stirling’s formula give this result: see
[ET], Chapter 3, §2.
(ii) First, we note that if #I” = s, then

€5 (lpao(I) = oo (7)) = 8717,

This follows from the same arguments as in [ET], p. 100, where in fact only
weak estimates are used. For convenience we Fake I'={1,...,5}. The result
will follow if we can prove that

= X = oD < s”"/” %

XH

To establish this, let @ = . alﬁ € X, |lo/X| < 1, and suppose,

without loss of generality, that ce; 2 ... 2 ¢, 2 0 and that
M = sup{eui'/? i =1,...,8} = [{ei}ier|dpe ()]
Let M == 0093(0)*/?. Then
e, 2 2 Qi) = M/i{0)**,

Thus

X” <1.

+(0)
|3 w24
fez] C
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Assume that s/i(0) € N. Then dividing I' into s/i(0) groups each of
length i(0), we see that

{u+1}i(0)
S Moy Mg, ‘XH <1, wuwel01,
i=1+ui(0)
in view of the properties of the symmetric norm, and

IS

,S/i((}) - 1}:

X" < i(0)M7 /M.
Hence |

o
i=1

as required. If 5/4(0) € N routine modifications of this argument are all that
is needed. '

(iii) It is easy to see that there are positive constants ¢;, cz such that for
any d,v € N with v < d,

(@dfoy < (%) < /oy

#P(Lyv) = (f)
Let Iy € P(Iv). Then if 2v/3 € N,

2v v d
nepP : > oy < .
From this it follows that there is an S satisfying condition (a) with v = 2,

and that
se2 () ) () eorrons

Choosing K sufficiently large, we may take o to be any positive number less
than 2/3. If 2v/3 ¢ N we make natural changes to this argnment.

LeMma 4,

XH < (s/z‘(O))l/p” Ii(ZO)ﬂ.P(” < (s/i(O))l/Pz'(O)l/P/M = 81/]9/M,

Also

(i) There is a positive constant ¢, de'pendmg only on r, such thet for oll
s N,
u(E, F,28) > cu(E, F, s).
(ii) For any positive K and r, there is a number A > 4 such that for any

s,d € N with s < d/K, there are integers m(4) and sets B(i) < {f1,..., fi}
with 1 < i < i(1) and i, i(1) € N, such that
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(a) #B(i-+1)/#B(i) 29, m(i+1) > m(5);
(b) #—B(l) > 8
(c) Titi #:B() < d/K;
(d) B( )HB( ) =0 when i £
(e) the estimade
2| E|/ ||zl 8]l > cu(®, F, )
holds, where '
i(1)
Qe ZAMMHJX.B('D'
i=1
(iti) Let A€ N, A = 4, and for eachi € N with 1 < ¢ €i(1) letn{i) € N
be such thai
i{1)
> nf) < d/K.
i=1
Then there are positive constants c; and ¢q, depending upon r and A, such
that whenever

n(i+1)/n() 23, mi+1) > m(),

w i)
T = Z A-«m(m)x’a(i)’ Y= Z Ammb)
feal
where D(4), B(1) C {1,...,d} and #D; = #B( ), then

e < || Bl /{yiB| < ea.
(iv) Let the conditions of the lnst statement be satisfied and let § € N,

1 <7 <i4(1), e(1,1),e(2,1) € {0,1}, 4 = L,...,4(1). Suppose that £(1,7) #
e(2,5). Then
‘ZA ™l (e(1,3) — &(2, z))| > %A“m(j).
(v) If

i(1) (1}
4 zAwm(i)xE(i)# y = ZA_MW
feml faw
where A > 4 and B(0),D@E) ¢ {f,...,fa}, m()) € Z, with #B(d)
= 3£D(1) = n(i), where n(i-+1)/n(E) = 9, m@i-+1) > m(i), 1 €4 <i(1) and
#(B(i) N D)) < 2n(i)/(2+7), v > 0, then

where the positive constant ¢ depends only on the constants -y and r.
Proof. (i) Let {«(i)}4.; be non-negative numbers such that -
al)=,. . =a(8)Za(s+1)2...2a(d) 20
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and
d d
|| 3 ali); FH = u(E, F, 5), H S ali)fi EH =1
i=1 i=1
Then
u(E, F, 2s)
25
> |>asi+ || /) Za(l fi+ Z () f: B
i=1 i= =2s+1
> u(E, F, s)/Z”.
(ii) Let (2) be an integer such that
1005 < d/K, 104D+s> d/K,
and let z(i), 1 < i < d, i € Z, be numbers such that
() =z(2)=...=z(s) > x(s+1) > ... 2 5(d) 20,

H Zd:%‘fi
i=1

Denote by m(1,1), i = 0,. ,4(2), integers such that
A-m(l,i) > :c(lO’s) > A—m(l,i)-—-l

Let M be the subset of Z defined by means of the relation m € M if,
and only if, there exists 4, 0 < i < i(2), such that m = m(1,7). Let M =
{mi): 1 <i<i(1)}, m(l) < m(2) < ... < m(i(1)), where i(1) = #M.

Put B(i) = {i: 1 < i < 10, A1 < z(i) < A7™H ) All the
properties {a)-(e} are trivial consequences of our construction.

(iii) Denote by z*(4) the non-decreasing rearrangement of the element

z € B. For the proof of the statement it is enough to check that the following
two inequalities hold:

* (- 4 :
) TG 50
2, .
(10) g(gﬂ) = 2"(4)
for any 7, 1 £ 7 < d. Here the sequence 2*(i), 1 <1 < d, 1 € Z, is defined

by means of the relation

s |0 when d > j >n{l) + ... +n(i(1)),
z (J)“{A—m(i) whenn(l)—l—,?ql-n(i)2j>n(i)+...+n(z’—1),

and the function g(¢), t € [0,d] is defined by means of the relations
9{(0) = z7(1), g(i) = (E*(i),

d
F” > u{E, F, S)H ;:c?fi
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gli+A) = (1= N)g"(i) + 2™ (i + 1),
i=0,1,...,n(1)+...

g(u) =0, n(l)+...

+n(i(1),

0< A<,
+nfi(l)) <u<d ‘

Let us prove inequality (9). Suppose that ¢ and j are such that
{11} n()+...+0@)2i>n{L)+...+n(E-1).
Then

i(
< ZlA —m(i) < ZA—m(z)-a
u=1i

..“A"m(”(1~+~z+zf+--') < 54T < 5200

Now we prove inequality (10). Suppose that ¢ and j are such that (11)
holds. Then

2 .

39 <Em@)+ . +nld))

2(n(3) + n(@)/3+n()/3* + ..} < (} - §nls)) =n(3).
The estimate (10) is a trivial consequence of this inequality and the estimate
z*(n(i)) > A~™), which follows immediately from the relation |B(3)| =
n(t). ‘

(iv) The proof of this is obvious.

IAIA

(v) Let u*(i) be the non-decreasing rearrangement connected with the
vector  — y and let the sequence z*(i) be defined in the same way as in
the proof of statement (iii). Denote by g1(t) the function constructed from
the sequence {u(j)}%.; in the same way as the function g(t) (from (ii)) was
defined by the sequence {z*(i)}. Now suppose that i and j are such that
inequality (11} holds. Then

9 M 9 2y
. <_._ —1)+.. 1
10 2+7 10 2+7(()+nz )+ An()
9 2'}'

102 10 247
< #((B(9) UD(Z’))\(B(%') N D(i))).
From (iv) it follows that

9 & Sm(i) _ :
(10 2+73) 4 770

which leads directly to the required statement.

1 9 2 L 10
z‘)(1+1%+——+...)=—~--ﬁ~-n(%)‘"—
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Proof of Theorem 2. First we prove the estimate of e, (id £,5) from above.
By Lemma 4(i), to do this it is enough to show that for some positive
constants ¢1, ¢y and cs,

eclm(idE,F) < Czu(E,F, Cgs).
When 2™ < d, this estimate is a consequence of the inequality
em('id}_;;,p) < ”idE,F“ = ’LL(E, F, 1).
We may thus assume that 2™ > d.

Let X be the linear span of fi,..., f,. Using the definition of entropy
numbers, choose elements x; (I € L, #L < 2™) such that given any « € X
with ||z{E|| < 1, there exists z; € L such that
(12) & - 1|lo| < em(X — oo)-

For any J € P{{1,...,d}, s), let w(J) be a bijection mapping J onto {1,...
..., 8}. We now construct our approximating set K. Let () denote the ith
coordinate of z; and take

13)  K={y() =Y m(=()G)f;: 1€ L, Je PUL,...,d}, 5}
JjeJ

We check that K has the necessary approximation properties and is not too

large. First, using Lemma 3(i) and the definition of L, we see that

#FH < (FL)#P({L,...,d},s) < 2™

As for the approximation properties, take any z = Y.© .z f; € E with
2| Ell < 1 and let J C {1,...,d} be any set such that for any j(1) € J and
J(2) € {1,...,d}\J, the inequality Zj(1) 2 Zj(z) holds. Put
2= Z )
il
Choose I so that (12) holds. We verify that the element y(J,1) defined in
(13) approximates 2 in the desired way. This follows since
19 Je—(ZDIF] < el Bz - y(2D)IF|
el P, apa(z — (L )|F),
where we denote by Pr, I' € {1,... ,d}, the natural projection from E to
the linear span of {f;};er. From the construction of the set [ we see that

156 =y E ) < | 30 5[ Flen, )
i€

and, by Lemma 3(ii}, the right-hand side of this is bounded above by

HzfalF'l/H ng[EH < u(E, F,s).
i€r ey
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Moreover,
1P, apna (2 = (L D) FIl = | Pa,...ap\s 2 F|| < u(E, F, s).

This establishes the desired estimate from abaove.

For the lower estimates of the theorem, in view of Lemma 3(i) and
Lemma 4(i), it is enough to check that there exist positive constants X, v, ¢1,
co,c3 such that for any m < d/K, there exists G C E with the properties:

(a) #G > a1(9%;

(b) for all z € G, [[z|E|} < ¢g;

(¢) for all z,y € G, z # y, we have ||z —y|F| = cau(E, F, 5).

Take K and o as in Lemma 3(iii). Apply Lemma 4(ii), let A and B{%)
be the same as in Lemma 4(ii) and put #B(i) = n(d), i(1) < i < i(2).
Apply Lemma 3(iii) with v = n{{) and construct corresponding sets S{i)
P{{1,...,d}n{)). Then

#s02:(%) i

For any ¢ with 4(1) < ¢ < ¢(2) we can find sets B(5,4) C S(i), 7 =
1,...,01(‘;)&, with B(j1,4) % B{ja, 1) if 1 # j2, and define

G:{wj:j=1»--w°(j)a}

i(2)
5 =b Y A Oyn
i=i{1)
and b is a constant. On account of Lemma 4(jiii) we can choose b in such a
way that

d

&

where

lo; 1Bl Sesy 2| Fll 2 equlB, F, s).
Properties (a) and (b} follow from our construction; we simply have to check
(¢). But this follows directly from Lemma 4(v).

Now that Theorem 2 has been proved, we can return to Lemma 2.4.
Proof of Lemma 2.4. In view of Theorem. 2, it is suflicient to prove that
u(M%(FLAm(F)sS)‘S C’lwz(S)/@bl(B),

where I' = {1,...,d} and C; depends only on £. Let a = (a;)ier be such
that ||a| My, (I"}] < 1; without loss of generality we may suppose that a; =
az 2 ... > aq > 0, so that a; < ¢/¥1(i), i € {1,...,d}. Let i(0) € N satisfy
/2 < 289 < 5 and let (1) € N be such that d/2 < 24% < d. Then
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(15)  |[(min(as, as))ier Ay (D)l < ell(1/%1(max(s, s)))ier| Ay, (D)
(1)

= > a(2)/4n(2°).

$=4(0)
From the conditions on 4 and 32, together with the equality

e Yalf) _ alt) 7
i) e a(t)
it follows that £ — %529 (t)/41 () is C2-decreasing and that

¢2(2i) <022~2-i5 ,2’!‘)2(21,(0))

t

P1(2%)  (2¢0))
We thus see that the right-hand side of (15) is bounded above by
02 ¢2(2i(0))
1 — 2—2¢ wl(zi(o))’

and the required estimate follows.

5. Applications. Just as in [ET], the sharp estimates for the entropy
numbers of embeddings which we have obtained can be used to obtain in-
formation about the eigenvalues of operators of elliptic type acting in a
bounded domain of R™, To explain the procedure we first extend the no-
tion of entropy numbers given in Definition 2.7 to a more general context.
Let X, Y, Z, W be Banach spaces, let Uy = {2 € X : |z|X|| < 1} and let
T : X - Y be bounded and linear. Given k € N, the kth entropy number
of T is

ex(T) = inf{e > 0: T(Ux) can be covered by 2¥7! balls in ¥ of radius }.

It is easy to see that if §: Z —» X, R : ¥ — W are bounded and linear,
then for all k € N,

(1) ex(RoT o 5) < ||Rl|ex(T)|5]].

If T is a compact linear map from X to itself, let {A\x(7)} be the sequence
of all non-zero eigenvalues of T, repeated according to algebraic multiplicity
and ordered by decreasing modulus; here we make the convention that if
T has only a finite number of distinct eigenvalues and M is the sum of
their algebraic multiplicities, then we put A\y(T) = 0 for all & > M. Carl’s
inequality (see [ET]|, Corollary 1.3.4, p. 30) gives a most useful conpection
between the eigenvalues and entropy numbers of T+

2) D) S VE (D) (kM.
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The operators B which we shall discuss here are, as in [ET], Chapter 5,
of the form

(3) Bf =bA " f (0<rk<1),

where A" is a fractional power of a regular elliptic differential operator of
order 2m, and by, by belong to suitable spaces.

THEOREM 1. Let r1,r2 € (1,00], 5 € (0,1], m € N, with

1 1 2mx
(4) )
™ g K12
and let p € (1,00), a1,a2 € R be such that _
1 1 1 Imk
(5) — < =< =, a1taz>—
Tra P Tl n

(with a1 <0 if ry = oo and a2 <0 if r2 = 00 ). Suppose that
(6) bj € Ly, (log L)ay(@) (i = 1,2).

Then B is a compact linear map from Ly(Q) to itself with eigenvalues iy
(arranged as explained above), and there exists ¢ > 0 such that

k| < ellba] Ln, (log L)ay (@) [1b2] Lra(log L)as (Q) 67> (k € N).
Proof. This is the same as the proof of Theorem 5.3.3/1 of {ET]. The
idea is to use the decomposition
B=byoido A ™" o by,
where
by Lp(Q) — Le(log L)a, (@),  1/g=1/p+1/rs,
A" 1 Lo(log L), (Q) — Fyz™(log F)ay (Q),
id: F27"(log F)oy (Q) = Li(log L) 0, (Q), 1/t=1/p—1/ry,
by : Ly(log L) o, (@) — Lp(Q), 1/q—1/t=2mk/n.
We now simply use Carl’s inequality (2), together with the composition
property (1), to obtain ‘
|l < V200 1A B2l e (idd).
From this, plus the mapping properties of A™", by, by and the information
about e (id) given by Theorem 4.1, the theorem follows.

REMARK. This result improves Theorem, 5.3.3/1 of [ET], where it was
required that a; + ag > 4mk/n, rather than the condition imposed in (5).
This improvement arises directly from our weakening of the conditions un-
der which the sharp estimates for ex(id) hold. In the saine way, Theorem
5.3.3/2 of [ET] can be improved: condition {16) on p. 216 of [ET] can be
weakened so as to require merely that Ay + Az > dmk/n. Of course, we
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have @ as the underlying domain rather than the bounded domain with
C™ boundary of [ET], but as explained in the Introduction, this is not of
real significance.

Appendix. As promised, we give here the proof of Lemma 2.1.
Let 1g be the function defined by

Yo(u) = sup Pu(t), u>0.
0<t€u

Then it is easy to see that ¢y has the following properties:

(i) %o is nonnegative and increasing;
(i) 91 (t) < o(t) < Kby (2) for every £ > 0;
(iii) the function t t~ $/9p(t) is K-increasing.
Put a; = 1o (2571} 1hp(2), i € Z. Then from conditions (i)~(iti) it follows
that
(a) a; 20,1 € Z :
(b) for every i(1) and i(2) in Z, with i(2) > ¢(1), the inequality
i(2) i(1)

Y. o <KFO-O( ST 4))

j=—o0 fm— 00
holds.

Define a sequence {b;} by means of the relation

i€ Z

b; = su
g>lz)2'7 -

Then from the definition of our sequence it follows that
b,

1) b; > ~2i1 >0 forevery i€ Z.

Now let us prove that for every integer i(0) the estimates
(0} i(0) 1(0)

(2) Za;,<2b<2ff+ ZGJ’

Je—oo -——~DO 20 w30

hold. The left-hand estimate is trivial; let us prove the right-hand inequality.
With this aim we show that the 1nequa11ty

Jm—o0

holds.
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From the definition of b; it follows that

aq; [ 74
b; < max ax  —- A < 4(0).
<o g, 555 e ). 9540

Now after applying the estimate (b) when ¢(2) = j and i(1) = i(0), we have
(3). Inequality (2) is now a trivial consequence of the estimate

#(0)

#(0)
z 21 D}— Z i,

]—n—OO

which itself follows immediately from (3).
Next, define the function 1 in the following Way Put

P(t) = by (827 2 b;

j=—o

when 2° < ¢ < 2+, Then from inequalities (1) it follows that 1 is concave.
From the properties of our functions 4,41 and ¢ we have the following
inequalities:

Y(t) > 39(2770) 2 dyo(t) > (),
and

B(t) < 2H(2) < 4K + Dpo(2%) < 40K + Lo(t) < A(K + 1)K ()

where ¢ is any positive real, and the integer j is defined by the relation
277 < ¢ < 270
The proof is now complete.
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