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Harmonic extensions and the Bittcher-Silbermann conjecture
by

P. GORKIN (Lewisburg, Penn.) and D. ZHENG (Nashville, Tenn.)

Abstract. We present counterexamples to a conjecture of Béttcher and Silbermann
on the asymptotic multiplicity of the Poisson kernel of the space L°°[{dD) and discuss
conditions under which the Poisson kernel is asymptotically multiplicative.

In this paper, we let LP denote the space of Lebesgue measurable func-
tions on the unit circle 80 such that

TP < oo
ap

for 1 < p < co and L*™ denote the space of essentially bounded Lebesgue
measurable functions on the unit circle. Each function f in L' has a natural
harmonic extension into D via the Poisson formula, and it is the harmonic
extension that we are interested in studying in this paper. We let f(#) denote
the harmonic extension at z.

For 1 < p < oo, let H? denote the Hardy space on the unit circle; that
is, the subspace of LP consisting of those functions which are analytic in D.
Another space that will be of interest to us is the space H* 4 C consisting
of sums of functions in H* and continious functions on the unit circle.
Sarason [27] showed that this is a closed subalgebra of L°°. In what follows
we will denote the closed subalgebra of L™ generated by H* and a function
fin L by H*®[f].

‘We are interested in studying the asymptotic multiplicative properties
of the harmonic extension. Recall that

~

Fo) = o \ F(e*)P(z,0)df

27
8D
where P(z,8) is the Poisson kernel
1- |2/
P(Z, 9) = m
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The mapping f — f from L* to C(D) plays an important role in the
theory of Toeplitz operators and Hankel operators on the Hardy space H 2
(see [6], [10]), but it is not multiplicative. On the other hand, it was shown
(see [10], p. 169) that the mapping is asymptotically multiplicative on the
Douglas algebra H® + C, that is, for two functions f and g in H* + C,

fg(z) — f(2)g(z) — 0
as z — 0D.

In this paper we will consider the problem of when the harmonic ex-
tension is asymptotically multiplicative for two given functions f and g in
L. This problem was studied in [6] and it is related to the so-called rth
Abel-Poisson mean h(f} (0 < r < 1) defined by

[»e]
(R P)(e) = > ri*laget
k=—o0
where ay, is the Fourier coefficient of f.

Motivated by the Axler-Chang-Sarason—Volberg Theorem ([1], [30]) on
the compactness of the semi-commutator of two Toeplitz operators, Béttcher
and Silbermann ([6], Section 7.18), ([7], p. 178) made the following conjec-
ture.

BOTTCHER~SILBERMANN CONJECTURE. Let f apd g be in L°°. Then
Fa(z) — 7(2)§(2z) — 0 as z — 8D if and only if [H®[f|nH=[g]]U [H=[f]N
H*[g)]| C H* +C.

In the first section of the paper we look at a related question; then we
answer Bottcher and: Silbermann’s question negatively.

We begin the paper with a look at the following problem: If f € L> and
Folz) - f(z)@“(z) — 0 as z — 8D for all g € H™, what can we say about f7
This result has a connection to a well-known theorem of Sarason [27] which
tells us that if we know that the statement ﬁ(z) — f2(2)g(2z) — 0 holds for
all positive integers n and all functions g € H°° -+ C then f is actually in the
algebra H 4 C'. The point to this result as well as the Béttcher-Silbermann
conjecture is that the asymptotic multiplicity condition is not a condition
on an algebra of functions, whereas the other condition is. We will answer
the question mentioned above in Section 2 and present some related results.

The remainder of the paper is devoted to certain counterexamples to the
Béttcher—Silbermann conjecture as well as studying conditions under which
two functions do have the asymptotic multiplicative prggerty.

In Section 3, we will give conditions that ensure that f g(z)—f(z):(}'(z) — 0
as z — 8D. Although these conditions are not both necessary and sufficient,

" they do provide us with a simple example showing that the conjecture above
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is false. We study the Bottcher-Silbermann. condition
[H= [ 1N H2[g|U[H®[f]n H=[g)] C H® +C

and consequences thereof, and we show that this condition is sufficient but
not necessary for the asymptotic multiplicative property.

In Section 4, we work fromAthe other direction and give conditions that
must hold whenever fg(z} — f{2)g(z) — 0 as z —» 8D. We will show that
these conditions are necessary and sufficient for a broad class of functions
to satisfy the asymptotic multiplicity property. The ideas of this proof allow
us to create a class of examples for which the conjecture above must fail.

We conclude the paper in the fifth section with some comments on
operator-theoretic conditions closely related to this problem.

The authors would like to thank Raymond Mortini for very helpful dis-
cussions and the University of Bern for its support.

1. Preliminaries. Let B denote a Douglas algebra, that is, a closed sub-
algebra of L® containing H, and let M (B) denote the maximal ideal space
of B. The Chang-Marshall Theorem ([9], [24]) asserts that any Douglas alge-
bra B is generated by H™ together with the conjugates of the interpolating
Blaschke products invertible in B. Recall that M(H*® 4 C) = M(H*) - D.
For each m € M{H®* 4 C), the support of the unigue representing measure
for m. is denoted by suppm. Hoffman ([21], [22]) has shown that m has a
unique Hahn-Banach extension to L°°, which is given by

m{f)= | fdm
supp m
for f € L*=.

Let M(H*) be the maximal ideal space of H*. With the weak-star
topology, M(H) is a compact Hausdorff space. If z is a point in the unit
disc D, then point evaluation at z is a multiplicative linear functional on
H® and thus we can think of z as an element of M{H™). As usual, we will
think of the unit dise D as a subset of M (H°). Carleson’s Corona Theorem
states that D is dense in M{H®).

On M (H®°) the pseudo-hyperbolic distance o(mn, ) is defined by

o(m,z) = sup{|f(m)| : f € H*, [[f|loo <1 and f(z) = 0}.

We can partition M{H>) into equivalence classes known as Gleason parts,
calling = and y equivalent provided o{z,y) < 1. The Gleason part of m
is dencted by P(m). Wermer has shown that each Gleason part P(m) is
either trivial (contains only one point, called trivial) or an analytic disc (in
this case, the point m is called nontrivial). When P(m) is an analytic disc,
Hoffman [22] constructed a bijective map L., such that fol, is holomorphic
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for all f in H*® and L, (0) = m. If

z+a

1+’

then L. converges pointwise to Ly, on D provided the net z, converges to
m.

In this paper we will need more information about the Gleason parts in
the maximal ideal space of FH°. The parts that are most easily studied are
the so-called thin parts. A thin pert is a part such that some (and hence
every) point in the part is in tl in the closure of an interpolating sequence for the
algebra QA = H¥ N H*® + H® ¥ C. Sundberg and Wolff [29] showed that this is
equivalent to requiring the H*® interpolating sequence {z,} in the disc D
to satisfy the following condition:

Lo{z) =

Such an interpolating sequence is called a thin sequence and the associ-
ated Blaschke product b is called a thin Blaschke product. This function b has
the property that |b| = 1 on every trivial point. Mortini and Tolokonnikov
(25] and Guillory and Izuchi {19] have studied such Blaschke products, and in
their papers they give some characterizations of the interpolating Blaschke
products that have modulus one on all trivial parts.

2. An algebraic condition. We begin with a related question: If f €
L is such that fg(z) — F(2)g(z) — 0 as |z| — 1 for all g € H*®, what can
we say about f? This question is related to the Chang-Marshall theorem
(as we shall show below) in that it is equivalent to assuming that m{fg) =
m{f)m{g) for all m € M{H>+C) and all g € H*-+C However, since we are
not assuming that every power of f has this property, it is not a staternent
about the maximal ideal space of the algebra generated by H* and f. We
will show that f must be in H*® 4+ by showing that our apparently weaker
assumption implies the stronger algebra statement and we will use Sarason's
theorem [28] (see also [13], p. 378) to obtain this conclusion. The next lemma
is well known when both functions are assumed to be in H* + C. IL is &
little less well known in the generality stated below.

LeMMA L. Let f and g be functions in L®°. Then ﬁ(z) — Fl2)§(z) = 0
as z — 0D if and only if m{fg) = m(f)mig) for all m € M(H= + C).

Proof. Suppose that fg(z) — f(2)§(z) — 0 as z — 8D. Let m €

M(H® 4 C). By the Corona Theorem, there is a net (z,) of peints with

zq — m. By Hoffman’s work [22], fg,F and § are all continuous functions
on M {H™). Taking limits, we obtain m(fg) = m{f)m(g).
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For the other direction suppose that m(fg) = m(f)m(g) for all m €
M(H® + C). Therefore, given & > 0 there exists r with 0 < ~ < 1 such that

|fo(z) — f(2)3(2)| < & for |z| > r. This completes the proof of this lemma.

Now let X denote a compact Hausdorff space and let A denote a closed
logmodular subalgebra of C(X). Hoffman made an in-depth study of such
algebras which we use to study the Béttcher-Silbermann conjecture.

For any multiplicative linear functional m on A, Hoffman [21] defines
H*(m) to be the closure of 4 in the Banach space L?(m). Letting HZ (m)

denote the set of H*(m) functions annulled by m, Hoffman {[21}, Theo-
rem 5.4) shows that

12(m) = B(m) ® FZ(m).

Let Ay, denote the space of functions in A which are annulled by m. In
particular, a function f € L?(m) belongs to H%(m) if and only if § fgdm =
0 for all g € A,. We will use this result to prove the theorem below. We
note that if (as in Hoffman) one defines H*(m) = H?%(m) N L*°{m), then
([23], p. 123) H*(m) is a Banach algebra.

In our situation, we take X = M(L*®) and identify a function f &
i‘” with its Gelfand transform in C(X). We take the logmodular algebra

= . ‘

THEOREM 2. Let f € L*™. Suppose that for every m € M(H*> 4- O,

m(fg) = m(fim(g) for all g € H>®. Then for everym € M{H> + ) and
every positive infeger n,

m(f7g) = m(f")mlg) = m(f)m(c)
Jor all g € H,

Proof Let f be as above and let m € M{H*™ + C). Since f satisfies
m{fg) = m(fim(g) for all g € H®, we see that m(fg) = 0 for all g €
H* such that m(g) = 0. Since such g are dense in H3(m) the comments
preceding this theorem show that f € H?(m). Therefore f € H*(m), and
consequently, f* & H(m) for all positive integers n. Now let g € H™.
Then again the cornments preceding this theorem show that for any positive
integer n, we have m(f™(g—m{g)) = { (f*(g —m(g)) dm = 0. Consequently,
m(f*g) = m{f")m(g). To complete the proof, note that since f € H*(m),
the function f is an L?(m)-limit of functions in H®. Therefore, if we let h;
denote a sequence of bounded analytic functions converging to f in L*(m),
we see that m{f?) = § f2dm = lim { fh; dm, since f is bounded. Therefore,
m(f?) = limm(f)m(h;) and since limm{h;) = lim{h;dm = {fdm =
m{f), we conclude that m(f2) = m(f)?. The proof for an arbitrary integer
n can be completed using induction..
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The argument above is actually more general than what we have stated,
but the corollary below is not, because it depends on Sarason’s result stating
that if a closed subalgebra A of L°° containing H* has the property M{A) =
M(H® + C), then A = H> + C. However, it is possible to use the full
strength of the Chang-Marshall theorem to obtain a similar result for an
arbitrary Douglas algebra A in place of the algebra H*> 4 C.

COROLLARY 3. Let f € L™ and suppose that m(fg) = m(f)ym(g) for all
me M(H®+C) and all g€ H®. Then f € H® +C.

Proof Let A = H™[f] denote the closed subalgebra of L gener-
ated by H® and the function f. By Theorem 2 we know that m(frg) =
m(f~)m(g) = m(f)"m(g) for all positive integers n and all H* functions g.
Since ([13], p. 375)

M(4) = {m e M(H™ + C) : m(gh) = m(g)m(h) for all g, h € A}

we see that M(A) = M(H® + C) and consequently (see [13], Chapter IX)
A=H>*+C.

The results above arose in connection with a question about Hankel
type operators on H®(U), the algebra of bounded analytic functicns on
a bounded planar domain U in the’complex plane. For f € L= (U) de-
fine the Hankel type operator Sy : H®(U) — L®(U)/H*(U) by S¢(g) =
gf + H®(U). The symbols f that yield compact, weakly compact or com-
pletely continuous operators have been studied by many people (for a de-
tailed survey of these operators see [15]). In many cases one can pass to a
boundary algebra and ask the same question about symbols on the bound-
ary. In virtually all such studies, new techniques were required to move from
the boundary to the interior or the interior to the boundary. In looking for
a natural way of passing from a domain to ifs boundary and maintaining
compactness the following question arose: For f € L™ (/QD) define the op-
erator By : H®(8D) — L°(D)/H*(D) by By(g} = fg— 76 + H>=(D).
When is By compact?

COROLLARY 4. Let f ¢ L*®(8D). Then the operator By is compact if
and only if f € H* +C.

Proof, First suppose that f € H™ + C. Then there exist functions i €
H® and ¢ € C such that f = h+c. Now By = B, so we may as well assume
that f is of the form 2" for some positive integer n. Let hn, be a uniformly
bounded sequénce of bounded analytic funciions. Without loss of generality,
we may assume that {h,,} converges to zero uniformly on compacta. The
computations on page 169 of [10] show that if hp, = 35 (@m,n2™ is the
Fourier expansion of A, then for w = re' we obtain
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2 b (W) = 27 () g (w)|

7 . oo .
< Z |plk=mi _ plednl) |G i + (7 — rn)l’ Z sz,kzk”
k=0 k=n+1

Since hy, converge uniformly to zero on compacta, both terms can be made
small as long as |1 — 7| is sufficiently small for m sufficiently large. Since
D, = {|z| £ r} is a compact set, we can choose M large enough to make
SUP,ep, |Am(w)l small. The formula for the Poisson extension now shows

that || By (hm)|| will also be small for m > M. Therefore By is compact.
Now suppose that By is compact. We claim that f satisfies the assump-
tions of Theorem 2. Let g € H* and m € M(H® + C). We may assume
that m{z) = 1. Since By is compact, there is a sequence {nz} of positive
integers and an element b € L® such that || Bs{gz"*) +h + H®|| — 0. The

Riemann-Lebesgue Lemma shows that, in fact, h € H®. Therefore, we may
choose hy € H® with

sup | fgzie (w) — Fluw)gz™(w) + hy(w)] — O.

o.n)

Taking radial limits shows that [[hg| — 0 and so for any £ > 0 we can find
an integer N such that for ny > N,

sup | fgan (w) — Flw)gam (w)] < e.
weD

Since m € M(H™ + C} we can use the Corona Theorem to conclude that
for ng > N we have |[m(fgz™) — m(f)m(gz"*)| < e.

But m has a representing measure supported on the fiber over the point
2 = 1 and so for all integers n we know that m(fgz") = m(fg) and m(gz") =
mig)-

Putting all this together tells us that for ny = N we have

Im(fg) — m(f)m(g)l = Im(fg2™) — m(f)m(gz"*)! <&.

Therefore f satisfies the assumptions of Corollary 3 and consequently is
in H*® 4 C. ‘

3. The condition [H®[fiNH>[g]|U[H>=[fINH>[g]] € H*+C. In this
section, we use some well-known results on Douglas algebras to obtain some
conditions equivalent to those of Béttcher and Silbermann. We first state the
lemmas that we will need. The first is due to Sarason; the rest are known.
For f € L™ recall that m(f) denotes the unique Hahn-Banach extension of
m applied to f, and that Hoffrnan’s results tell us that f € C(M(H>)).

LemMMA 5. Let A and B be Douglas algebras. Then
M{ANnB)= M(A)UM(B).

Proof. See [14] or [18]. :
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The next lemma i3 a well-known consequence of the Chang-Marshall
theorem. (For a detailed proof see [18].)

LEMMA 6. Let f € L®. Then for m € M(H* + C), flsuppm &
H>|suppm if and only if m € M{H>[f]}.

The next lemma is also known, but we include it here for easy reference.

LevMA 7. Let w be an inner function and let m € M(H* + C). Then
the following are equivalent:

(1) @lsuppm € H*|suppm.

2) lm(u)| = 1.

(8} jul =1 on P(m).

Proof. Suppose {1) holds. Then 1 = m(l) = = m(u)m(u), where
the last equality holds because m is given by mtegratlon against a positive
measure. Therefore (2) follows.

Now, suppose that (2) holds. Then 1 = |m(w)| = |{, . udm|. Since
the representing measure for m is a probability measure on suppm and
|u| = 1 on supp m, we see that v must be constant on supp m. This obviously
implies (1). Thus (1) and (2) are equivalent.

Now, (3) clearly implies (2). If (1) holds and (3) does not, then {m(u)| = 1
while |z(u)| < 1 for some z € P(m). Forming the inner function b =
(u— 2(u))/(1 — z{u)u), we see that jm(b)| = 1 while z(b) = 0. This contra-
dicts the fact that the pseudohyperbolic distance between the two points is
less than 1. '

LEMMA 8. Letf u be an inner function and let f € L. If me M{H®+C)
and Im(u)| = 1, then m(uf) = m(u)m(f).

Proof By Lemma 7, u is a constant of modulus one on the support
of m. Thus

mluf) = S uf dm = m(w) S fdm = m(w)m(f).
supp m supp m

This completes our list of lemmas. Now we turn to the Béttcher-Silber-
mann conjecture.

TueOREM 9. Let f and g belong to L°°. Then

[HeFIn He[g| U[H=[f]Nn H®[g)] €« H* +C

if and only if for everym € M (H % + (') at least one of the following four
statements holds:

(a) Flsuppm and glsuppm are elements of H*|suppm.

(b) g|suppm and flsuppm are elements of H|suppmn.

(¢) flsuppm is constant.
{d) g|supp m is constant.
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Furthermore, each of these conditions implies that m(fg) = m(f)m(g) for
allm € M{H*= + C).

Proof. We have [H*[f]N H®[g]] U [H>*[f]N H*[g)] C H*® + C if and
only if H*[f] " H>[g] and H*[g] N H*®[f] are both subsets of H*® + C.
Thus, our condition is equivalent to M(H® +C) C M{H*®[f]NH>[g]) and
M(H®> + C) C M(H>[g] N H*®[f]). But for any two Douglas algebras A
and B, M{(ANB) = M(4A)U M(B) (see Lemma 5), so [H®[f] N H*®[g]]U
[H®[fin H*®[g)] € H*® + C if and only if '

M(H™ +C) € M(H®[f]) U M (H*[g)),

(31) M(H™ +C) C M(H>(g)) U M(H>[f]).

Now suppose
[(H=f]n H2[g]| U [H*[flnH*[g]] CH® +C

and let m € M(H® + C). From (3.1) either m € M (H>[f]) n M(H>[g])
and Lemma 6 implies that condition {a) holds, m € M (H*[g])NM (H*=[f])
and (b) holds, m € M (H>®[fi)NM (H>[f]) or m € M(H>[g))nM (H[g]}.
ImeM H""[ﬂ) N M(H*[f]), then both f|suppm and f|suppm are in
H®*|suppm. In this case, since the support sets are antisymmetric for the
algebra ([23], p. 135), condition (c) holds. Finally, if m € M(H>[g]) N
M(H®>[g]), then the antisymmetry of support sets shows that (d) holds.

On the other hand, if one of the conditions (a)-(d) holds, then for each
m € M(H® + (), condition (a) holding implies that m € M(H*[f]) N
M(H[g]); condition (b) implies that m € M(H>[f]) N M(H>[g]), con-
dition (c) implies m € M(H®*[f]) N M{H>[f]) and condition (d) implies
that m € M{H>[g]) n M(H*|g]). Therefore, for any m € M{H> + C) we
see that m € (M(H>[7]) U M(H[g])) N (M{H®[f])UM(H>[3])). Again
using Lemma 5 we have m € M(H®[f] N H[g]) N M(H>[g] N H>[f]).
This implies M(H>® + C) € M(H®[f]n H>[g]) and M(H® + C) C
M(H®[g] N H*[f]). Sarason's precursor to the Chang-Marshall theorem
tells us that if M(H> + C) is contained in the maximal ideal space of
a closed subalgebra A containing H®, then the algebra is contained in
H® 4 (. Therefore, we know that H[f] N H*[g] and H>[g] N H*[f]
are both subsets of H® + ¢, and we have established the equivalence of
these two conditions.

To complete the proof of this theorem, we need only show that each of (a},
(b}, (c), and (d) implies that m(fg) =m(f)m(g) for all m € M{H>*+C).
This is easy if we note that since the representing measure for m is a prob-
ability measure, m(f) = m(f) for any f € L*°, and use the integral repre-
sentation of m as follows:
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Suppose that {a) holds. Then there exist H* functions f; and ¢; such
that f = f; on suppm and § = g; on suppm. Thus

M(fg): S fgdm: S figy dm.

sSupp m Supp m

But since both f1 and g; are in H* and m is multiplicative on H* we have

m(fg) = S fidm X gL dm = S fdm S gdm = m(f)m(g).
supp m sSupp m supp m supp m
Taking conjugates yields the result in this case. The proof that (b) implies
the multiplication statemeént is the sarne as above, and using the integral rep-
resentation, one sees that (c) and (d) easily imply that m({fg} = m{f)m{g)
for all m € M{H* + C).

The next theorem is a corollary of the one above. The proof also uses
the integral representation argument. It is this theorem that will allow us
to give our first counterexample to the Bottcher-Silbermann conjecture.

THEOREM 10. Suppose that f,g € L™ and for each m € M(H® -+ C)
one of the following conditions holds:

(a) flsuppm and g|suppm are elements of H*|supp m.

(b) glsupp m and f|suppm are elements of H>|suppm.

(c) flsuppm is constant.

(d) g|suppm is constant.

(e) There exist constants o and 3, not both zero, and H*® functions f1,0:
such that f = af; + 83, and g = afy — S5, onsuppm.

Then m(fg) = m(f)m{g) for all m € M{H*> + C}.
Proof. In view of the previous theorem, we only have to show that

condition (e) implies m(fg) = m(f)m(g) for all m € M(H> + ). Using
the integral representation as above,

m(fg)= | fgam= | (afi+B5)(af - B5) dm

Bupp supp m

=m{(efi + 87.)(af1 — £g.))-
So m(fg) =m((afr)* - (87,)%) = m{(eefr)?) — m((87:)%)-

As above, the measure we are integrating against, dm, is a probability

measure and g1 € H® so we see that m(g2) = m(g1)®. Again, since f; and
g1 are H* functions,

m(fg) = m(af1)? —m(B7)* = m(afi + Pg)m(afs — 671 = m(F)m(g)

We are now in a position to present the first counterexample to the
Bottcher-Silbermann conjecture. :
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ExaMpLE 1. Let b be an infinite Blaschke product. Define f = (b+ b)/2
and g = (b — b) /2. Then f and g satisfy condition {e) in Theorem 10 and,
by Lemma, 1, fg( ) — F{2)d(2) — 0 as z — 8D.

On the other hand, H*®[f] n H*[g] = H*[b] and H[g] n H*[f]
= H%[b]. Since b is not invertible in H>® + (' we see that the inverse
of b, namely b, is not in H° + C. Thus b ¢ ((H>=[f] n H®[g]] U [H®[f]N

H>[gIN\(H*+C). So f and g do not satisfy the condition in the Béttcher—
Silbermann conjecture.

Thus one might look for conditions on f and g for the conjecture to
hold. We will do this in the next section. Before doing so, we give one
mere example to show that the conjecture need not hold even if f € H™
and g € H*, Our example will also show that the asymptotic multiplicity
condition may hold without conditions (a)—(e) of Theorem 10 holding.

It will be helpful to have the following lemma at ha,nd This lemma
follows from work in [3] and [20].

LemMa 11, Let f € H® 4+ C and let u be an inner function. Then
FH®[U] C H® + C if and only if f =0 whenever |u| < 1.

Since w is inner, we can replace the condition f = 0 whenever Ju| < 1 by
f=0on M(H*+C)\ M{H>[T]).

THEOREM 12. Let f € H® + C and let g € L>. Suppose f = 0 on
M(H®+CY\M(H°[g]). Thenm(fg) = m(f)m(g) for all m € M(H*®+C).

Proof Let f € H*® + C satisfy f = 0 off M(H*[g]). Suppose first
that m € M(H[g]). Then we know that g|suppm € H*|suppm and
flsuppm € H*®|suppm. From Theorem 9(b) we know that m(fg) =
m(fym(g).

Now we will prove the theorem in stages. First suppose that b is a finite
product of interpolating Blaschke products. invertible in H*[g]. Note that
since H>[b] C H™[g], we have M(H>[g]) C M(H*[b]). Thus by our
assumption, f = 0 on M(H™ + C)\ M(Hm{b]) Hence f = 0 whenever
|b] < 1 and from Lemma 11 we know .that fb € H* +C. If [m(b)| = 1, then
it follows as above or from Lemma 8 that m(fb) = m(f)m(b). If |m(b)| <1,
then m(f)m (D) = 0. On the other hand, 0 = m(f) = m(fbb) = m(fb)m(b).
Now if m(b) # 0, then m(f8) = 0 = m(f)m(b). Hoffman's work [22] tells
us that a finite product of interpolating Blaschke products cannot vanish
on an open subset of M (H* + C) and hence the set of points for which we
have established the asymptotic multiplicity condition (m € M{H™ + ()

 for which rm(b) # 0) is dense. Therefore m(fb) = m{f)m(d) for all m €

M(H* + C).
Now let b € H* + C and let b be as ahove, Then fh = 0 whenever
|bj < 1. Thus, replacing f by fh above and using the work in the preceding
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paragraph, we see that m(fhd) = m{fh)m(b) = m(FH)m{h)m(b). Therefore,
if |m(b)| < 1, we know that

m{fhb) = m(fym(h)m(B) = 0 = m(f)m(hb).

Of course, if |m.(b)| = 1 then Lemma 8 implies that m(fhb) = m(f)m(hb).

Now let m € M(H® + C). By the Chang-Marshall theorem, for any
e > 0 there exist hy,...,h, in A% and by,...,b, each of which is a finite
product of interpolating Blaschke produets invertible in H*{g] such that
llg — X5y hsbsli < e By our work above, for any m € M(H> + C) we
know that m(f 301 hibs) = S m{fIm(hsd;) = m(f)m(3j_; hib;). Now
taking limits we obtain m(f)m(g) = m(fg) for all m € M(H* + C). This
completes the proof of the theorem.

The inner functions that do not vanish identically on any Gleason part
have been characterized in [17]. In particular, any interpolating Blaschke
product satisfies this condition. This leads to another counterexample to the
Béttcher—Silbermann conjecture and shows even more: it is possible to have
asymptotic multiplicity without any of the conditions (a)—(e) in Theorem 10
holding.

ExAMPLE 2. Let b be any interpolating Blaschke product with zeros
{z,}. Choose a sequence of positive integers k, — oc such that

an(l— l2nl) < oo
Let

B |2n| { 2n — 2 Fn
olz) = H Zn (1 — Enz)
denote the corresponding Blaschke product. Now for each positive integer n
there exists a finite Blaschke product u and a Blaschke product v such that
¢ = b™gv. Since u is a finite Blaschke product, we have v € H* + C. Thus
we can conclude that [m(c)| < |m(b")| for all positive integers n. Therefore

(3.2) ¢=0 whenever b} < 1.
From Theorem 12 we know that m(ch) = m(c)m(b) for all m €
M(H™ 4+ C).

Now we show that (a)—(e) in Theorem 10 do not hold (with f = ¢
and g = b). For any m such that |m(b)| < 1, Lemma 7 and (3.2} imply that
neither bjsupp m nor Z|supp m is in H |supp m. Note that H®[f]NH>[g] =
Hee[gn H*[b].

Since b is a subproduct of ¢, we know that b € H*°[¢] N H[b]. Therefore
[H[FNH>®[b]|U[H®[c]NH>[b]] is not a subset of H* +C'. By Theorem 9,
conditions (a)-(d) cannot hold. Clearly, (€) cannot hold either, but our work
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in the first paragraph shows that m(cb) = m(c)m(b) for all m € M(H>®+C).
This completes the second example.

The Blaschke product above is sometimes referred to as the ). J. New-
man product.

4. The condition fg(z) - f(z)ﬁ(z) — 0 as z — JdD. We begin
this section with a lemma to be used in the proof of Theorem 14 below
(see also [19}). For a Blaschke product b the notation Z(b) denotes the zeros
of b in the maxirmal ideal space of H°.

LemMaA 13. Let f1,..., fp be bounded harmonic functions on D, let m €
M{H®® + C) be a nontrivial point and {z,} be an interpolating sequence
with m in its closure. Then

(1) There is a subnet {z,,} such that fjo L, converges uniformly on
compact subsets of D to fjoLy for3=1,...,p.

(2) If Dy is an increasing sequence of compact subsets of D with D =
| Dy, then there exist points zn, of the interpolating sequence such that
|2n,| =+ 1 and max; || f; 0 Ly, ~ fj 0 Lm| < 1/k on Dy.

(3) If b is any interpoloting Blaschke product with zeros chosen from
among the zn, in (2) above, then f; 0 Ly = fj 0 Ly, for oll x € Z(b) \ D.

Proof. We indicate the proof for one function.

For (1) write f = % + v where w and v are real and harmonic. Let
g = €% Since u is a bounded harmonic function, g is an invertible outer
function. Let {z,} be a net in D converging to m. Then go L, is a bounded
family of analytic functions on D. From a well-known result of Hoffrnan [22]
the functions g o L., converge pointwise to g o Ly,. By Vitali’s Theorem
golL,, — go L, on compacta. Taking the logarithm of the absolute value
of go L, we see that uo L, must converge uniformly on compacta to some
function. By Hoffman’s results, we know that this functien must be uo L.
The result for f follows easily.

Statement (2) is a straightforward consequence of the above.

For statement (3), let =z € Z(b) \ D. Then, by [22], ¢ is in the closure of
the zeros of b in D. Let {z,,} be a net from among the points chosen in (2)
converging to #. Then (2) implies f; o L,, (w) — fj ¢ Ip(w) for all w € D
while Hoffman’s theorem tells us that f;¢ L., —+ f;0L;. The result follows
from this,

Note that it follows from (1) above that f o Ly, is a bounded harmonic
function on D as long as f is. Now we are ready for the first theorern in this
section,
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THEOREM 14. Let f,g € L*. If ?g}(z) - f(z)fg‘(z) — 0 as z — 8D, then
for each m € M{H®> 4 C) with nontrivial Gleason part P(m) one of the
following holds:

(1) fo Ly, and go Ly, are in H™.

(2) folLy and go Ly, are in H*™.

(8) There exist constants o, 3, not both zero, such thot both (o f+Bg)c L
and af — 8g 0 Ly, are in H™.

Proof. By the Corona Theorem, there is a net {z,} in D converging
to m. By Hoffman’s work [22] for each w € D we know that o L, (w)
converges to f © Ly, (). Therefore we have Fgo L, (z) — Fgo L (2) and

(FolL.)z) @0 Lea)() = ~ (fo Ln)(2) (§ 0 Lim)(z)- So

50 Lin(2) = (Fo Lm)(2) (§ Lm)(2)-

By (the remark following) Lemma 13 the left-hand side of the above
equation is harmonic in D. So the rlght-ha.nd side must be harmonic in D.
Let A be the Laplacian operator 42 2. Then A((foLm)(goLm)) = 0. Be-
cause fol.,, and go L,, are also harmonic on D, an elementary computation
implies

%A((f o L )(g 0 L) ){(w) = B(f;’;m) (w) B(g;sz)( )
a(y;_Lm)( )3(f 0 Lm)( ).
Hence
anL)

(w) ( )(w)+ 3(9602Lm)(w)5(f;z45m)(w)=0

Ta show that one of stai:ements (1), {2), and (3) holds we argue as in [2].
Write foLm = f1+f2 and gOLm =mn+5, where fl: f%glvgz € Hz(D)
Then our computations above imply that

fi91 + g2 f1 = 0.
So figh=—Fag, on D. If g} = 0 on D, then either g5 =0 on D {so g; and
g2 are both constant and hence (3) holds with @ = 0) or f{ =0 (so f1 is
a constant and (2) holds). The same argument works if g4 = 0. So we will
assume that neither g| nor g is identically zerc, Dividing, we obtain
filgy=—1i/gh
wherever the denominators are nonzero. Since the left-hand side is analytic
and the right-hand side is coanalytic, both must be not only equal, but
constant. Therefore, there exists a constant - such that fi — yg{ = 0 and

Fa-+7v9h = 0.80 fi =vg1+ay and fg = —vG, -+ for some constants oy, os.
If v = 0, then (3) holds. If v 5 0, then (f + vg) 0 Ly = 2vg1 + a1 + a2
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and since for any A € L* we have hoL,, = h o Ly, we also know that
F—vg90Lm = 01 + az — 277,. Both are analytic because g; and go are,
and bounded because f + vg and f — vg are. This completes the proof.

Interestingly, the conditions above can be stated in an equivalent way
that looks very much like the Bottcher—-Silbermann conjecture. There is one
important difference: Our algebras are subalgebras of C(M(H™)} where
multiplication is on the disc rather than the circle. The setup for the next
theorem is the following: Let dA denote the usual normalized area measure
on D and L*°(D) denote the space of bounded measurable functions on D.
For two bounded harmonic functions f and g on the disc let H>(D)[f, 9]
denote the subalgebra of L*°(D) generated by H>(D), f and g. The subal-
gebra of C(M(H®™)) consisting of functions analytic on every Gleason part
in M{H*> + C) is denoted by AOP; that is,

AOP = {u e C{M(H®)):uo Ly € H® for all m € M(H*™ + C)}.

In [4], the authors showed that the conjugate of a thin interpolating
Blaschke product b is in the algebra generated by H°°(D) and the conjugate
of a bounded analytic function f as long as f is nonconstant on any part in
M (H®®) on which b has a zero. Recently, Younis and Zheng [31] showed that
the function f can be replaced by a family of bounded harmonic functions;
that is, if F is a family of bounded harmonic functions such that whenever
& € Z(b) there exists f € F with fo L, ¢ H®, then b € H*®(D)[F].
We will use Younis and Zheng’s result to give an algebraic formulation of
Theorem 14,

THEOREM 15. Let f and g be bounded harmonic functions on the unit

disc. Then
H2D)f,ginH*(D)f,5ln [} HZ(D)
|| +(8[>0

if and only if for each m € M(H™)\ D with nontrivial part P(m) one of
the following holds:

(1) foLy and go Ly, are in H®.

(2) foL,, and §o L, are in H™,

(3) There exist constants o, 3, not both zero, such that both (af+08g)o L,
and af — Bg o Ly, are in H™®.

[af + Bg,af — Bg] © AOP

Proof. First suppose that one of the conditions numbered (1)-(3) holds.
Then for any nontrivial point m € M{H* + (), any function in the algebra

DN H=D)fan [ HZ(D)af +pg.af — By
fex]+[8j>0
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is a uniform limit of functions analytic on the Gleason part of m and so the
proof in this direction is complete.

Suppose that m is a nontrivial point in M(H* + C) for which (1)—(3)
above fail. Choose a sequence of subsets Dy, of D and a sequence {2z} as in
Lemma 13(2). Passing to a subsequence, we may assume that the sequence
is thin and satisfies

max{Hf o Lzrz - -f o Lm“Dn7 Hg o LG - g C LTWHDH.} < 1/n'
Thus, for any complex numbers ¢ and 3,
max{||(af +fg) ¢ L, — (af + Bg) o Lm/|p,.,

lef —Bgo L., —af —fgolmlp,.} <

Let b be the thin product with zeros {z,}. lf x & Z(b)\ D, then folL, =
f oLy, and go Ly = go L, Consequently, (af +Bg)o L, = (af -+ Bgyo Lim
and (af — 8g) o Ly = (af — Bg) © Ly, Now we are assuming that m is a
point for which (1)-(3) fail, so if & € Z(b) \ D then (1)~(3) must fail for z
as well. In particular, the zeros of b are contained in the set
{y € M(H®): foL, & H® o go Ly ¢ H*}

N{ye M{H®): foL,¢ H*® or go Ly & H*}

n ﬂ {ye M(H®): (af +B8g)o Ly & H® or af — fgo L, ¢ H™}.

[]+]8]>0

By Theorem 3 of [31],

be H*(D)[f,gl N H*(D){f,gln

o] + 18]

(| E=(D)ef +8g,af — Bgl.

la|-HIB1>0

Since (bo L)' (0) = L for any z € Z(b)\ D, we see that b cannot be constant
on any part in which it has a zero and so the algebra above cannot be
contained in AOP. This completes the proof.

We will now give a class of examples generalizing Example 2. The in-
teresting thing is that we can give necessary and sufficient conditions on
functions not in this class for the asymptotic multiplicity condition to be
satisfied. To do all this, we need a slightly different version of Lemma 13.

LEMMA 16. Let ¢ be o Blaschke product and A € D. Suppese that
¢ = ) identically on a Gleason part P(m). Then there exists an interpo-
lating sequence {zn} such that c is identically equal to A on any part in
M(H>™ + C) containing a point in the closure of the sequence.

Proof. If m is trivial, it follows from [17] that ¢ = X on a nontrivial part
as well. Thus we may assume that m is nontrivial. The rest of the lemma
follows directly from Lemma 13.
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ExaMPLE 3. Let ¢ be a Blaschke product which is a constant of modulus
less than one on some Gleason part P(m). Then there exists an infinite
Blaschke product b such that m(bc) = m(b)m(g) for all m € M(H® + ()
but H*°[b] C (H*[b] N H™[e]) U (H>°[6] N H[c]).

Note that since H*® + C' does not contain the conjugate of any infinite
interpolating Blaschke product, taking f = b and g = # in Theorem 9 we see
that if we produce such a Blaschke product b, then conditions (a)~(d) cannot
hold; clearly, condition (e) of Theorem 10 does not hold, since f € H*> and
7 € H® but neither is constant.

Let m denote a nontrivial point for which ¢o L,, = A. (Again, the exis-
tence of such & point is guaranteed by [17].) We let b denote the interpolating
Blaschke product corresponding to the zeros {z,} given by Lemma 16. Note
that since co Ly, is constant on D, we know ¢ is the constant A on any part
(other than D) which contains a point in the closure of the zero sequence
of b. Thus we see that ¢|[(Z(b) \ D) = X and ¢ ~ X vanishes identically on
any part where b has a zero. It follows from [3] or [20] that ¢ — A vanishes
identically on any part where |b| < 1. Thus, on the one hand we know from
‘Theorem 12 that for all m € M(H* 4 C) we have m(bc) = m(b)m(c). But
from the construction of b we see that if b is not invertible in H°°[¢], then
there exists y € M (H*[¢]) with y(b) = 0. By our choice of b, this would im-
ply that |y(c)| = |A| < 1, which is a contradiction. Therefore, b is invertible
in H*<[e] and hence H>®[b] C H>[g]. Since no infinite Blaschke products
are invertible in. H® + C we see that H*[¢] N H*[b] is not contained in
H* 4 C, so (a)-(d} of Theorem 10 cannot hold, and (e) clearly does not
hold either. This completes the example.

The functions in Example 3 are those Blaschke products that are a con-
stant of modulus less than one on some nontrivial Gleason part. If ¢ has
modulus less than one on some trivial part, then (see [17]) ¢ is constant on
a nontrivial part. For those functions that do not have this property, one
can actually give necessary and sufficient conditions for m(be) = m(b)m(c)
to hold for all m € M(H™ + C).

In order to show this, we need to make a few remarks. It is well known
and follows easily from Hoffman’s results that thin points are dense in
M(H*> + C). (One needs to use the fact that the nontrivial points out-
side the disc are dense in M(H® 4 (') and the fact that every sequence
contains a thin subsequence.) As mentioned earlier, it follows from a re-
sult of Hoffman that any function f € L°° has a continuous extension to
M({H*) so we actually know that f(ms) — f(m), if m, is a net converg-
ing to m. Thus, if we know that z(b)z(¢) = z(be) for all thin x, and we
have a nontrivial point m we can obtain the result for m through a limit
argument. We will use a well-known fact that if m is a thin point, then the
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map L, has a homeomorphic extension to M{(H®)}, and the fact that L,
maps trivial points to trivial points (for both of these facts the reader is
referred to [8]). With this information, we are now able to obtain conditions
on a class of functions that will ensure that the asymptotic multiplicative
conditions hold.

THEOREM 17. Let ¢ be an inner function such that ¢ has modulus one on
all trivial parts. If f € L™ is constant on any pert where ¢ is nonconstant,
then m(£E) = m(f)m(e) for all m € M(H>* + C). If [ € H*® 4 C then
m(fE) = m(f)m(e) for all m e M{H* + C) if and only if f is constant on
any part where ¢ is not.

Proof. Suppose that ¢ is an inner function with modulus one on all
trivial parts and let m € M(H® + C). Let f be any function in L which
is constant wherever ¢ is not. By our remarks preceding the theorem, we
may assume that m is a thin point. By [8], Iy (M (L*°)) is a subset of the
trivial points. Let 7 € Ly (M(L%°)}. Then we know that z; is trivial Let
y & M(L°) be such that z¢ = L (y). Then

(£2) = fe(Lm(v))-

Since ¢ has modulus one on all the trivial points and s = Ly (y) is a trivial
point, we know from Lemma 8 that

41 2(f2) = feLm(y)) = FLm(yNe(Lmy)) = 2e(£)2:(0)-

By our assumption, either ¢ or f is constant on P(m). This means that
the functions defined on D by h = (f&) o L, and g € C(M) given by
g(2) = (f 0 Lm)(2)(¢ © L) (2) are both harmonic functions on D and for
any z € M (L) satisfy

hiz) = z((fe) o L) = zin_l}m((fa) o Lin}{za)
= Bm (f2)(Lm(2a)) = (fe)(Lm(z)),

where we used the fact that the extension of Ln, is a homeomorphism
on the whole maximal ideal space and feé € C'(M) for this last equality.
Now z is trivial and therefore Ly, (2) is trivial, so by (4.1), it follows that

(f8)(Lm () = f(Lm(2))E(Lm(x)) and hence
hz) = (F(Lm (@) @(Lm(2)))
= lim (f(Im{za))E(Em(za)) = Jim_ g(sa) = 9().
Since h and g are bounded harmonic functions which agree everywhere
on M(L*®), we have h = g on D. Now Ly, (0) = m so m{fc) = m(f)m(c).
Thus the asymptotic multiplicity condition holds for all thin points m and

from our comments preceding the proof of the theorem, that means it holds
for all € M(H* + C). This completes the proof of the first statement.

icm

Bittcher-Silbermann congecture 219

Suppose that f is constant wherever c is not. Then the asymptotic multi-
plicativity in the second statement follows from the first. Now suppose that
m(fe) = m(f)m(e) for all m € M{H> + C). Let P(m) be a part where ¢ is
not constant. Then (1) of Theorem 14 does not hold. Since f € H® +C, (3)
cannot hold unless 3 = 0. In this case, & # 0 so f o L, € H*®, Similarfy, if
{2) holds, f o Ly € H>. Since f o Ly, and fo Ly, are both analytic, f o L,
is constant.

.

Putting this together with Theorem 15 we get

THEO.R'EM 18. Let c be an inner function such that ¢ has modulus one
on all trivial parts and let f € H*® 4 C. Then m(f2) = m{f)m(e) for all
m € M{H> 4 C) if and only if
HOD)f,eddnH®(D)[f,c]n [ H®D)[ef + fe,af — Bé] C AOP.

lex|-+18]>0

Norbe that the proof of Theorem 17 is local in the sense that we only
need either f or ¢ constant on the part P(m). Thus one half of the following
theorem is an easy consequence of the proof above.

THrOREM 19. Let ¢ be a finite product of interpolating Blaschke products.
Then ¢ has modulus less than one on some trivial part if and only if there
exists a nontrivial part P(m) and o function f € L™ such that c is constant
on P{m) but z(fc) # z(f)z(c) for some z € P(m).

Proof. If ¢ has modulus one on all trivial points then, since every part
contains a trivial point in its closure, ¢ must have modulus one on any part
on which it is constant. Therefore, z(f¢) = z(f)z(¢) for all z € P(m) and
all fe L.

If, on the other hand, ¢ has modulus less than one on a trivial part, we
know from [17] that ¢ must be a constant A of modulus less than one on a
nontrivial part. By Lemma 16 there is an interpolating sequence such that
¢ is identically X on any part outside D containing a cluster point of the
sequence. Pagssing {0 a subsequence, we may assume that the sequence is
thin. We conclude that ¢ is identically A on a thin part P(m). By [16], we
know that we can factor ¢ = ¢1¢e so that neither ¢; nor cp is constant on
P(m). Now let f = ¢;. Then for z € P(m) we have z(cf) = x{ez) while
z(cye(f) = z(er)p(ea)z(c1) = |z{cs)|*x(ca). Since c is not identically zero
on the part (as it is interpolating) these two can only be equal on the whole
part if {z(e1)| = 1. This in turn implies that ¢y is a constant of modulus one
on the support of z, which would mean that ¢; is constant on, the Gleason
part of z, i.e. P(m), a contradiction. So there must exist a point z € P(m)
with z(cf) 3 z(c)z(f) and this completes the proof.
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5. Concluding remarks. We remark that many of the proofs given in
earlier sections have operator-theoretic formulations. These appear in the
work of [5], [18] and [31], and will only be mentioned here. The reader is
referred to those papers for proofs.

Let P be the projection of L? onto H2. For f € L™, the Toeplitz op-
erator Ty on H? is defined by T¢h = P(fh) and the Hankel operator from
H? to I? @ H? is defined by Hsh = (1 — P){fh). For z € D, let k. de-
note the normalized reproducing kernel (1 - |2*)*/2/(1 — Zw) of the Hardy
space, and let ¢, denote the M&bius map on the unit disc, ie. ¢.(w) =
(z~w)/(1— Zw).

Although the Béttcher-Silbermann condition does not hold, we have
shown that the following is true. The proof is almost exactly the same as
that in 18] and therefore will not be repeated here.

THEOREM 20. Let f,g € L™. Then the following are equivalent:
(1) For each m € M(H® + C) one of the following holds:

(1a) flsuppm and g|suppm are in H*|suppm.

{(1b) fl|suppm and Flsuppm are in H™[sappm.

(lc) There emist constants «,B, not both zero, such thai both
(af + B)glsuppm and (af —g)|suppm are in H*®|suppm.

(2) We have

BHR[f,nBH*[f,5ln [| H laf+06g,af —Bg) C H* +C.

laf+|8[>0
(3) HiHy + HyH;y is compact on the Hardy space.

When we look at algebras generated as subalgebras of L (D) we obtain
operator-theoretic conditions equivalent to those in Theorem 15.

Let dA denote the usual normalized area measure on D. The Bergman
space L? is the Hilbert space of analytic functions g : D — C with inner
product given by '

(f.9) = | F(2)5(2) dA(2).
D
Let P denote the orthogonal projection of L*(D,dA) ento L2. For f €
L>(D), we still use Hy to denote the Hankel operator Hy : L2 — L? which
is defined by Hys(h) = (1~ P)(fh).

THEOREM 21. Let f and g be bounded harmonic functions on the unit
disc. The following conditions are equivalent:
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() For each nontrivial part P(m) in M(H®™ + C), one of the following
conditions holds:

(al) folLy and goLm, are in H>.

{(a2) folm and §o Ly, are in H*.

(a3) There exist constants o, 3, not both zero, such that both
(af + Bg) © Ly, and of — Bgo L, are in H®

(b) H)’;Hg + H} Hy is compact on the Bergman space.
(c)
H=(D)f gl B=D)f,510 [ B*(D)laf + 8g,af = Bg) C AOP.
e +B1>0

Proof. The equivalence of (a) and (b) is shown in [5]. The rest follows
from Theorem 15.
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Existc—_ance and uniqueness results for solutions of
nonlinear equations with right hand side in I}

by

A, FIORENZA and C. SBORDONE (Napoli)

Abstract. We prove an existence and uniqueness theorem for the elliptic Dirichlet
problem for the equation div a(z, Vu) = f in a planar domain §2. Here § € L*((2) and the
solution belongs to the so-called grand Sobolev space W& 2) {12). This is the proper space
when the right hane side is assumed to be only L'-integrable. In particular, we obtain the

exponential integrability of the solution, which in the linear case was previously proved
by Brezis—-Merle and Chanillo-Li. F VP

1. Introduction. We consider the Dirichlet problem on a bounded open
set 2 C R? with C'' boundary,

(1.1) Au=Ff in 2CR?,

v=0  on 812,
where f € L'({2) and A is a differential operator defined by
(1.2) Au = diva(z, Vu).

Here a : {2 x R* — R? is a mapping such that
(1.3) {:L -+ a(z, £) is measurable for all £ € B2,
¢ — a(z,£) is continuous for almost every z € f2.

Furthermore, we assume that there exists m > 1 such that for almost
every & € {2 we have

(i) |a(z, &) — alz,n)| £ m|¢ —nl (Lipschitz eontinuity),

oy )
(14) (i) ;T—L|§ —n* € la(z,¢) - a(z,n),£ ~n} (strong monotonicity),
(iii) af{z,0) =0,
where ¢, 7 are arbitrary vectors in R? {[LL]).
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