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Existc—_ance and uniqueness results for solutions of
nonlinear equations with right hand side in I}

by

A, FIORENZA and C. SBORDONE (Napoli)

Abstract. We prove an existence and uniqueness theorem for the elliptic Dirichlet
problem for the equation div a(z, Vu) = f in a planar domain §2. Here § € L*((2) and the
solution belongs to the so-called grand Sobolev space W& 2) {12). This is the proper space
when the right hane side is assumed to be only L'-integrable. In particular, we obtain the

exponential integrability of the solution, which in the linear case was previously proved
by Brezis—-Merle and Chanillo-Li. F VP

1. Introduction. We consider the Dirichlet problem on a bounded open
set 2 C R? with C'' boundary,

(1.1) Au=Ff in 2CR?,

v=0  on 812,
where f € L'({2) and A is a differential operator defined by
(1.2) Au = diva(z, Vu).

Here a : {2 x R* — R? is a mapping such that
(1.3) {:L -+ a(z, £) is measurable for all £ € B2,
¢ — a(z,£) is continuous for almost every z € f2.

Furthermore, we assume that there exists m > 1 such that for almost
every & € {2 we have

(i) |a(z, &) — alz,n)| £ m|¢ —nl (Lipschitz eontinuity),

oy )
(14) (i) ;T—L|§ —n* € la(z,¢) - a(z,n),£ ~n} (strong monotonicity),
(iii) af{z,0) =0,
where ¢, 7 are arbitrary vectors in R? {[LL]).
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We would like to point out that the linear growth of a(z, &) with respect
to ¢ is absolutely essential for the results in the sequel. The main difficulty
with the p-harmonic type equations (p 7 2) is due to the lack of uniqueness
results for very weak solutions.

We shall work with functions u of Sebolev class W4 (£2) whose gradient

satisfies

(15) sup (2-5) §2 (Tl dacr/ "= Jul g < 00

The space of such functions, denoted by Wol 2] (£2), will be called the grand
Sobolev space because it is slightly larger than Wa?(£2). Note that (1.5)
defines a norm in which Wol 2) (2) becomes a Banach space (see Section 2).
By a solution of problem (1.1) we understand here a function u €
W, 2)(£2) such that
S a(z, Vu)Vpdz = S fodr Vo e Cgo ().
2 o
An existence theorem for the Dirichlet problem in the space (s Wi(0)
was established by Boccarde—Gallouét in [BG]. In order to obtain unique-
ness, supplementary conditions were imposed on u. The so-called entropy
solutions [BB], transposition solutions [M] and renormalized solutions [LM]
were introduced for that purpose,
In this paper we take another approach and prove the following existence
and uniqueness theorem:
THEOREM A. Under the assumptions (1.3) and (1.4), for any f € ')
there exists a unigue solution u € Wol’z) (£2) of problem (1.1). Moreover,

“U“WDIJ) <l flloroy-
Actually, we prove a slightly stronger result, namely

lim & S |Vu?¢ dz = 0.

g—0 s

Consequently, by a Sobolev-type imbedding theorem due to Fusco-Lions—
Shordone [FLS], we deduce that u € exp({2). This means that

[t <00 wA>O.

o
This result, in the case of a linear operator, was previously proved by Brezis—
Merle [BM] and Chanillo-Li [CL]. Crucial for our proof of Theorem A will
be the notion of a very weak solution u € Wy>"*(£2) of the equation with
right hand side in divergence form,

diva(z, Vu) = divF
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with F' € L*~<(12,R?). Such solutions-were introduced in [IS2]. For the sake
of completeness we shall discuss briefly this theory in Section 3.

2. The space grand-L?. For any ¢ > 1 the function spéce
19(02) = {f € L{Q): |flpo = sup Gl
0<
n

eg~-1
was introduced by T. Iwaniec and C. Shordone [[S1] in connection with their
study of integrability properties of the Jacobian determinant (see also [GIS]
and [G]). Note that ||f| ;s is a norm and L9{f2) is a Banach space. The
inclusion L(2) ¢ L?(S?2) is obvious, and we know also that C§°(12) is not
dense in L% (12). Its closure consists of the functions f € L9(£2) such that

j q-& e
161£135§2|f| dz = 0.

)1/(4—3) < oo}

It contains the Zygmund space L4log™" L(f2), i.e. the functions f such that

§ 1190087 e + | 1) de < co.
2
In [IS1] it is noticed, in particular, that weak-L9(£2) C L9(£2). We will call
L9(R) the grand-LI(12) space.
Similarly, in [G1S] the grand Sobolev space Wy ‘(1) has been introduced
as the space of all functions u € Ny ,<,_; Wo'? *(£2) such that Vu €

L(Q). Again, W7 (£2) is a Banach space and the inclusion Wi <

1, . . .
W, o (£2) is obvious. Imbedding theorems of the Sobolev type for these grand
Sobolev spaces have recently been proved in [FLS].

3. Very weak solutions of monotone operators. The results we
are going to formulate here are true in all dimensions. Therefore, for the
purpose of this section we assume a{z, £) to be defined on £2 x RY, where
the conditions (1.3) and (1.4) hold for z € 2 C.RY and £,n e RV.

We prove the following

THEOREM 3.1. There ewists g9 = go(m) > 0 such that for |g| < g and
F,Ge L *(02,RY), cach of the two problems '

diva(z, Vu) = div F

3.1 3 !
(3.1) { we WhEF (),

o diva(z, Vv) =divG

3.2 ! !
( ) {’U EW§’2~5(9)1

has o unique solution and

(3.3) lu = vllypaa-e gy < (M) F — Gl L2-2(apx)-
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Proof We mimic the arguments from the proof of Theorem 5.1 in [I52].
Suppose we are given F, G € L?~%(2,RY) and the corresponding solutions
u,v to (3.1), (3.2). We wish to prove that (3.3) holds for |¢| sufficiently small.

By the stability of Hodge decomposition stated in [I52] we have

|Vu — Vo™ (Vu— Vu) =V + A
where b is divergence free and
Ihlla—e)/(1-e) < clel - |V — Vo[[375,
1Vl a—e)/tame) S €l Vi~ T ll72
From our assumptions we have

{{(a(z, Vu) - F) - (afe, Vo) — G), Vi) dz = 0,
n

(3.4)

that is,

V(alz, Vi) — F) — (ale, Vo) = G), [Vu — Vol ™5(Vu — Vv)) dz

2

= {{(a(z, Vu) - F) — (a(z, Vo) ~ G), h) de-
o)

‘We have

S((a(z, Vu) - F) — (a(z, Vo) — F), |Vu — Vo|5(Vu — Vv)) dz

i

+ {{(a(z, vv) - F) - (a(z, Vo) = G), |Vu — Vo|~¢(Vu — Vo)) do
i

= S((a(m, Vu) — F) — (a(x, Vv) — G), h) dz.

2
By our assumptions,
L S |Vu — Vo|?¢ dz
™o
< |G- F|Vu - Vo[ *(Vu - Vv)) dz
2
+ | m|Vu ~ Vu|- |hldz + | |F ~ G| - |nl de
2 n
< VIF=6]-\Vu—- V"¢ dz
2

+ m||Vu — Volla—clbli@—e)/a-e) + | F — CGlla—cllPll(2—2)/(1-5)

1—g)/(2—¢&) 1/(2~&)
< (] |vﬂ_v@12~edm)( e (JiF-6pP=de)
2 n
+ (M| Ve — Volo—e + | F = Gllz-e)l|Rll2—e) /(1—2)-
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From (3.4) it follows that

1 - —
[V - Voll37E < [Vu ~ Vo2 F ~ s

+ cle| - [|[Vu — Vo532
+clel - [Vu = Vol F - Gllz-

and
(5 - ¢l I7u = olame < 1+ eDlIF - Glae

i.e. inequality (3.3) holds for |e| < ey and gy = ep{m) > 0. Inequality (3.3)
implies the uniqueness in Theorem 3.1.

Tt remains to prove existence. To this end, for F ¢ L2~¢(£2, RY) suppose
F; € L?(2, RV converges to F in L?~* and denote by u; the solution in
Wa(12) of
diva(z, Vu;) = div F;.
We use inequality (3.3) to get
(3.5) [l — uk”Wgﬂ*S(n) < c(m)|[Fj — Fill p2-eapv)

for 5,k = 1,2,..., which implies that u; is a Cauchy sequence in Wol’z—e.
Let u € WZ™* be the limit of u;. Passing to the limit in (3.5) as k — oo we
obtain

s = wuflgaa-e < el B~ Fijpa-..
Passing to the limit in the equation
{ (a(z, Vuy) ~ F;, Vi) de = 0
2
vields
fia(z, Vu) - F. Ve de =0 Vp e Cp(2)
e}

and so v is a solution of equation (3.1). Inequality (3.3) follows by standard
arguments.

For this result see also [B].

4. Estimates for solutions to the equation divF = f € L'. We
assume throughout this section that 2 ¢ BY (N > 2) is a bounded open
set.

Let us prove the following



228 A. Fiorenza and C. Shordone

THEOREM 4.1. Given f € L*(2), there exists F' € LN/(N=1)(0 RV)
such that div F = f in 2 and

(uﬁifr_—l - s) ;}[F!de

< o(N) NN fl50 0y VIS s < N/(N - 1),

Proof A solution to the equation div F' = f can be expressed explicitly
by the vector Riesz potential:

1 xz -
R = 3oy | oy W
where wy is the measure of the unit ball in BV (see [GT]).
For every 1 € s < N/(N — 1) we can use Minkowski’s inequality for
integrals to obtain

1

1 _
HF!‘s —= NLLJ S “leul 5|f(y)|dy
1 1
< S .
= Nuwy yeg ' le‘l s“f”l

It is standard ([Z]) that the integral over §2 of the function |- —y|(=M)* is
less than or equal to the integral of the same function over the ball centered
at y and with the same volume as 2, therefore

1 (N-1)/N
N | 2]
i Dk

from which the theorem follows.

sup
yeN

N—Ns+s)/(Ns)

5. Proof of Theorem A. Let g; = div F; satisfy ||g; —
Theorem 4.1 for 1 < s < 2 we have the inequality

(5.1) (2= ) { |31 dew < eflgsle
(E}

fllgr — 0. By

Consider the very weak solution u; € V[f’1 - E(Q) of the equation
diva({z, Vu;) = div F; = g;.
Theorem 3.1 implies
lug — wellyae < cliFy — Fillza.
Obviously, F; ~ F}, satisfies the linear equation

div(F; — Fg) = g4 — k.
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Hence
(52) (2- )] Vs~ Vusl*do < (2 - 8)c | |F; — Fele do < cllgs — gl
I 2

So (uJ) is a Cauchy sequence. Let u denote the limit of u;. Passing to the
limit in (5.2} with k fixed and j approaching cc we find

(5.3) (2~ ) § Vo~ Vugl* do < of|f — gillsa.
2

Hence u € W& 2) (2) is a weak solution of (1.1). The uniqueness follows from
the preceding estimates. :

Remark. By density arguments it is easy to deduce, argumg as in [CS]
and as in our proof of Corcllary 6.1 below, that

(5.4) lim(s - 2) :Sa {Vaul® dz = 0.
We also remark that property (5.4) is not true if we replace f by a measure
(see e.g. (BB], [BG], [LM], [D]). To see this we consider the following Dirichlet
problem in the unit ball B:

divVu=§8; inB,

u=0 on 0B,
2 log |x| is a solution and in this case we have

(s—2) | IVul* do = (2m)*".
2

The function u(z) =

6. An application. As an application, we extend the results of Brezis—
Merle [BM] and Chanillo-Li [CL}.

COROLLARY 6.1. Let 2 be o bounded region in B2 and let A =
—diva(z, Vu), where o satisfies the conditions of Section 3. Then for f €
LY(12) the solution of the boundary value problem

Au=f in 0,
u=10 on 082,

belongs to exp($2). This means that

Se"“‘i < 00 .fo'r any A > 0.
n

Proof. Let g, € L*({2) satisfy ||gx — flz» — 0, and let
1 T -
Fo(@) = —— S Vemvr ;|2£Jk(y) dy

be a solution to the equatlon div Fk = . By well-known potentla.l estimates
(see e.g. [GT)) we have Fy € L>(2) and therefore if ux € Wy'*((2) solves
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the equation div a(z, Vug) = div Fy then by Theorem 3.1, ux € Wo22"*(2)
for some £g > 0, from which, using the Sobolev theorem, we conclude that
ug € L°(£2).

By (5.3) we have

s = ullyyra < eallgr — Filra-

On the other hand, the following inequality has been shown in [FLS):
llun —wllmxe < ezllun = uf 1.

Consequently,

llug -~ ullexp < esllge ~ Fil L.

Arguing as in [OS], if f belongs to the closure of the bounded functions
in Z'-norm then u belongs to exp(f2), which is the closure of L>(f2) in
EXP(f2), as can be shown (see e.g. [CS]).
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