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p~Analytic and p-quasi-analytic vectors

by
JAN RUSINEK (Warszawa)

Abstract. For every symmetric operator acting in a Hilbert space, we introduce the
families of p-analytic and p-quasi-analytic vectors (p > 0), indexed by positive numbers.
We prove various properties of these families. We make use of these families to show that
certain results guaranteeing essential selfadjointness of an operator with sufficiently large
sets of quasi-analytic and Stieltjes vectors are optimal.

0. Introduction. In [S], B. Simon has made the following remark:

“¢ can only be quasi-analytic (Stieltjes) without being analytic (semi-
analytic) if ||A"¢|| does not have fairly regular growth”.

In this paper, we present examples of quasi-analytic and Stieltjes vectors
¢ for an operator 4 such that | A™¢|| has regular growth. The vectors ¢ in
those examples are neither analytic nor semi-analytic.

We construct an example of a symmetric operator that has a dense set of
quasi-analytic vectors without having a non-zero semi-analytic vector. The
corresponding quasi-analytic vectors have an irregular growth.

We also show that the theorems guaranteeing selfadjointness of operators
with sufficiently large sets of quasianalytic and Stieltjes vectors are optimal.

For any p > 0, and for any ¢ € N the classes of g-analytic and p-quasi-
analytic vectors were introduced in {I]. p-quasi-analytic vectors were also
considered in [E] and used for analytic semigroups of operators. We also
introduce the classes of g-analytic vectors for any real ¢ > 0. Our examples
demonstrate connections between those classes. We also show that an opera-
tor can have a dense set of p-analytic (respectively p-quasi-analytic) vectors
and have no non-zero p’-analytic (p'-quasi-analytic) vector with p’ < p.

1. Analytic and guasi-analytic vectors. Let A be a symmetric oper-
ator acting in a Hilbert space H. Denote by C°°(4) the space [,y D(A™).
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DEFINITION 1.1. An element z € C™(A) is called an analytic vector for
Aif

(1.1) i “Anx
n=0

for some t > 0.

" < oo

DEFINITION 1.2. An element z € £ (A4) is said to be a quasi-analytic
vector for A if

(1.2) S lare| M = e
n=0

The following two theorems hold.

THEOREM A (Nelson [Ne]). Let A be a symmelric operator on a Hilbert
space. If A has o dense set of analytic vectors, then A is essentially selfod-
joint, that is, its closure is selfadjoint.

THEOREM QA (Nussbaum. [Nul]). Let A be a symmetric operater on a
Hilbert space. If the set of quasi-analytic vectors for A has a dense linear
span, then A is essentially selfodjoint.

Let I be the Hilbert space (real or complex) of all sequences z =
(21,2, ...) such that 3 oo |za|* < co, with the scalar product given by

(@ 19) = (@122, | (2,92 E:m%
Let €5 be the standard unit vectors in Io.
The linear space mq spanned by {ej,es,..

sequences. ‘Of course my is dense in o,

Given p,q > 0, let A, ; be the operator defined on mg by setting

.} is the space of all finite

Apqe1 = arez,
Ap.qCh = A 1€4-1 + CKER+1 (k=2,8,..),
+1))4. The matrix form of A is as follows:

0 a7, 0 0 0
a3 0 an 0 0
0 a O a3 -0
0 0 a3 0 o4

where ap = kP(In(k

It is obvious that Ap 4 is symmetric.
First we show the following
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Lemma 1.1 For any k,n € N,
Nk

n k
Ap gex = Z ;e

where a?’” are posztwe numbers such th,at
(1.3) 0% T = OOkl - Gt
(n+k~1)!
= (S ok 1) i 4y,
and, for all k,n and all § with1 <i <k +n,
E,n n (ﬂ+k‘~*1)‘ P
(1.4) o <2 (-——————-w(k Y (In(n + &))"

Proof, We proceed by induction on n. For n = 1 the conclusion results
immediately from the definition of A, .. Assume that (1.3) and (1.4) are
true for some n and all 2 < k 4+ n. We have

n+k
(1.5) A;‘,"'qjlek = Ap,q(Ag,qek) = Ap)q ( Z og::“’ﬂei)
i=]
n+k
e E af‘"(ai_lei_l + Gi€it1).
t=l
Using the inductive hypothesis we have
ka1 k,n
al’c—i—n-}—l = ak+na'k+n = a‘kak-i-l e Optn— 10k 4n
_{(n+ k-1
S\ (B—1)

% (In(k +1)...In

This implies (1.3) for n + 1.
Now assume that (1.4) is true for some n and all k,i. From (1
(1.4) we have

kn+1 k,n
o™ = o apy + e

(k +n))9(k +n)?(n(k +n + 1))

.5) and

< om ( (”(—;:ﬁ I)!l)') (In(n + E))™[(i — 1)P(Ini)¢ + *(In(i + 1))9].

For i < k 4+ n we obtain

GhD < g g (_(____”(z k I);”’ )p(-ln(n + BP0k + n)P(tn(k +n 4 1))°

= gnti (M((: i' T;:)p(ln(n + k1))l

Thus (1.4) is also proved for n+ 1.
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In the sequel we shall use several times the following simple consequence
of Stirling’s formula [K]:

(S) Varm (nfe)" < nl < 22w (n/e)"

CoroLLARY 1.1. Each vector e s analytic for Apo if 0 < p < 1 and,
consequently, also for Ag o (with 0 < p <1 and q arbitrary).

Proof. Obviously it is sufficient to consider the case p = 1. Let

gn = §/ [ AT gekll/n!.

By Lemma 1.1 and (S) we have

n-+k i/n pil/n
kn n+k_ n (n+k“1)l
< (5 2 la )< (Tt
<2n+k—1(n+k—1)<’° 1)/”( 27r(n+k——1))1/”
= n k-1 V2r(k — 1)v2mn

From this we can see that limsup,,_, . ¢» < 2 and, consequently, that e is
analytic for A4; .

COROLLARY 1.2, No non-zero vector in my s quasi-analytic for Apo if
1 < p and, consequently, no non-zero vector i myp ts quasi-analytic for Ap 4
(g arbitrary).

Proof. Let v € mo, v = ¢c1e1 + ... + crex (cx # 0). By Lemma 1.1 we

have
k j+n

(1.6) Apov = ZZCJQ: é;.
i=114i=1

Thus

(1.7) A% ovll > lexleT,.

Let s, = 1/]|4p ov|. By Lemma 1.1 and (S) we have

. . n+k— 1)N\?/"
> Yieokt = vial (S i)
>m(n+k—1)1’(n+k )““"”P/"( Zvr(n-l-k——l))p/"

k—1 2 (k ~1)

>Mn+k-1)7,

for some constant M. Thus the series 377, 1/ ¢/[|AR v|| is convergent if

p > 1 and, consequently, the vector v is not quasi-analytic for 4, o.
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Now we make use of the operator A; .1 to demonstrate that a symmetric

operator may have 1o non-zero analytic vector and yet may have a dense
set of quasi-analytic vectors,

COROLLARY 1.3. No non-zero vector v € my is analytic for Ay ;.

Proof. Let v = c1e1 + ... + ¢xeg. Using a similar argument to that in
the previous corollary, we see that it suffices to show that the upper limit

of the sequence
= /|47 16k\|/n'

is equal to co. By (1.5) we have
k_kmn R
0 ma nym>04&wwym
- !
1/m
ln(k +1)...In(k+ n))

S 1n2‘..1n(1+n) 1m
— 0 (k-1 '
Since {/(k —1)! tends to 1 and %/In2...In(1 4 n) diverges to infinity as

n — 0o, we see that g, — oo, Thus v is not an analytic vector for A.

((n+k

COROLLARY 1.4. Each vector v € mg is quasi-analytic for Ay .

Proof. Let v = cie1 +...+crep and let M = max(|ei,. . .,
Lemma 1.1, (1.6) and (S) we have (for large n)

ks ntj / k
i = S S < a3 )

=1 i=1
(4 k= Dl(ndn + &)\ V"
? - 1) )

lcg]). Using

< (Mk(n +k)-
< 2In(n + k) ¥/ Mk(n + k)!
< 2In(n + k) (2ME(n + k)™t* e~/ Brn)t/»

< 21n(n+ k)(n + k)e~t /26 M (n + k)be-b+/Bmn.

Since the nth root above tends to 1 as n — oo, there exists ng € N such
that the root is smaller than 2 for n > ng. Then for n > ny,

VA < 4(n + k) In(n + ket

and hence
1 : _ e

VI Ames| g 4(n+k)1n(n+;;)'.
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Since
> 1
Tgl (n+7)ln(n+r) = oo
the series {1.2) diverges to infinity. Thus ey is quasi-analytic for Ay ;.
Now we can see that we cannot use Theorem A to show that the operator

Ay 1 is essentially sefadjoint on mg. But from Theorem QA the conclusion
follows immediately.

2. Semi-analytic and Stieltjes vectors. Let A be a symmetric oper-
ator acting in a Hilbert space H.

DEFINITION 2.1. An element z € C*°(A) is called a semi-analytic vector
for A if

(2.1)

for some ¢ > 0.

DEFINITION 2.2. An element z € C™(A) is called a Stieltjes vector for

A if
o0

(2.2) 37| Ara| =M = co.

pes()

It will be proved that the set of Stieltjes vectors is larger than that of
analytic vectors (Lemma 2.2).

Obviously the set of amnalytic vectors for A is contained in the sets of
semi-analytic vectors and of quasi-analytic vectors for A and the last two
sets are each contained in the set of Stieltjes vectors.

So we have the following diagram ([S], [I}):

analytic C  quasi-analytic.
N N
semi-analytic C Stieltjes

We come back to the operators Ap  to state the following

COROLLARY 2.1. If p < 2, then each ey is a semi-analytic (and conse-
quently Stieltjes) vector for Agp.

The proof is identical to that of Corollary 1.1.

This result together with Corollary 1.2 (with 1 < p < 2) shows that the
set of semi~analytic vectors can be essentially larger than that of quasi-ana-
lytic vectors.

The following theorems are stronger than Theorems A and QA respec-
tively, but for a more restricted class of operators.
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TuEOREM SA (Simon [S]}. Let A be o semibounded symmetric operator
on o Hilbert space. If A has a dense set of semi-analytic vectors, then A is
essentiolly selfadjoint.

THEOREM S (Nussbaum [Nul]). Let A be a semibounded symmetric op-

erator on a Hilbert space. If the set of Stieltjes vectors for A has a dense
span, then A is essentially selfadjoint.

We will see shortly that for positive operators the set of Stieltjes vectors
can be essentially larger than the sets of semi-analytic and quasi-analytic
vectors.

Let H, ey and rng be as in Section 1. Given p,q > 0, let By, be the
operator defined on mg as follows:

Bp,qel = aiez + b1€1,
Bypgtr = ap—1€k—1 -+ bper +arer1 (K=2,3,..)),

where a1 = 1, ap = k?(In(k +1))¢ for k£ > 1 and by = 2ax. The matrix form
of By,q is as follows: '

by er 0 0 O
aq bz ag 0; 0
0 %] b3 a3 0
0 0 as b4 a4

Thus Bp 4 is symmetric.

We now show that B, ; > 0. Let By be the k X k matrix formed by‘the
first k columns and k rows of By 4. It is sufficient to show that det By > 0
for all k. We shall show that

det B, >0 and det By > aydet By..1-
For k= 2,

_[2 1
Bg_[l 2 28(ln 3)4

:I , detBy=4.2°(In3)7 ~1>3>2=deth.
Suppose that the assertion is true for some k. We have
det Bryy = byyy - det By ~ C&% det Bg—1.
Thus
det By..y > by det By — ag det By > det By - (bey1 — a) > det By - a1,

since byt1 = 2a541 > Qg1 + Ok
Now we prove the following



240 J. Rusinek

LeMMA 2.1. For fized p,q and for any k,n € N,

ek

k,n
By ek = § :ﬁi’ €

i=1]
where 81" are positive numbers such that

(2.3) B = GkQkt1 - - - Ohtn—1

_mm——((m“k W fne +1)..

(CESG Anlk +n))?

and for all 4,

(2.4)

gom < 6 (——(” Z! k)!)p(ln(n +k+ 1))

Proof. We proceed by induction on n. For n = 1 the conclusion results
immediately from the definition of A. Assume that (2.3) and (2.4) are true
for some n and all ¢ < k + n. We have

n+t-k
03 Bypen=Bpu(Bhger) = Bua( Y 6"r)
i=1
n+k
= Z BE™ (@im1€ins + bigi + aieigy).
i=1

Using the inductive hypothesis for (2.3) we have

kn+1 —
Brintr = ﬁk+n“k+n

_(In+ k- 1)!)]9
T {(k-1)
x (ln{k + 1)
Thus (2.3) is proved for 7 + 1.

Now assume that (2.4) is true for some n and all k,4. From (2.5) and
(2.4) we have

ﬁf)n-f'l ﬁf_r;_aiwl + Bk ‘n.b + ﬁ.,l_'_lav:,
n n-+ k)! ’ n
<6 ((—kr")—) (ln(n+ k+ 1)) ¢
 [(~ 2)P(1n(i — 1)7 + (6 + 1)P(ln(i + 2))* + (i + 1))
Using (2.4) and the estimates a; < by and b; < bk for all ¢ with ¢ < k+n

n(k +n))*(k + n)? (In(k + n + 1)},
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we have
Rl < 3Mkh, L < 3. 6%(

— 6'n-i-1 (@L:Ij:ﬂ)p(ln(n k4 2))nq‘

Thus also (2.4) is proved for n -+ 1.

n :!k)’Yz(n + BP(n(n + & +1))?

Similarly to Chapter 1 cne can prove the following

COROLLARY 2.2, If p < 2, then each vector v € mq is semi-analytic for
Bpg, and if p > 2, then no non-zero vector v € myg is Stieltjes for Byy (g
arbitrary).

Now we consider the special case p =2, g = 1.
COROLLARY 2.3. No non-zero vector v € my is semi-analytic for B, -

Proof. Let v = cie1+. . .+cxex (cx # 0). Because || By 1v]| > |- [ﬁk+n|
and since %/|cx| tends to 1 as n — oo, it suffices to show that the sequence

¢ = 1/ BE.1ex[|/(2n)!

diverges to infinity. By (2.3) we have
oo = (LZEEATYT , (Wehitonal)”
n = =

(2n)! (2n)!
2 1/n
>((((;-)"(2))21 (k+1)...1n(k+n+1)) ‘

Using (S) we obtain

(n+ k)z(”+’“)e‘2(”+’°)27rn) 1/n
™ ( 2(2n)2re=2n+/2n (k1)2 Pn

where p, = {/In(k + 1)...In{k+ n+ 1). Consequently,
> \/ﬁrﬁpn
W PR
Since

21

ekl

and p, diverges to infinity we ace that g, — oc. Thus v is not a semi-analytic
vector for By .

—+1 asn-— o0

COROLLARY 2.4, No non-zero vector v € myp 18 quasi-analytic for By g if

1> 1 (in particular forp =2, ¢=1).
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Proof. Let d, = 7/
previous corollary together with (8) we obtain for sufficiently large n,

e ((n+ & — )P[ofk+1) . In(k +n)j¢
|Ck|43k+n l ki ((k: ))p
> {/l-cﬂ\“/(n!)? > ?,

since §/]cx| tends to 1 a8 n — co. Thus the series 3 1/d, is convergent and
v is not quasi-analytic.

B7,v/|. Using a similar inequality to one in the

COROLLARY 2.5. Each vector v € my 15 o Stieltjes vector for Bay.

Proof Let v=cies +...+crep and let M = max(|cy], .. ., |cki). Using

{2.4) and (S) we have

gm—(iioﬂv ) (}i:é )1/(2n)

< (Mk .6 {(n+ k)l)z(h’;(!n +k

<+/BIn(n+k+1) % (n+ k)
< /6In{n + k + D)((n + k)" e "% /2n(n + k)™
=/6In(n+k+1){n +k)e™ %n + k)ee—k/2m(n + k).

Since the nth root above tends to 1 as n — oo, there exists ng € N such
that, for some ng, the root is smaller than 2 whenever n > ng. Hence

%/||B ex|| < 14(n + k)/In(n + & + L) e

and consequently

+ 1) )1/(%)

1 e
> .
/|| BE ekl 14(n - k)4 /In(n + k)
Since ‘
S
( +r)/In(n +7) !

the series (2.2) is dlvergent to oco. Thus v is Stieltjes for Ba 1.

. Now we can see that we cannot use Theorems A, SA and QA to shew
that the operator By 5 is essentially sefadjoint on mg. But from Theorem S
~ the result follows immediately.
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3. Not essentially selfadjoint operators, In this part we give ex-
amples showing that being quasi-analytic and respectively Stieltjes arein a
sense optimal conditions. We shall establish the following.

THEOREM 3.1. If p > 1/2, then Aspq is not essentially selfadjoint
on Mg,

Denote Azpo by A. We show that Ran(A-+1) is not dense in H by finding
a non-zero € H orthogonal to Ran(A + ).

Let z = 3 p0y Zkek with @y = L. We calculate x5 from the equation
0= ((A+ier | z)=

obtaining xg = ~—1.
Suppose that we have already found z,,. ..
from the equation
0= ({(A+ieg | z)
= (ag-16p-1 + Grers1 + i€k | Tho1€k—1 + Th€k + Tht1Ckt1)
= (k= 1)"zp_y + ki + ik,

(012 +ier | mey + zoey) = xg + iz,

, Tk, We then calculate zp 1

getting

k-1 R 1Tk
Lhtl = "'—'"]‘c”'“" Tk—1 — -E"é"g

We must show that the sequence (z,) thus defined is in [2. For this
purpose we will consider another sequence defined as follows: ¢; = c2 = 1,
and suppose that we have defined ¢1, ..., ¢,. We define

Let dj,y = (n+ L)Pchyq — 1 (be chiy = rrfrp (L + dnpa))-
Let
1
Crp1 = (‘“ﬁj—{lﬂd nil)-

It is evident that |z,| < ¢n g0 it is sufficient to show that the sequence
(en) is in 12, :
Put d,, = |d},|. We have

1
Cp = E(l +dn)
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We shall show that the sequence (d,,) is bounded. We have

2p 2p
n-—1 Cp, 14 dn 1 1+ dn
c;’l.-l—l = (" n_> Cn—1 + nzp ( ) ]_) + TLSP

(n—-1) d
=3 et (14 e
L =1 LI
== 1+d,- 1+d,
(n+1)P[ g (Lt das) ( )
Using Lagrange’s formula for the function f(z) = (1 +z)? (put £ = —1/n?)
we obtain
1 PPN+ dyy) 1 1\?
c;+l=m|:1+dn_1——~—7~"b——“+ﬁ 1‘]"{5 (1"|-dn)
1
= W( +dp i)
where 1 — 1/n% < # < 1. Thus 677! < 2 for sufficiently large n and
PP 1+ dpt) 1 1Y\P
dn+1—dnm1*~—7——+m 1+;L~ (1+dn).
Thus
PP 1+ dp_y) 1 1\?
dn+1§dn—1+—n—2——'71"“"+;;§? 1*|*;{ (1+4dp)

We have the following three possibilities:

(i) dn <1 and dp~1 <1,
(ii) d, > 1 and d,, > dn—1,
(111) Ono1>1and dp_1 > d,.
In case (i} we have
4p 4
dpy1 €1+ 3 + 7

In case (ii) we have

2p 4 2
A1 = dp (1 3 + ) p

n2p nz
In case (iii) we have
p

From the above inequalities we obtain

dny1 S max(lndnydn—l)( ) + W)
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Thus

iy d4p 4
dn+m < max(l, dy, dny1) H |:1+ k2 + kZP:[
k=n+1
for any m,n € N,
The above infinite product is convergent since the series

— [4p 4
X ()
k=n-+1

is convergent [K]. Thus (dy) is bounded and consequently (¢,) as well as
(zn) belong to . So # = (wy,m3,...) is orthogonal to Ran(A + ). This
implies that A, ¢ is not essentially selfadjoint on my.

Now we consider the operator B = A2, It is symmetric semibounded and
not essentially selfadjoint since Ran(B--1) = Ran(A4+i)(A—i) C Ran({A+41)
is not dense in H.

The growth of the sequence || B™ey|| (as p tends to 1) is only slighty
faster than the growth demanded from a Stieltjes vector. This also shows
that Nussbaum’s theorem for Stieltjes vectors is optimal.

4. p-Analytic and p-quasi-analytic vectors. Let I be the Euler
function I'(x) = Sgo t*~1e=* dt. In particular, I'(n) = (n — 1)! for n € N.

Let p > 0 be fixed. We consider the following generalization of four kinds
of vectors.

DEFINITION 4.1. An element x € C°(A) is called a p-analytic vector for
Aif

for some ¢ > 0.

DerFINITION 4.2. An element 2 € C°°(A) is called a p-quasi-analytic
vector for A if

0 .
(41) > llAna) e = 00
n=0

For p == 1, we obtain analytic and guasi-analytic vectors, and for p = 2,
we obtain semi-analytic and Stieltjes vectors, respectively.

Obviously if p1 > pp then the set of pi-analytic (respectively py-quasi-
analytic) vectors is larger than the set of pz-analytic {pr-quasi-analytic)
vectors.

Moreover, we have the following inclusion.

LEMMA 4.1. If z is p-onalytic then T is also p-quasi-analytic.
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Proof. Suppose that z is p-analytic. Then

. o A ol |lA"z]
lim sup I(pn+1) < I'(pn+ 1} <M

Let k, € N be such that
(4.2) m <k, <pn+ 1.
Using (S) and the fact that the function I” is increasing we have
|A"z| < M™I(pn+1) < M"T'(ks + 1)
== M™(kn)! < 2M™kEre™*n \/2nk,
< 2M™(pn + 1P e /2 (o + 1).
Thus
Ana| O < MY (pr 4 1) (pn 1) 07 (/Bpn + 1))
< 2MP(pn + 1),
since [(pn 4 1)4/2(pn + 1)]*/(?™) tends to 1 as n — co. The lemma follows.
Now we establish the following.

THEOREM 4.1. Let p > 0 be fized. Each vector v € my s p-analytic for
the operator Arp if r < p and is not p-quasi-analytic if r > p.

Proof. Let v € mg, v = cie1+. . .+crex, and let M = max(|eq],...
For the first part it is sufficient to take r = p.
Denote A.q by A and let

o= (7o i‘“u)l/n‘

By Lemma 1.1 and (S} we have

»lexl)-

k ntjf

vl = (Z%’.Eaf’“ﬁ)l/n
J=1 =l
k ntj o "
(MEE'“M) < (k(n%—k)i’,zn%;)m)

< MK+ BPI B BT T R
< (n-+ b PRkM(n -+ K)'Pe™7Brlu F R < 4”7 (nt B

for sufficiently large n because (kM (n + k)Pke~ . /2r(n + k)]*/™ tends to 1
as n — 00.
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Let kn € N be such that pn < k, +1 < pn+ 1. Then
(Tpn 4+ IV™ 2 (DR + 1™ = (k)™ > ClkEn e~y f2rk )™
> Cllpn ~ 1 1e 71 /2r (o — 1))1/" > G (pn ~ 1)
for sufficiently large n since [(pn — 1)~'e™P""1\ fam(pn — 1)]*/" tends to 1

as n — CQ.
Consequently,
(n+ k)P
(pn — 1)
for some positive constant Cy. This implies that limsup g, < C,/p. Conse-
quently, v is p-analytic for Ay .

Now let r > p and r, = ||4,,00[|*/ ™). Using Lemma 1.1 and (S) we
obtain

nSCZ

. (R R Ve )
A7 oull = lexlog, n-l-ln = lex (k=) 20 (k-1
rrken—k S (n + k)
N ((k - 1))
Since

nrke=n=k. [orn ¥ &) 1/{pm)
(i)
we obtain for sufficiently large n,
1y = Con'/P,
As r/p > 1 the series

1 1 1
Z [ An|[i7lem] Z = Z nrip
is convergent and v is not p-quasi-analytic for Arp.
Now let B, = A2,

THEOREM 4.2. If r < 2p, then each v € mg 48 2p-analytic for B,, and if
r > 2p, then no vector v € myg is 2p-quasi-analytic for B;.

Then B, is positive and we have the followmg

Proof The first part results {rom the equality

imaue (Bl Y < imovp (] )
im suy = limsu, .
neane. \T'(2pn + 1) oo \I(Zpn + 1)

For the second part, notice that the sequence |A™d[|'/™ is increasing
(IN], I}). Thus the series 3y 1/ || A™u|*/(P™) is’ convergent if and only if
the series 3 1/ || 42" o||*/(227) s convergent. The last series is equal to

onen 1/11(A%) M/ Gen),
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So any vector z is p-quasi-analytic for A if and only if it is 2p-quasi-ana-
lytic for A%,

Now Theorems 3.1 and 4.2 give the following

COROLLARY 4.1. For any p > 1 there erists a symmelric operator with
dense set of p-analytic vectors which is not essentially selfadjoint and there
ezists o positive operator with dense set of 2p-quasi-enalytic vectors which
is not essentially selfadjoint.

The examples from this chapter together with Corollary 2.1 alse demon-
strate that operators rmst be semibounded in Theorems S and SA.

5. Quasi-analyticity and semi-analyticity. In general the growth
of the sequence ||A™z| for a quasi-analytic vector z must be slower than
for a semi-analytic vector. But in some cases it can happen that the set of
quasi-analytic vectors can be larger than the set of semi-analytic vectors. In
this section we construct an example demonstrating this.

Let H, mg be as in Section 1 and let A == 4, , be an operator as in
Section 1 with the sequence (a,,) defined as follows:

Let ky =1 and let kn4y = 3k for n=2,3... Put

QL = k3 if an g k< k2n+1:
k 1 if kangy £k < kznga

We will show that each vector ey is quasi-analytic for A but is not semi-
analytic for A.
Fix k and let n be even such that k& < kﬂ+1 Putp = ky,. Let p® < ¢ < 2pd.

LEMMA 5.1. We have A%y = Zk+q ble;, where

(5.1) bg+k = QL1 « - - Bhtqs
AT
(52 ] < 2%(p + k)
Proof. {5.1) was proved in Lemma, 1.1,
For ¢ = 1 we have
Aep = ag_18g—1 + 0xCLY1-

But (a1 € (k—1)3 < (p+k)® and |ag| < &* < (p+ k)% Thus (5.2) holds
for g = 1.
Suppose that (5.2) holds for ¢. Then

k4-q . kg
1
ATt ey = AZbgeJ = Za.j_m;’ej_l -+ (J;jbg-ej+1. :
=1 =1
g+l __ 30 R X
Hence b;"" = @307, +a;-1b] ;.
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“For 7 < 3p°, a; is equal to §% if § < p and aj =1if j > p. So the largest
a; here is equal to p°. Thus
77 < 2(p + B)2Ip® < 29F(p 4 k)BlaFD),
So the lemma is proved.

From the lemma we have for p® < ¢ < 208,
Yl Aver]] < /T + q)29p%.

Therefore
P P gl 1
Ef;i_g;;{i;riﬁorzﬂlfl 1/ /] A%x|| diverges to infinity and the vector e, is

Now let g = kapt1, i.e. g = 3p® where p = ko,
From Lemma 1.1 we have

g)°
-1- Qp1Gpt2 ... 0g = p—')3

HA"ek
en (p' 2q

The first factor tends to 1 and the second is by (S) greater than g/(4e%).
Thus the radius of convergence of the series

Z {A x| ekll o

n=0
is equal to 0. So e is not seml—analytlc for A.

——

| A%l > b, 211

Hence
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Analyticity for some degenerate
one-dimensional evolution equations

by

G. METAFUNE (Leoce)

Abstract. We study the analyticity of the semigroups generated by some degenerate
second order differential operators in the space C([e, 81), where [a, 8] is a bounded real
interval. The asymptotic behaviour and repularity with respect to the space variable are
also investigated.

1. Introduction. In this paper we prove the analyticity of the semi-
groups generated by differential operators of the form

A1 =m()[(@ - a)(8 - 2)D? + b(z)D]

or
o)

(z —o)(8 — =)
where D = d/dz, in the space C([e, 3]), with suitable boundary conditions.
The functions m and b are real-valued, continuous on the compact interval
[, 8] and m. is strictly positive; moreover, we assume that b satisfies a Holder
condition at the endpoints ¢ and 8.

The study of degenerate parabolic problems like

duw/dt = Bu,
{1.1) {u(ﬂ) = g,
where

Az = m{z) [Dz +

B =a(z)D? +b(z)D, =mel,
and I iy a real interval, already started in the fifties with the papers by
Feller [10] and [11], motivated by some one-dimensional diffusion problems;
the subsequent work of Clément and Timmermans (see [7] and [15]) clari-
fied which (necessary and sufficient) conditions on the coefficients a and &
guarantee the existence of the semigroup generated by (B, D(B)) if D(B)

1991 Mathematics Subject Classification: 35K65, 35B65, 35B40.

[251]



