

- P. Gorkin and D. Zheng
- P. Gorkin and K. Izuchi, Some counterexamples in subalgebras of L^{∞} , Indiana Univ. Math. J. 40 (1991), 1301-1313.
- [17] P. Gorkin and R. Mortini, Interpolating Blaschke products and factorization in Douglas algebras, Michigan Math. J. 38 (1991), 147-160.
- P. Gorkin and D. Zheng, Essentially commuting Toeplitz operators, preprint.
- C. Guillory and K. Izuchi, Interpolating Blaschke products of type G, Complex Variables Theory Appl. 31 (1996), 51-64.
- C. Guillory, K. Izuchi and D. Sarason, Interpolating Blaschke products and division in Douglas algebras, Proc. Roy. Irish Acad. Sect. A 84 (1984), 1-7.
- K. Hoffman, Analytic functions and logmodular Banach algebras, Acta Math. 108 (1962), 271-317.
- -, Bounded analytic functions and Gleason parts, Ann. of Math. 86 (1967), 74-111.
- G. M. Leibowitz, Lectures on Complex Function Algebras, Scott, Foresman & Co. Glenview, IL, 1970.
- D. E. Marshall, Subalgebras of L^{∞} containing H^{∞} , Acta Math. 137 (1976), 91-98.
- R. Mortini and V. Tolokonnikov, Blaschke products of Sundberg-Wolff type, Complex Variables Theory Appl. 30 (1996), 373-384.
- N. K. Nikol'skii, Treatise on the Shift Operator, Springer, New York, 1985.
- D. Sarason, Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79 (1973), 286-299.
- —, Algebras between L^{∞} and H^{∞} , in: Spaces of Analytic Functions, Lecture Notes in Math. 512, Springer, 1976, 117-129.
- C. Sundberg and T. Wolff, Interpolating sequences for QAB, Trans. Amer. Math. Soc. 276 (1983), 551-581.
- A. Volberg, Two remarks concerning the theorem of S. Axler, S.-Y. A. Chang, and D. Sarason, J. Operator Theory 8 (1982), 209-218.
- R. Younis and D. Zheng, Algebras generated by bounded analytic and harmonic functions and applications, preprint.
- D. Zheng, The distribution function inequality and products of Toeplitz operators and Hankel operators, J. Funct. Anal. 138 (1996), 477-501.

Department of Mathematics Bucknell University Lewisburg, Pennsylvania 17837 U.S.A. E-mail: pgorkin@bucknell.edu

222

Department of Mathematics Vanderbilt University Nashville, Tennessee 37240 E-mail: zheng@math.vanderbilt.edu

(3676)Received May 20, 1996 Revised version May 15, 1997

STUDIA MATHEMATICA 127 (3) (1998)

Existence and uniqueness results for solutions of nonlinear equations with right hand side in L^1

by

A. FIORENZA and C. SBORDONE (Napoli)

Abstract. We prove an existence and uniqueness theorem for the elliptic Dirichlet problem for the equation div $a(x, \nabla u) = f$ in a planar domain Ω . Here $f \in L^1(\Omega)$ and the solution belongs to the so-called grand Sobolev space $W_0^{1,2}(\Omega)$. This is the proper space when the right hand side is assumed to be only L^1 -integrable. In particular, we obtain the exponential integrability of the solution, which in the linear case was previously proved by Brezis-Merle and Chanillo-Li.

1. Introduction. We consider the Dirichlet problem on a bounded open set $\Omega \subset \mathbb{R}^2$ with C^1 boundary.

(1.1)
$$\begin{cases} Au = f & \text{in } \Omega \subset \mathbb{R}^2, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where $f \in L^1(\Omega)$ and A is a differential operator defined by

(1.2)
$$Au = \operatorname{div} a(x, \nabla u).$$

Here $a: \Omega \times \mathbb{R}^2 \to \mathbb{R}^2$ is a mapping such that

(1.3)
$$\begin{cases} x \to a(x,\xi) & \text{is measurable for all } \xi \in \mathbb{R}^2, \\ \xi \to a(x,\xi) & \text{is continuous for almost every } x \in \Omega. \end{cases}$$

Furthermore, we assume that there exists $m \geq 1$ such that for almost every $x \in \Omega$ we have

(i)
$$|a(x,\xi) - a(x,\eta)| \le m|\xi - \eta|$$
 (Lipschitz continuity),

(1.4) (ii)
$$\frac{1}{m} |\xi - \eta|^2 \le \langle a(x, \xi) - a(x, \eta), \xi - \eta \rangle$$
 (strong monotonicity), (iii) $a(x, 0) = 0$,

where ξ , η are arbitrary vectors in \mathbb{R}^2 ([LL]).

[223]

¹⁹⁹¹ Mathematics Subject Classification: Primary 35J60, 35J65; Secondary 46E27.

This paper has been written under the research program "Metodi di rilassamento e di omogeneizzazione nello studio dei materiali compositi" which is part of the project '95 "Matematica per la tecnologia e la società".

We would like to point out that the linear growth of $a(x,\xi)$ with respect to ξ is absolutely essential for the results in the sequel. The main difficulty with the p-harmonic type equations $(p \neq 2)$ is due to the lack of uniqueness results for very weak solutions.

We shall work with functions u of Sobolev class $W_0^{1,1}(\Omega)$ whose gradient satisfies

(1.5)
$$\sup_{1 < s < 2} \left[(2 - s) \int_{\Omega} |\nabla u|^s \, dx \right]^{1/s} = ||u||_{W_0^{1,2}} < \infty.$$

224

The space of such functions, denoted by $W_0^{1,2}(\Omega)$, will be called the *grand Sobolev space* because it is slightly larger than $W_0^{1,2}(\Omega)$. Note that (1.5) defines a norm in which $W_0^{1,2)}(\Omega)$ becomes a Banach space (see Section 2).

By a solution of problem (1.1) we understand here a function $u \in$ $W_0^{1,2)}(\Omega)$ such that

$$\int\limits_{\Omega} a(x,\nabla u)\nabla\varphi\,dx = \int\limits_{\Omega} f\varphi\,dx \quad \forall \varphi \in C_0^{\infty}(\Omega).$$

An existence theorem for the Dirichlet problem in the space $\bigcap_{q<2} W_0^{1,q}(\Omega)$ was established by Boccardo-Gallouët in [BG]. In order to obtain uniqueness, supplementary conditions were imposed on u. The so-called entropy solutions [BB], transposition solutions [M] and renormalized solutions [LM] were introduced for that purpose.

In this paper we take another approach and prove the following existence and uniqueness theorem:

Theorem A. Under the assumptions (1.3) and (1.4), for any $f \in L^1(\Omega)$ there exists a unique solution $u \in W_0^{1,2)}(\Omega)$ of problem (1.1). Moreover,

$$||u||_{W_0^{1,2}} \le c||f||_{L^1(\Omega)}.$$

Actually, we prove a slightly stronger result, namely

$$\lim_{\varepsilon \to 0} \varepsilon \oint_{\Omega} |\nabla u|^{2-\varepsilon} \, dx = 0.$$

Consequently, by a Sobolev-type imbedding theorem due to Fusco-Lions-Sbordone [FLS], we deduce that $u \in \exp(\Omega)$. This means that

$$\oint_{\Omega} e^{\lambda|u|} < \infty \quad \forall \lambda > 0.$$

This result, in the case of a linear operator, was previously proved by Brezis-Merle [BM] and Chanillo-Li [CL]. Crucial for our proof of Theorem A will be the notion of a very weak solution $u \in W_0^{1,2-\varepsilon}(\Omega)$ of the equation with right hand side in divergence form,

$$\operatorname{div} a(x, \nabla u) = \operatorname{div} F$$

with $F \in L^{2-\varepsilon}(\Omega, \mathbb{R}^2)$. Such solutions were introduced in [IS2]. For the sake of completeness we shall discuss briefly this theory in Section 3.

2. The space grand- L^q . For any q > 1 the function space

$$L^{q)}(\Omega) = \left\{ f \in L^{1}(\Omega) : \|f\|_{L^{q)}} = \sup_{0 < \varepsilon \le q - 1} \left(\varepsilon \oint_{\Omega} |f|^{q - \varepsilon} \right)^{1/(q - \varepsilon)} < \infty \right\}$$

was introduced by T. Iwaniec and C. Sbordone [IS1] in connection with their study of integrability properties of the Jacobian determinant (see also [GIS] and [G]). Note that $||f||_{L^q}$ is a norm and $L^{q}(\Omega)$ is a Banach space. The inclusion $L^q(\Omega) \subset L^{q}(\Omega)$ is obvious, and we know also that $C_0^{\infty}(\Omega)$ is not dense in $L^{q}(\Omega)$. Its closure consists of the functions $f \in L^{q}(\Omega)$ such that

$$\lim_{\varepsilon \downarrow 0} \varepsilon \oint_{\Omega} |f|^{q-\varepsilon} \, dx = 0.$$

It contains the Zygmund space $L^q \log^{-1} L(\Omega)$, i.e. the functions f such that

$$\int_{\Omega} |f|^q \log^{-1}(e+|f|) \, dx < \infty.$$

In [IS1] it is noticed, in particular, that weak- $L^q(\Omega) \subset L^{q}(\Omega)$. We will call $L^{q}(\Omega)$ the grand- $L^{q}(\Omega)$ space.

Similarly, in [GIS] the grand Sobolev space $W^{1,q)}_0(\Omega)$ has been introduced as the space of all functions $u\in\bigcap_{0<\varepsilon\leq q-1}W^{1,q-\varepsilon}_0(\Omega)$ such that $\nabla u\in$ $L^{q)}(\Omega)$. Again, $W_0^{1,q}(\Omega)$ is a Banach space and the inclusion $W_0^{1,q}(\Omega) \subset$ $W_0^{1,q)}(\Omega)$ is obvious. Imbedding theorems of the Sobolev type for these grand Sobolev spaces have recently been proved in [FLS].

3. Very weak solutions of monotone operators. The results we are going to formulate here are true in all dimensions. Therefore, for the purpose of this section we assume $a(x,\xi)$ to be defined on $\Omega \times \mathbb{R}^N$, where the conditions (1.3) and (1.4) hold for $x \in \Omega \subset \mathbb{R}^N$ and $\xi, \eta \in \mathbb{R}^N$.

We prove the following

THEOREM 3.1. There exists $\varepsilon_0 = \varepsilon_0(m) > 0$ such that for $|\varepsilon| \leq \varepsilon_0$ and $F,G\in L^{2-\epsilon}(\Omega,\mathbb{R}^N)$, each of the two problems

(3.1)
$$\begin{cases} \operatorname{div} a(x, \nabla u) = \operatorname{div} F, \\ u \in W_0^{1, 2-\varepsilon}(\Omega), \end{cases}$$

(3.2)
$$\begin{cases} u \in W_0^{1,2-\varepsilon}(\Omega), \\ \operatorname{div} a(x, \nabla v) = \operatorname{div} G, \\ v \in W_0^{1,2-\varepsilon}(\Omega), \end{cases}$$

has a unique solution and

(3.3)
$$||u-v||_{W_0^{1,2-\varepsilon}(\Omega)} \le c(m)||F-G||_{L^{2-\varepsilon}(\Omega,\mathbb{R}^N)}.$$

Proof. We mimic the arguments from the proof of Theorem 5.1 in [IS2]. Suppose we are given $F,G\in L^{2-\varepsilon}(\Omega,\mathbb{R}^N)$ and the corresponding solutions u,v to (3.1), (3.2). We wish to prove that (3.3) holds for $|\varepsilon|$ sufficiently small.

By the stability of Hodge decomposition stated in [IS2] we have

$$|\nabla u - \nabla v|^{-\varepsilon}(\nabla u - \nabla v) = \nabla \varphi + h$$

where h is divergence free and

(3.4)
$$\|h\|_{(2-\varepsilon)/(1-\varepsilon)} \le c|\varepsilon| \cdot \|\nabla u - \nabla v\|_{2-\varepsilon}^{1-\varepsilon}$$
$$\|\nabla \varphi\|_{(2-\varepsilon)/(1-\varepsilon)} \le c\|\nabla u - \nabla v\|_{2-\varepsilon}^{1-\varepsilon}.$$

From our assumptions we have

$$\int\limits_{\Omega}\langle(a(x,
abla u)-F)-(a(x,
abla v)-G),
ablaarphi
angle\,dx=0,$$

that is,

$$\begin{split} \int\limits_{\Omega} \langle (a(x,\nabla u) - F) - (a(x,\nabla v) - G), |\nabla u - \nabla v|^{-\varepsilon} (\nabla u - \nabla v) \rangle \, dx \\ &= \int\limits_{\Omega} \langle (a(x,\nabla u) - F) - (a(x,\nabla v) - G), h \rangle \, dx. \end{split}$$

We have

$$\begin{split} \int\limits_{\Omega} \langle (a(x,\nabla u) - F) - (a(x,\nabla v) - F), |\nabla u - \nabla v|^{-\varepsilon} (\nabla u - \nabla v) \rangle \, dx \\ + \int\limits_{\Omega} \langle (a(x,\nabla v) - F) - (a(x,\nabla v) - G), |\nabla u - \nabla v|^{-\varepsilon} (\nabla u - \nabla v) \rangle \, dx \\ = \int\limits_{\Omega} \langle (a(x,\nabla u) - F) - (a(x,\nabla v) - G), h \rangle \, dx. \end{split}$$

By our assumptions,

$$\begin{split} &\frac{1}{m} \int_{\Omega} |\nabla u - \nabla v|^{2-\varepsilon} \, dx \\ &\leq \int_{\Omega} \langle G - F, |\nabla u - \nabla v|^{-\varepsilon} (\nabla u - \nabla v) \rangle \, dx \\ &\quad + \int_{\Omega} m |\nabla u - \nabla v| \cdot |h| \, dx + \int_{\Omega} |F - G| \cdot |h| \, dx \\ &\leq \int_{\Omega} |F - G| \cdot |\nabla u - \nabla v|^{1-\varepsilon} \, dx \\ &\quad + m ||\nabla u - \nabla v||_{2-\varepsilon} ||h||_{(2-\varepsilon)/(1-\varepsilon)} + ||F - G||_{2-\varepsilon} ||h||_{(2-\varepsilon)/(1-\varepsilon)} \\ &\leq \left(\int_{\Omega} |\nabla u - \nabla v|^{2-\varepsilon} \, dx\right)^{(1-\varepsilon)/(2-\varepsilon)} \left(\int_{\Omega} |F - G|^{2-\varepsilon} \, dx\right)^{1/(2-\varepsilon)} \\ &\quad + (m ||\nabla u - \nabla v||_{2-\varepsilon} + ||F - G||_{2-\varepsilon}) ||h||_{(2-\varepsilon)/(1-\varepsilon)}. \end{split}$$

From (3.4) it follows that

$$\frac{1}{m} \|\nabla u - \nabla v\|_{2-\varepsilon}^{2-\varepsilon} \le \|\nabla u - \nabla v\|_{2-\varepsilon}^{1-\varepsilon} \|F - G\|_{2-\varepsilon}$$

$$+ c|\varepsilon| \cdot \|\nabla u - \nabla v\|_{2-\varepsilon}^{2-\varepsilon}$$

$$+ c|\varepsilon| \cdot \|\nabla u - \nabla v\|_{2-\varepsilon}^{1-\varepsilon} \|F - G\|_{2-\varepsilon}$$

and

$$\left(\frac{1}{m} - c|\varepsilon|\right) \|\nabla u - \nabla v\|_{2-\varepsilon} \le (1 + c|\varepsilon|) \|F - G\|_{2-\varepsilon},$$

i.e. inequality (3.3) holds for $|\varepsilon| \le \varepsilon_0$ and $\varepsilon_0 = \varepsilon_0(m) > 0$. Inequality (3.3) implies the uniqueness in Theorem 3.1.

It remains to prove existence. To this end, for $F \in L^{2-\varepsilon}(\Omega, \mathbb{R}^N)$ suppose $F_j \in L^2(\Omega, \mathbb{R}^N)$ converges to F in $L^{2-\varepsilon}$ and denote by u_j the solution in $W_0^{1,2}(\Omega)$ of

$$\operatorname{div} a(x, \nabla u_j) = \operatorname{div} F_j.$$

We use inequality (3.3) to get

$$(3.5) ||u_j - u_k||_{W_0^{1,2-\varepsilon}(\Omega)} \le c(m)||F_j - F_k||_{L^{2-\varepsilon}(\Omega,\mathbb{R}^N)}$$

for j, k = 1, 2, ..., which implies that u_j is a Cauchy sequence in $W_0^{1,2-\epsilon}$. Let $u \in W_0^{2-\epsilon}$ be the limit of u_j . Passing to the limit in (3.5) as $k \to \infty$ we obtain

$$||u_i - u||_{W_0^{1,2-\epsilon}} \le c||F_i - F||_{L^{2-\epsilon}}.$$

Passing to the limit in the equation

$$\int_{\Omega} \langle a(x, \nabla u_j) - F_j, \nabla \varphi \rangle \, dx = 0$$

yields

$$\int_{\Omega} \langle a(x, \nabla u) - F, \nabla \varphi \rangle \, dx = 0 \quad \forall \varphi \in C_0^1(\Omega)$$

and so u is a solution of equation (3.1). Inequality (3.3) follows by standard arguments.

For this result see also [B].

4. Estimates for solutions to the equation $\operatorname{div} F = f \in L^1$. We assume throughout this section that $\Omega \subset \mathbb{R}^N$ $(N \geq 2)$ is a bounded open set.

Let us prove the following

THEOREM 4.1. Given $f \in L^1(\Omega)$, there exists $F \in L^{N/(N-1)}(\Omega, \mathbb{R}^N)$ such that div F = f in Ω and

$$\begin{split} \left(\frac{N}{N-1} - s\right) \int\limits_{\Omega} |F|^s \, dx \\ & \leq c(N) |\Omega|^{(N-Ns+s)/N} \|f\|_{L^1(\Omega)}^s \quad \forall 1 \leq s < N/(N-1). \end{split}$$

Proof. A solution to the equation $\operatorname{div} F = f$ can be expressed explicitly by the vector Riesz potential:

$$F(x) = rac{1}{N\omega_N} \int\limits_{\Omega} rac{x-y}{|x-y|^N} f(y) \, dy$$

where ω_N is the measure of the unit ball in \mathbb{R}^N (see [GT]).

For every $1 \le s < N/(N-1)$ we can use Minkowski's inequality for integrals to obtain

$$||F||_s \le \frac{1}{N\omega_N} \int_{\Omega} \left\| \frac{1}{|\cdot -y|^{N-1}} \right\|_s |f(y)| \, dy$$

$$\le \frac{1}{N\omega_N} \sup_{y \in \Omega} \left\| \frac{1}{|\cdot -y|^{N-1}} \right\|_s ||f||_1.$$

It is standard ([Z]) that the integral over Ω of the function $|\cdot -y|^{(1-N)s}$ is less than or equal to the integral of the same function over the ball centered at y and with the same volume as Ω , therefore

$$\sup_{y \in \Omega} \left\| \frac{1}{|\cdot -y|^{N-1}} \right\|_{s} \leq \frac{\omega_{N}^{(N-1)/N}}{(N-Ns+s)^{1/s}} |\Omega|^{(N-Ns+s)/(Ns)},$$

from which the theorem follows.

5. Proof of Theorem A. Let $g_j = \operatorname{div} F_j$ satisfy $||g_j - f||_{L^1} \to 0$. By Theorem 4.1 for 1 < s < 2 we have the inequality

(5.1)
$$(2-s) \int_{\Omega} |F_j|^s dx \le c ||g_j||_{L^1}^s.$$

Consider the very weak solution $u_j \in W_0^{1,2-\varepsilon}(\Omega)$ of the equation

$$\operatorname{div} a(x, \nabla u_j) = \operatorname{div} F_j = g_j.$$

Theorem 3.1 implies

$$||u_j-u_k||_{W_0^{1,s}} \leq c||F_j-F_k||_{L^s}.$$

Obviously, $F_i - F_k$ satisfies the linear equation

$$\operatorname{div}(F_j - F_k) = g_j - g_k.$$

Hence

$$(5.2) \quad (2-s) \int_{\Omega} |\nabla u_j - \nabla u_k|^s \, dx \le (2-s)c \int_{\Omega} |F_j - F_k|^s \, dx \le c ||g_j - g_k||_{L^1}^s.$$

So (u_j) is a Cauchy sequence. Let u denote the limit of u_j . Passing to the limit in (5.2) with k fixed and j approaching ∞ we find

(5.3)
$$(2-s) \int_{C} |\nabla u - \nabla u_{k}|^{s} dx \le c ||f - g_{k}||_{L^{1}}^{s}.$$

Hence $u \in W_0^{1,2}(\Omega)$ is a weak solution of (1.1). The uniqueness follows from the preceding estimates.

Remark. By density arguments it is easy to deduce, arguing as in [CS] and as in our proof of Corollary 6.1 below, that

$$\lim_{s\uparrow 2} (s-2) \int_{\Omega} |\nabla u|^s dx = 0.$$

We also remark that property (5.4) is not true if we replace f by a measure (see e.g. [BB], [BG], [LM], [D]). To see this we consider the following Dirichlet problem in the unit ball B:

$$\begin{cases} \operatorname{div} \nabla u = \delta_0 & \text{in } B, \\ u = 0 & \text{on } \partial B. \end{cases}$$

The function $u(x) = \frac{1}{2\pi} \log |x|$ is a solution and in this case we have

$$(s-2)\int_{\Omega} |\nabla u|^s dx = (2\pi)^{s-1}.$$

6. An application. As an application, we extend the results of Brezis-Merle [BM] and Chanillo-Li [CL].

COROLLARY 6.1. Let Ω be a bounded region in \mathbb{R}^2 and let $A = -\operatorname{div} a(x, \nabla u)$, where a satisfies the conditions of Section 3. Then for $f \in L^1(\Omega)$ the solution of the boundary value problem

$$\begin{cases} Au = f & in \ \Omega, \\ u = 0 & on \ \partial\Omega, \end{cases}$$

belongs to $\exp(\Omega)$. This means that

$$\oint_{\Omega} e^{\lambda|u|} < \infty \quad \text{for any } \lambda > 0.$$

Proof. Let $g_k \in L^{\infty}(\Omega)$ satisfy $||g_k - f||_{L^1} \to 0$, and let

$$F_k(x) = \frac{1}{N\omega_N} \int_{\Omega} \frac{x - y}{|x - y|^2} g_k(y) \, dy$$

be a solution to the equation div $F_k = g_k$. By well-known potential estimates (see e.g. [GT]) we have $F_k \in L^{\infty}(\Omega)$ and therefore if $u_k \in W_0^{1,2}(\Omega)$ solves

Existence and uniqueness for nonlinear equations

231

the equation div $a(x, \nabla u_k) = \operatorname{div} F_k$ then by Theorem 3.1, $u_k \in W_0^{1,2+\varepsilon_0}(\Omega)$ for some $\varepsilon_0 > 0$, from which, using the Sobolev theorem, we conclude that $u_k \in L^{\infty}(\Omega)$.

By (5.3) we have

$$||u_k - u||_{W_0^{1,2}} \le c_1 ||g_k - f||_{L^1}.$$

On the other hand, the following inequality has been shown in [FLS]:

$$||u_k - u||_{\text{EXP}} \le c_2 ||u_k - u||_{W_0^{1,2}}.$$

Consequently,

$$||u_k - u||_{\text{EXP}} \le c_3 ||g_k - f||_{L^1}.$$

Arguing as in [CS], if f belongs to the closure of the bounded functions in L^1 -norm then u belongs to $\exp(\Omega)$, which is the closure of $L^{\infty}(\Omega)$ in $\mathrm{EXP}(\Omega)$, as can be shown (see e.g. [CS]).

References

- [B] L. Boccardo, manuscript, 1995.
- [BB] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez, An L¹-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa 22 (1995), 241-273.
- [BG] L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989), 149-169.
- [BM] H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u = V(x)e^u$ in two dimensions, Comm. Partial Differential Equations 16 (1991), 1223–1253.
- [CL] S. Chanillo and Y. Y. Li, Continuity of solutions of uniformly elliptic equations in \mathbb{R}^2 , Manuscripta Math. 77 (1992), 415–433.
- [CS] M. Carozza and C. Sbordone, The distance to L[∞] in some function spaces and applications, Differential Integral Equations 10 (1997), 599-607.
- T. Del Vecchio, Nonlinear elliptic equations with measure data, Potential Anal. 4 (1995), 185-203.
- [FLS] N. Fusco, P. L. Lions and C. Sbordone, Sobolev imbedding theorems in borderline cases, Proc. Amer. Math. Soc. 124 (1996), 561-565.
- [G] L. Greco, A remark on the equality $\det Df = \operatorname{Det} Df$, Differential Integral Equations 6 (1993), 1089-1100.
- [GIS] L. Greco, T. Iwaniec and C. Sbordone, Inverting the p-harmonic operator, Manuscripta Math. 92 (1997), 249-258.
- [GT] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1983.
- [IS1] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal. 119 (1992), 129-143.
- [IS2] —, —, Weak minima of variational integrals, J. Reine Angew Math. 454 (1994), 143-161.

- [LL] J. Leray et J. L. Lions, Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97-107.
- [LM] P. L. Lions and F. Murat, Sur les solutions renormalisées d'équations elliptiques non linéaires, to appear.
- [M] F. Murat, Conference at Pont à Mousson, 1994.
- [Z] W. D. Ziemer, Weakly Differentiable Functions, Springer, 1989.

Dipartimento di Matematica e Applicazioni "R. Caccioppoli" via Cintia 80126 Napoli, Italy E-mail: fiorenza@matua2.dma.unina.it sbordone@matna1.dma.unina.it

> Received July 11, 1996 Revised version July 4, 1997

(3712)