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Estimates for the Poisson kernels and their derivatives
on rank one NA groups

by

EWA DAMEK, ANDRZEJ HULANICKI
and JACEK ZIENKIEWICZ (Wroclaw)

Abstract. For rank one solvable Lie groups of the type N A estimates for the Poisson
kernels and their derivatives are obtained. The results give estimates on the Poisson kernel
and its derivatives in a natural parametrizasion of the Poisson boundary {minus one point)
of & general homogeneous, simply connected manifold of negative curvature.

The class N A of solvable Lie groups has attracted considerable attention
in recent years (cf. e.g. [B], [BBE], [V1], [V2]). We say that a Lie group G is of
the form N A if it is a semidirect product of a nilpotent group N extended
by an Abelian group A. The name NA comes from the most impoertant
examples of such groups: the N A part of the Fwasawa decomposition NAK
of a semisimple group (non-compact, finite center). The symmetric space
NAK/K admits a simply transitive group of isometries of the form NA
acting on the left and so can be identified with N A.

Also every proper homogeneous cone {2 in R™ admits a simply transitive
group of linear transformations which is of the form N A (see [Vi]), and every
bounded homogeneous domain D C C* admits a simply transitive group of
biholomorphic transformations of the form N A (see [P]).

We say that a group NA is of rank one if A is one-dimensional and in
the adjoint action of the Lie algebra .A of A on the Lie algebra N of N the
real parts of the eigenvalues of ady for H € A are positive. N.A groups of
rank one can be equipped with a left-invariant riemannian metric for which
the sectional curvature is negative. In fact, all the homogeneous riemannian
manifolds of negative curvature are of this form [Hel.

All known examples of non-compact riemannian harmonic spaces, also
the non-symmetric ones, have the form of a rank one N A group, N being a
so-called group of the Heisenberg type [DR/.
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Let L be a left-invariant subelliptic operator on a group § = NA.
Bounded L-harmonic functions have been studied extensively on symumnetric
spaces, L being the Laplace—Beltrami operator. For a number of results,
like the Fatou theorem, the identification of the symmetric space with the
N A part of the Iwasawa decomposition has been essential. For general NA
groups and general degenerate elliptic operators bounded harmonic func-
tions were investigated in e.g. [R], [D1], [DH1], [DH2|. These functions are
all of the form

F&y= | fs-v)vv)dy,
N{No
where Ny is an A-invariant subgroup of IV, s - y stands for the action of an
element s € S on §/NgA = N/Ny and v is a positive, integrable function on
N/Ng which we call the Poisson kernel. For general N A groups the following
estimates have been proved (cf. [D] and [DH2]).
Let ¢ be an N-invariant distance in N/Np. We have

(i) There exists n > 0 such that {, v o(y)"(y}dy < oc.

(i) For every multi-index I there are constants ¢, M > 0 such that

0" w(y)] < e(1 + o(y))™
(iii) There exist ¢,e > 0 such that v(y) < c¢(1+ o(y))°.

Properties (i)—(iii) seem to be the best estimates for v which can be expressed
in terms of a norm in N/Nj, for multidimensional A. They are, however,
sufficient to prove a satisfactory Fatou type theorem about the almost every-
where convergence of the Poisson integrals of functions in I?, 1 < p < oo, to
their boundary values ([D], [DH1], [DH3], cf. also [So]}. If N A is a harmonic
space and L is the Laplace-Beltrami operator, then a formula for v, very
similar to the corresponding one for symmetric spaces of rank one, is proved
in [DR]. It follows that in this case

v(z) = co(z) 79,
where [ - || is a specific homogeneous gauge on N and @ is the homogeneous
dimension of N.
This has been our starting point for a search of better estimates on v
and their derivatives in the case of a general rank one N A group.

In the case of a rank one N A group every degenerate second order elliptic
operator can be written in the form

Lf(za) = (( — vady + Zcra + Oa B))f(asa),
i=1
where o, = e*dosed A = RH and B, By,..., By, are left-invariant vector
fields on N,
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By an application of the potential theoretic methods discovered by Alano
Ancona [A], which he used to describe the minimal positive harmonic func-
tions on riemannian spaces of negative curvature, the following estimate has
been proved in [D2], [D3]:

M1+ [2) 7 < vlz) < (14 |2])7 9,

where @ is the sum of the real parts of the eigenvalues of adg acting on A,
The proofs are based on a boundary Harnack inequality for positive har-
monic functions on N A.

In [D2] and {D3] the geometry of negatively curved manifolds is used to
estimate the Poisson kernel for an N A group. In the present paper we go in
the opposite direction: all our arguments are based on some group invari-
ance. We do not use either geometry or the potential theoretic methods, the
latter not being adaptable for estimating the derivatives of v. However, our
results give estimates on the Poisson kernel and its derivatives in a natu-
ral parametrization of the Poisson boundary (minus one point) of a general
homogeneous, simply connected manifold of negative curvature.

We obtain the following estimates for the derivatives of v (see Theo-
rem (5.1)):

(%) 1 X ()| < C(1+ |z))~ 27 M (Log(2 + |a|))I1Flo,

where the norm |- | is as in (0.20), ||[I|] is a suitably defined length of the
multi-index and ||I||o is a certain number depending on I and the nilpotent
part of adg. ||I)|o is equal to 0 when the action of H on A is diagonal.

To prove (*) we are going to revisit a probabilistic method used in [DH1].
The idea goes back to Malliavin [M] (cf [T]).

We consider the diffusion s(t) = z(f)a(t) generated by L on NA. For a
fixed continuous function a : R* 3 ¢ — a{t) € R* the “horizontal compo-
nent” z(t) under the condition that the “vertical component” is a, is the
diffusion on N generated by the time dependent operator

Z o0 (B

i=1
Thus given a trajectory a of the Brownian motion on R associated with

the operator 82 — v8; = (ad,)? — vad, with a = e* we consider

m

L= &(B;)2 +#(B) - &,

i=1
where &; = o, a) Let P, a(5,t,2),0<s<t<oc, zEN, be the fundamental
solution of Ly. Then lims.,cc Pa(0,t, ) exists a,nd

(**) . Xryx(m) = ExXIPa(OJ 0Q, 5‘7)3

*+020(B).
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where v is the harmonic measure corresponding to exp xH, i.e.

FlexpxH) = | f(v)v*(v) dy
N

and E, is the integral with respect to the Wiener measure on C(R) with
a(0) = x-

The proof of estimate (*) consists basically of three steps. First we
prove the existence of Pa(0,00,z) and some estimates of its derivatives
(see Theorem (4.20}). Next, in Theorem (5.7), we estimate the integral
EyXTPs(0, 00, z). Finally, we prove equality (++) {Lemma (3.11)).

Section 4 is devoted to estimation of Pa{0,00,%). The crucial point is
the behavior of the trajectory a. Of course a(t) = —vt as t — oco. The
following three quantities are of interest: Ag = {7 e®(!)dt with an ap-
propriate positive d, A = maxXoci<oo a(t) and X = mingcicer1 a{t), where
¢ = min{t : a(t) = A}. In Theorem (4.20) we formulate our estimates in
terms of Az, A, A To prove them we develop a quite general approach
to evolutions with continuous coefficients on N. This is described in Sec-
tion 3. ‘

The next step is to study the integral B, X7 Pa(0, 00, z). Although we do
not know the joint distribution of Ay, A, A, we are able to define a stopping
time T and estimate the probability of the set {a : A;/ 4 ek A(B;a) =
ks, A(@ra) = ka} in such a way that it suffices to obtain an appropriate
estimate of E,.. This requires a number of lemmas about the behavior of the
Brownian motion with a negative drift. They are given in Section 2. The
appropriate estimate is

(+5%) E, X1 Pa(0,00,7) < Ce™™

and it is proved in Lemma (5.7). The rest follows by a homogeneity argu-
ment described at the beginning of Section 5. Finally, we show that (xx)
implies (x+) (see Lemma (5.11)).
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Preliminaries. Let A be a nilpotent Lie algebra. We fix a basis
{Buotacn of N. Let

A= >"BZ and A=1-4,
aefl
A= Zﬁi and A=1I- A,

where X is the right-invariant vector field on N corresponding to the ele-
ment X € N. :

Every element of the enveloping algebra of A/ is a sum of elements
B’ = [] BEz,
el -
where I = {ia}aen and i, are non-negative integers. We write

= ia.

ach?

The operators A and A are positive, essentially self-adjoint on C®(N) C

L*(N) so the operators A° and A* are well defined for arbitrary s € R. We
have

AAt = AT fors,teR
Of course, XA° = A°X for every X € N and s € R.
We introduce the Sobelev norms:
el = (Lu,u) = [ 2 2uft s €R, uwe CPN).
By the spectral theorem, s < ¢ implies ||ulls < [lul:.
Let o(z) be a riemannian distance of = from e € N. For the unit ball
B(1) = {z: p(z} < 1}

and every s there exist constants C, and ¢, such that for f € C°(B) we
have

O A2 f| s < 1472 Fll 2 < Clll A% fliza,

e I Nls S W fllag < esll s

where H{ is the ordinary euclidean Sobolev space on B. Accordingly, .on
cach H} the operator A°/2 is elliptic of order s, as for ¢ € C*(B) the
commutator [A%/2, ¢] is of order s — 1, i.e.

ITA°2, ¢l z2cmy < call A~ 2ufz2(m).
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Let {¢4}+»0 be the semigroup of positive measures on N generated by ~A.
Then

vy =etpy,
where p; are the smocth probability measures in the semigroup generated by
the elliptic operator A. The following well known estimate for the semigroup

generated by the elliptic Laplacian A goes back to Nelson and Aronson and
is not difficult to prove (cf. e.g. [Ro]):

(0.1) pi(z) < et~ (dm N2 —Bele)*/t)
for some positive ¢ and 3.

Let R be a fixed positive number and let ¢ € C°°(N) be such that
(02) 0<¢z) <1, supp¢ C B(R/2), ¢{z)=1forz € B(R)".

The following estimate is well known (cf. e.g. [Ro]); we include an easy
proof.

0<t<,

(0.3) LEMMA. For every r > { and every mulli-index I there are positive
constants ¢y and n > 0 such that
S 1Bp,(x)i dz < cre™ ™,
B(r/2)
Proof. Let r > R. We have

(0.4) (B(rsfz)c 1Bpy()] dm)z

0<t<.

< (1 16)B o) dz)

|
N

cS ¢5(m)BIpt z))%e?®) dz
N

<

< | Bp:(2)] - (0)pe(@)e’) do
|J1<2)I| N

<e 3 [Bp(@) do- § y(2)’pi(a)?e? da,
|J1<2|11] N N

where 1) satisfies (0.2). Since
1B7ulza < e AV
(cf. [N]), we have

} B pu(a)Pda < ¢ | |AV1/242p, 5 x py (o) do
N . N

< 1AV g (2o, pallpes2 ] 22
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Hence, by the spectral theorem and (0.1} for some d = dr and 0 < £ < 1 we
obtain
S |B7p, ()2 de < ct™%
N
By (0.2), the second factor on the right hand side of (0.4) is estimated by
S W(z) pe(z)?e?e@ dp < Ce '/t
N
for some 1’ > 0, which completes the proof.

Consequently, for every multi-index I there are positive constants c; and
7 such that

(0.5) B (¢2a)ilos < cre™®/H0 forall > 0.
In particular,
(0.6) | A(dre) ||z < ce” M8 for all £ > 0.
For 0 < s < 1and f € D(A) we have
- e 4
Bf=c{tunf T =2 s,

0
where A? ig the distribution given by

o0

dt
0%, =0 | (. ) = Fe) T
0
For a fixed radius R and ¢ as in (0.2) we define
T dt
(07) [J,(s) =C S t_“’qbvt “'t""

0

for s < 1 and we note that by (0.6) the integral is absolutely convergent. It
also follows that x*) is a smooth measure. Let

AD =y -y Jle = AG e MO f = p kg
Of course, if supp f C B(R)®, then (\°, f) = (1), f}, which implies
supp A) ¢ B(R).
We then have
(0.8) A°

But since for arbitrary ¢ € R*, 4* =
(0.8) and (0.6) imply

(0.9) A

=48+ M®  fors< L.

A% A® where k is a natural number,

=A% + M@ foralls R,
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where AL is convolution on the left by a compactly supported distribution
and M) is convolution on the left by a smooth bounded measure such that
for every multi-index I,

(0.10)

(0.11) LEMMA. Forall sy > 0 and 0 < 8y < 1, A2y (41) 45 an integrable
function.

Proof We have

B 1 lz2 < er.

oo o
Als2) g pyloa) = S uert S 0wy, x (gus) — (dwa)] dt du.
0 0

~

Hence, since ¢vy € D(A),

o] U
A2 x o)y < o [ et S g7l S |8 (v * (@re))| L2 dw di du
0

0

IA

[A

o0
ju
0
c S y—s2—1ge1—1 S | A(pe) * || dw du dt
:o 0
|
0

e S w2l a-l min{u, 1}3—(77/t+t) du dt,
0

which is finite.

(0.12) COROLLARY. For o fized radius R > 0 and arbitrary s; > 0 and
82 > 0 there is a constant ¢ = (R, 51, $2) such that

AP M F 2 < el £l e

Let B = {Bi,...,Bx} be a generating set of the Lie algebra A. An
absolutely continuous curve v : [0,1] — N is called B-admissible if

d k
=7t = Y es(1)B;

J=1

k
Iv|g = S. ZQJ(t 2 dt

|z|s = inf{ly|p : 7 is B-admissible, v(0) = e, (1) = z}.

If B is a generating set, then for every & € N there is a B-admissible curve
7 such that y(0) = e and y(1) = z (cf. e.g. [V3)).

‘We write

and for z € N,
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If the generating set is the basis {B,}, then

|zliB.} = e(z)
is the riemannian distance of ¢ from e in N.

It is well known [V3] and not difficult to prove that for a generating set

B contained in a basis {B,} there is a § > 1 such that
lzis < o(z)'/®  for p(z) < 1.

Let ¢ be an automorphism of the Lie algebra A and let #B =
{®B1,...,PBr}. In view of the above formula, it is easy to verify that

(0.13) |zlon < |74 /001°,

where ||®]| is the norm of the linear operator ¢ computed with respect to
the scalar product defining g.

(0.14) Koun’s LEMMA. Let B = {By,..., By} be a generating set of the
Lie algebra N and let & be an automorphism of N. Let Xy = éB1,...,
Xy = @By and

k
Lg = z X_?.
i=1

Then there exist ¢ and € > 0 which depend only on the algebra N and the
set By,..., By such that

14572030 < oL + |87 )2P((1 ~ L )u,u)
for every u € C°(N).

Proof First we show that
k
(0.15) Ifa = £l = §1£(@h) - £(@)Fde < |BG D 1B fI1Zs-
N j=1

Indeed, let v be a B-admissible curve such that (1) = k. Then

(0.16) {17 (zh) ~ f(2) da

zgl

B(s\/iaJ \/Z|Bf:w ) |2dt) dw

1
By f(zy(t)) dt de = S ‘ SZQJ(t VB flzy(1)) dt’ de
0 g

O s
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L 1
<1y, IS o) 3 B fer )P dt- |, [ oy(t) dt da
0 3 i oV
= ll% ) IBif Iz
i

Consequently, if we replace B by the generating set #8 = {X,.
obtain

K
Ifn = F3a < 1Rl3s O I1XiF13e-
J=i
We write

T dt
142 fllze < §UE73(f 5w = Pl
0

= [ e Sl o ] P flas

t<1 t>1

But

- dt
| e/ f = floe T <ol flle
t>1
with ¢ depending on ¢, and

[ e e 1S
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dt

i

t<1
—€ di
< § 1 62~ Flrambydn S
<1
SCS S t_s/znfh—fI|th“(dimN)/2e—g(h)’/t dh-(iii
e(h)<1
+C||f“L2 S S t(dimN)/zemg(m)z/tdhiE
e(h)>11<1 1
—dim N — - 1/2
Se | o(p)EmN-ct1/E gp g 1H1/a(z1|xjf|1iz) + ol flles
a(k)<1 ;

<ol + [ (17 18) 4 1)

for e < 1/8.
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Let D be a derivation of . The automorphism € of A/ defines an

automorphism o® of N by
o*{exp X) = exp[e!P X.

Clearly, ot = &'?.
Let AT be the complexification of . We define

NE ={X e N®: 3450 (D - M)*z =0},

Then
(0.17) N= wn,
SA20
where
Vi=Vi=WNF@NDINN i SA#£0,
Vi =NT NN if X = 0.

We specify: since adg is a derivation of the Lie algebra N we have
(0.18) XeVyandY eV, = [X,Y] € Vi

Of course, Vi, # 0 and V), # 0 does not imply Vi, 41, # 0.
From now on we assume

(0.19) If V) # 0, then ®A > 0.

Under this assumption, (0.17) is a gradation of V. Let us order A’s so that

0<RM <. <R
Let (-,-) be an arbitrary fixed inner product in A/. We define

oo

(X,Y) = S(U:tXrU:tY)dta X[ = (X, X).
0
Let
(0.20) |X| = (inf{e! >0:|jetX]| > 11~
We write

lexp X| = |X|.
Since for X # 0,

im {|otX||=0 and lim |[otX] = o0
t—+—00 t—+00

- and the function ¢ — |lotX|| is increasing, it follows that

(0.21)  for every ¥ # 0 there is precisely one ¢ such that

YﬁU:X? | X| =1, |Y|=et'

First we fix an inner product {-,-) in A in such a way that the spaces

Viyy- -, Vo, are mutually orthogonal, and an orthonormal basis &y, ...

1 &n
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accordingly. The enveloping algebra of N ig identified with the polynomi-
als in A3, ..., &,. We introduce a bilinear inner product in the enveloping
algebra of A by

T

H(X.HYT?)

J=1

X19..8 X, 1®..0Y,) =

We denote by V' the symmetric tensor preduct of r copies of V), which,
since (0.17) is a gradation of A, is identified with a linear subspace of the
enveloping algebra of A/ For a sequence I = (i3,...,%;) of non-negative
integers let

(0.22) xf= Xf‘) ...XS"), where ngij) € Vji"".
We have
ot XT = ot x () gt x (),
Since o '
lotlva—in = lovt vamvs < ce®A 14 )@=,
we have

{a))

k
023) Jloix | < ] Il
J=1

V.?

k
= exp(Z'LJ[d £+ D;log(1+[t])] ) 1‘[ \X("J)n
= i=1
where d; = R); and D; = dim V), ~ 1.

1. Poisson kernel. Let & be a solvable Lie algebra of a rank one solvable
Lie group. It is the sum & = A @ A of its nilpotent ideal A" and a one-
dimensional algebra A =R We assume that

(1.0)  there exists H € A such that the real parts of all the eigenvalues of
adg : N = N are positive.

Let N, A, 5 be the connected and simply connected Lie groups whose Lie
algebras are AV, A, S, respectively. Then S = NA is a semidirect product of

N and A = RT. We consider a second order degenerate elliptic left-invariant.

operator

m
L= 3 ay¥i¥;+Y,
i,j=0

on S such that Yo Hand¥i(e),..

Y (e) € N. 1t follows from elementary
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linear algebra that for agg s 0, L can be written in the form

m
(1.1) L=ap(H+Y)2+ Y ¥ +Y,

i=1
where Yj,...,Y) are left-invariant vector fields on S such that
Yi{e), ..., Yn{(e) € N. We may assume agg = 1.

The decomposition of § into a semidirect product of the maximal nilpo-
tent normal subgroup N and A = R* is not unique, i.e. there is no canonical
choice of A. We put A = exp A’ with A’ = lin(H + ¥p). Clearly the real
parts of the eigenvalues of ady v, are again strictly positive,

Decomposing s € S as s = za, 2 € N, a = exp[(loga}{(Hd +Yp)], we have

S=NexpA'=NA

and for some v,

m
(1.2) L= (00,)’ — 7a8a + > _ Ba(Bi)? + 8a(B),

i=1
where &, = Adexp(loga(H+Yy)) and B, By, ..., By, are left-invariant vector
fields on V. If o < 0 then all the bounded harmomc functions are constant.
This is a consequence of a result in [BR] (¢f. [DH1]). Thus for the rest of
the paper we assume v > 0.

Let 'H be the space of bounded harmonic functions. Functions F € H

and f € L™(N) are in a one-one correspondence established by the Poisson
integral

F(s) = | §(s - s)v(e) da,
N
where z — s = denotes the action of S on N = §/A.

v is a smooth, bounded positive function with { v(z) dz = 1. This cor-
respondence, i.e. the existence of v, follows from a theorem due to A. Raugi
[R] (Theorems 8.4 and 9.2) applied to the semigroup {u:}s»0 of proba-
bility measures with the infinitesimal generator I (see [D1]). Smoothness,
boundedness and positivity of v are consequences of the Harnack inequality
(for the details cf. Theorem 3.15 of [D1], where the above properties are
proved in the case of a diagonal action of A, but the proofs clearly general-
ize.)

Since [R] deals with the Poisson integrals for a general Lie group and
functions harmonic with respect to a probability measure, the proof of the
existence of the Poisson kernel in that generality is long and technical. In
our case it is much eagier. We include here the main steps (of the classi-
cal proof [R]) deriving as a by-product the formula (1. 12) which we need
later.
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(1.3) THEOREM. There is a smooth, bounded, positive function v with
{yv(z)dz =1 such that the integral

(L.4) F(s)= S f(s- 2)u(z) de,
N

f € L®(N),

gives a one-one correspondence between f € L% (N) and L-harmonic func-
tions F on §.

Proof. We fix ¢ > 0 and consider the random walk S (w) starting at
e with law u = iy, where fi(A) = p(A™1). Let ¥;, = 2, (w) an(w), zo(w) €
N, an{w) € 4, n > 1, be arandom variable with values in § and distribution
law . Then

St{w) = (W) (W) ... Zn(w)on(w)
= &1 (W)ap(w)® @) | gy (w)@han1 @) g (w) L an(w),
where 2(w)**) = a(w)z(w)a(w)~ . To shorten the notation we omit w. We
have
m(SE) = @y wd* ... glLte-1

where 7 : § — N is given by w(za) = z, 2 € N, a € A. We are going to
prove that

lim (S} (w)) = Z{(w)

T b OO
exists a.e. and the distribution law of Z is precisely the Poisson kernel
P(z)dz we are looking for.

Let o be a riemannian left-invariant distance on N. It is enough to show

that

(1.5) limsup g{xﬁ{!;‘l'““)l/“
MN—+OC

= limsup p((z125* ... 22t "1) 7L graft 220 <1 ae.
n-— 00

We have

9($$u1-}:'ia") < |Ada,...an lo(zna),

where [|Ad,| is the norm of the linear transformation Ad, for the scalar
product corresponding to g. So, if we prove

(1.6) lim |Ada, .0, V" <1 ae
-0
and
(1.7) limsup o(@np1)™ <1 ae,
n—00

~(1.5) will follow. For (1.7) we refer to [R] (p. 69). It follows from the fact
that p(m(s))} is u-integrable. To prove (1.6) we use the following simple fact.
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LeMMA [R]. Let {Qn}n>1 be a sequence of upper triangular d x d matri-
ces. If the diagonal elements ¢, i = 1,...,d, satisfy

lm |gf... i =¢">0 and limsup||Q.|"" <1,
TLr—r OO

T—r 00
then M, oo [[Q1 . . Qn”l/n erists and 18 equal to SUPfi=,....d} qt.
Therefore what we have to verify is

(1.8) 0 < nli—{réo /n)RAzloglanan) 1, o

for all A;, and that

(1.9) limsup [|Ad,, ¥ <1 ae.
Nn—+00

Just as (1.7) formula (1.9) follows from the fact that |Ad,|| is y-integrable.
(1.8) is equivalent to

.1
{1.10) 00 < nl}_}ngo HERAJ loglay ... ap} <0 ae.

logay,logag, ... is a sequence of identically distributed independent random
variables with values in R. By the strong law of large numbers,

On) = S log a(s) dps).
g

L1
nlg.téo - log(ay ...

But

(1.11) Slog a(s) du(s) = SlogadsrrAp.(a),

) A
where 74 (xa) = ais the canonical homomorphism 4 : § — §/N = A. Since
Taps is the gaussian semigroup with the infinitesimal generator (ad,)? —
700, the integral in (1.11) is easily computable and when v > 0,

S logadrap(a) <0.
A

But R\; > 0 s0 (1.10) follows. Now, as in [R], [D1] notice that

v

1 % Vi = Unaped
where v, is the distribution law of 7(S,(w)). Therefore if
(1.12) = lim v,

T+ 00

then [, * ¥ = v, which shows that the Poisson integrals against v are
L-harmonic. For the regularity properties of v see [D1] (Theorem 3.15) and
for the one-one correspondence see [R] (Thecrem 8.4 for the u-harmonic
case or e.g. [DH1] (Theorem 3.8) in the case of a differential operator).
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2. Probabilistic lemmas. Let b(:) be the Brownian motion on R start-
ing from  and normalized so that

b(t)) =
Let F, be the o-field generated by (5(s) € [a,b]), s < t, a,b € R, Let
(2.0) a(t) = b(t) — vt and aft) = 2,

Let d > 0. For 0 < s < t < oo we define the following Brownian random
variables:

e—yz/(4t) dy'

Aqfs,t) = §a(u‘)d du,

&

Aq = Aq(0,00),

Afs, 1) = 81;13;&1(1;), A = A(0, 00),
As, t) = srﬁn&gta(u).
In [U] Urbanik has shown how his theory of analytic stochastic processes

yields the theorem which follows. We present a direct proof which seems to
be simpler.

(2.1) THEOREM., Let y € R be the starting point of the Brownian motion
b(-). We have

oo d
(22) Ey f{Ad) = cgye™ § floyo™ exp (—%) %U.

Proof. By scaling the Brownian motion and changing the variable, we
see that it suffices to prove (2.2) for d = 2.

First we notice that -

N B OR CR AT
Let

Wir) = () 2=/
Then

(02 + 5220 witr) = it

This, by (2.3), implies that for w € C°°(R") which together with all its
derivatives is bounded and vanishes fast enough at oo, and for

ulr) = 14 | Walrju(t)dt,
D
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we have
(c’i’f - —:—3,») u(r) = rett S BWi(r)w(t) dt = —r~t1 S We(r)w'(t) dt.
0 0
Since also
T dt
— ~(r4-1)72 —1/{4t) 2y B
u(r) §, t € w(r“t) .
we have
T dt
lir%u(r) = w(0) S et 1)/2g~1/(48) -
Pt 5
Let
[=e]
up(r) = rott S Wi(r)e™ dt.
0
Then
(a2~ -’ja,.)m(r) — ua(r)
or

((r8,)? — (5 + D) (r8,))ur(r) = ArPus(r).

‘We substitute
va(z) = cuar(e®), where ¢t o= S
0

(et 1)/2,-1/(at) B
{

Hence
(2.4} (Bg —(k+1)0; — Ae® Yy (z) =0
and

0wy £1,

lim va(z)=1, Hm vy(z)=0.
Tt 00 L0 .

Let {T}}i»0 be the semigroup of operators on Ceo(R) generated by the
Schrédinger operator
Hy =02 — 40y — 2e* and y=x+ 1.

By the Feynman-~Kac formula, we have

b
Ty f(z) = Eq exp [—)\ S PO ds]f(b(t) — 4t).
0
We put f = 1 and ¢ == co. Then the function

Pa(z) = Egexp [_ 3 OSO (2(b(t)=712) ds}
0
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is harmonic with respect to H) and

0<¢x<1,  lim ¢a(z)=1, lim $xr(z)=0.

Therefore v, (z) = ¢x(z), which completes the proof of Theorem (2.1).
(2.5) COROLLARY. For every ! € R and T' such that vT > |I|,

(2.6) PD[OSC A=) gy ~, edt]
T

d 273/ 2y 2
< S 2 AT (TR /4T
= (cdﬂ’ y + )w 2T% — ,}26 ;

Cay being the same constant as in (2.2).

Procof By the Markov property and (2.2) we have

PD[ S et BH)~7t) gz edl]
T
- S 1 e—(z+7T)2/(4T)Pm[ S RICORORN ed"] e
e VarT )
o oo
1 2 edm do
= —(@+yT)* /(4T) vz —v/d
Cd,y S € e les exp(__) -
Zeo V47T GS,: 2/ o
o0 o0
! 2 1\ do
= —{e+yT)*/(4T) ey /d
= Cdy S [+ o exp(——) a7
— oo vV 4’II'T ed(ls—:c) dzﬂ' o
But
o0
cary | 0'"’”8XP(~%) 9 < {Gd,v(d/’r)/f“”/”‘ if € > 1,
3 d*a) o 1 ife<1.
Therefore
Po[ | 00t > ] < I 4 1y,
T
where
I]_ = S 1 e"'(m+'TT)2/(4T) dfu"
; VART
|
Iy = S e—(:c+'TT)2/(4T)cdﬂ _‘_i“emq,(;_m) da.
e VT y
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Applying to Ij the inequality

o

(2.7) fev/tay < 2ot an,
we obtain
e 0]
(2.8) § (4r) Y2 =14 gy < __;/_—T___e—(mm’/(m,
(H44T)//T vt £7)
Analogously for Iz, we have
d -y : 1 ~(z—yT)2 /(4T
(29) I2=Cd,~f"e v S e \ETY */{ )dI
Y oo VART
d T 1 2
=c _e""‘fl ———eF /4d
7y S i H
(—4+4T)/VT
< cgy—e __ VT = (1T /(4T)
Ty (=T
d VT

DN L N TRt )
Ty vE(-14AT)
(2.8) and (2.9} together give (2.6).
(2.10) CorROLLARY. Let x € R and v, di, dg, d3 be positive numbers.
Then there is C = C(n,dy,da, d3, x) such that for every t > 1,

n —yit /4
" < Ce™T 5=,
|: Adl (t, Oo)dz + Adl (t, Oo)da } = e

Proof. We proceed as in the proof of Corollary (2.5). Adjusting n we
may assume x = 0. By the Markov property and (2.2),

E, exp

n
Fo exp ( Adl (t, O'O)dg + Adl (ta Oo)da )

"
= EoBag) exp ("T—“‘dﬁ‘)
Ag: +Ag

o0
= ~(m+71)"/(48) gy
= Cd,y S ——E €
e Vit

o bz dor
~v/d __............._1.7_-_—- _6 _ = f,
Xga 1exp( O’d2+od8)exP( d%a) = de =1

Now ‘
I<C(hi+1),
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where
0 0
L -lerr? PR
I = e A +rt} [ (48) 4y dr = {e— dm
! S Vamt _S 1/41rt
o0
= | 1 Gt/ gy

o VAt

Indeed, if z < 0, we estimate

oo da:
—y/ds n
Sa v/ exp (—————ad2+od3)exp( d2 ) — dx

0
o0

) o® 4 g%

and if ¢ > 0, then

o0

vz —v/d1 €
e Sa exp( Uda+gds)exl’( dfa)

0

moo —~y/d do
<e Sa T exp| ——=5— | — dz
5 dla o

The conclusion now follows from inequality (2.7).
Let ‘
(2.11) ¢ = min{t : a(t) = A}.

(2.12) LemMa. There is a ¢ > 0 such that
(2.13) Polk < ¢ <k+1} <ce 58

Proof. Since 4 > 0 Pg-almost surely,
Po{k<{<k+1} < PO{kSI?Sakx+1 b(t) = vk}

< 2Po{blk +1) > vk}

1 T etk

Var(k +1) %
which gives (2.13).

Given s > 0, we have

(2.14) Po{A(s,s+1) = n+ Xs,5 + 1)} < e~ (=4

(2.15) LEMMA. For every D there is a constant cp such that for every
n >0,
(2.16) Po{A(¢, ¢+ 1) — M(,C +1) > n} < epe™P.

< S o~ exp (________"7___) %‘1 dz < oo,
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Proof We have
Po{A((, ¢+ 1) = A((, ¢+ 1) = n}
<D Po{A L+ D) = MG CH D) ZnAk S (< k+1}
k

<Y Po{A(k,k+2) = Ak, k+2) = n}?Po{k < { < k4 1}/,
k

Now (2.14) implies (2.16).
We write
Bret o ef < B gt
(2.17) THEOREM. Given d, D there is ¢p such that

(2.18) Po{Ayde_‘i ~e"} < epe I,
Proof. We have to prove that for n > 1,

(2.19) Po{AY? > e"et} < cpe=Pn

and

(2.20) Polet > e""lA;/d} < cpePm,

For (2.19) we notice that A > 0 Pg-almost surely. Therefore, since
et > A4(0,n%)/n?,
we have
Po{AY? > e”et} < Po{Aa(n?, 00) = e¥/2}

2 1t 2
+ Py Ad(O,n ) > E?L;Ad(ﬂ,n ) .

The second set in the above inequality is empty for n > 3. For the first one

we can apply Corollary (2.5) because yn? > n if n is large enough. Hence
 Po{Aafn?,00) > et} < cpePn.
To prove (2.20) we write
Pole? > et 4l
< Rttt 2 A k) AR S Sh 4]

< 3 PoleAtR ) > v 43k, ks + 1)) Polk < ¢ < K+ 112
k>0
But

P [BA("" k+1} > n— 1A1/d(k,k+ 1)]
< PolAlk,k+1) 2 n— 14+ Ak k+1)] < e,
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For a stopping time 7 we denote the shift transformation C(0,00) —
C(U, OO) by 9-,—, ie. (QTUJ)(S) = w(q" + 3)'

(2.21) THEOREM. Given dy, k; let 7 be the stopping time defined by
Ag, (0,7) = etk
and
Dipins = (AP v bt f AOR) o cr p MEOrRLO0141)  ghay,
Then
(2.22) Py (2, ko k) < cpe?Xe™VR1 g Plka—hal=Dlka—ks|
Proof. If Ay, (0,7) = 2e% and Ag, ~ e®1, then Ay, (7,00) > Letihs,
Hence
Pol2 haks) S Py{r < 00 A 91/ di ghr~ka—1,4(8r8) < Ag, (7, 00)1/”'1
A A(B,2) ~ A(¢(Bra), ¢(Ora) + 1) > by — s — 1}
= By lfr<oc}@rlayg,
where
Qo= {27 hebrhetef < AYB A AN CH+1) 2y — kg — 1}
Moreover, Pf(ﬂo)_ = Po(f2) for every £. Therefore by the strong Markoy
property
EX1{1'<00}9‘1‘1!30 = Px{T < OO}P(](QQ)
and so
Pl kg k) < PX{A;{dl > e? 2} Po(12p).
Now (2.22) follows from (2.2), Lemma (2.15) and Theorem (2.17).

3. Estimates of the evolution kernels I. Let N be a nilpotent Lie
group with the Lie algebra A, Assume that we have a continuous family 6;,
t > 0, of automorphisms of A" and a generating set {By,..., B} of N. We
consider the operator

m
(3.1) L=""0,(B;)* + 0.(B) ~ &,
j=1
and its fundamental solution
P(s,t,a) = P(s,8)(s), 0<s<t<oo, z€N.
P is a non-negative function on IV x {(s,%) : 0 < s < t} such that

S P(s,t,z}dx=1
N
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and for s <u <t
(3.2) P(s,t) = P(s,u) * P(u,t).
Moreover, if ¢ € C° (N}, then

F(z,t) = ¢ * P(s,t)(z)

is the solution of the Dirichlet problem on N x (s, 00) with the boundary
data ¢, i.e.

LF=0 in N x (s, c0), }in%F(m,t) = ¢(z).

For existence of P see e.g. [DH2], where the proofs from ([S], {SV]) are
adapted to group-invariant operators of the form (3.1}. For s < t let

(3.3) £(s,8) = sup ||6ullnv—n,
su<t

(3.4) n(s,t) = sup (67 [won-
aLust

In this section we give an estimate of the L°®-norm of X7 P(s,1) in terms
of £(s, ) and n(s, t). It can be easily derived from the arguments in the proof
of Theorem 4.3 in [DH2]. However, since the role of 7(s,t) has not been
made explicit encugh there, we think that we should include here the main
steps of the proof estimating the constants important for the rest of this
paper.

(3.5) THEOREM. For every I = (i1,...,4x) and ¢ > 0, there are constants
C, M > 0 such that

1XTP(s, )z < COL+E(s, 1) + (s, )Y if c<t—sand [ XT]| <1,

Proof. Let I = Uy x (s,t), where Up is an open set in N with compact
closure and let

Lo =Y 6:(B;)
i=1

{considered as an operator on U). Let ¢ € C°(U). Proceeding as in the
proof of Theorem 5.3 in [DH2), for a constant C' = C{¢, U), we obtain

(3.6) |{Lo(du), )| < C(L+E(s,1))[lullZau),
whenever Lu = 0 in U. Now the Kohn Lemma (0.14) implies that
(3.7) [lull2 < C(1+n(s, 1)) (1 + €05, ) ull 2agery

< 0(1 + "7(3: t) + E(s7t))4‘|u||%3(U)
for a ¢ = C(¢, U, &). Iterating (3.7) we are going to prove by induction that
for every positive integer n there is C = C(¢, U, €, n) such that

(3.8) 6tllee < CA+n(s,t) + &) [ulia).
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Our inductive hypothesis is the following:

H. Let u be a harmonic function on U, i.e. Lu(z,r) = 0 for (z,7) € U,
and let ¢ € O (U) be such that for a positive R, B(3R)supp ¢ C U. Then
there exists C = C(n, R) such that

Iullas < C(L+n(s,t) + (s, DY [ullraqwy-
We write
LA DE 2y 1o < | A2 AP g + (| A2 ME B |,

where Z( /2 and M/ are as in (0.9). Let 1 € C°(U) be a function such

that ¢ = 1 on B(R)supp ¢ and B(R)suppi C U. Hence, since /T(E/Z u is
harmonic on B(R)supp ¢, by the inductive hypothesis and Corollary (0.12),
for a ¢ = ¢(g, n,r) we have

(A 2| 0 < | A AT s + cllu zs
< A" G AT bl
+ A2 LAF, glapull 2 + cljull za.
Since AY/ 2 is harmonic on supp ¢ and
A, o)l e < O |47 %] 2
for v € C2°(U), by the inductive hypothesis, we have
147/ 645 Dpull s < (3 + n(s,8) + &(s, O AT 2
< e(L+n(s,t) + £(5, )" |u] g
and
NA21A, glpulia < o A" pullrs < (14+7(s,8) + £(s, £)) 2" 1] 2.

Thus (3.8) is proved.

Next applying the Sobolev inequality with respect to the z variable to-

gether with (3.8) we see that for every U’ C U’ C U and every I as in (0.22)
there are C' = C(U,U’,I) and M = M(I) such that

(3.9) sup |XTu(z,r)| < O(L+E(s,t) +nls, t)™ [[uls

if | X7 <1
{z,r)EU

Assumg_now that ¢; €t — 8 < ¢; and take U of the form U’ =
where Ul C Up, s < ¢ <t <tand

u(z,r) = f * P(w,r}(z),
Then, in view of (3.9), there is C such that

Ug x (s',1),

w<s <r<t.
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(310)  |XT(f * P(w,7))(e)]
< 0@ +¢ls,0) + (s, 00 ({ | 1£+ Pl )@ dmat) "
sy

< CO+&(s, 1) +nls, )M 2.
Therefore P(w,r) € C®°(N) and
IXEPw, r)izs < C(1+E(s,8) + s, )™
Applying (3.10) to w < &' <ry < (t+ 3)/2 <ry </, we obtain
(3.11) 1X7P(w, r2)l|pe < [P, ri)l|ea | X TP (e, 72)]| 2o
<O +£(s,8) + (s, )M

for, possibly, another M. Of course, the upper bound e; for ¢t — s can be
easily removed because of (3.2).

4. Estimates of the evolution kernels IL Let H be as in (1.0) and

a(t) = b(t) — vt
be as in (2.0). Assume that B, By, ..., Bm € N and By,..., By, generate N/
as a Lie algebra. Let o™ be the automorphism of N defined by

o"(z) = exp(rH)zexp(—rH).
For a fixed ¢ let
t)stbt )2+ &,(B) = ZX2+X
L f=1 g=1

where &, = % For a fixed t, La() is a left-invariant operator on N.
We consider the operator

4.1) Lazzgﬁt Y24 d:(B)—8 on NxRT,

Le. Laf(z,t) = ﬂ(t)f(a:,vf) — & f(z,t). Let Pa(s,t,x), 0<s <t <00, €
N, be the fundamental solution of L. We “dilate” L, in an appropriate
way. Namely, let '

m
(4.2) Ly = o, 8,(B;)? + 0 8:(B) — B,

=1
where r > 0 will be chosen later. Then, clearly,

(43) Ly (foo”) = (Lagf) 0
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Let P7(s,t,z), 0 <3<t < o0, z €N, be the fundamental solution of L.
In view of (4.3},

(4.4) PI{(s,t,z) = |det o} | Pa(s,t,0"(z))
and
|detoT| = e™® where Q= Z RA;.
J

First we estimate F]. We put
(4.5) 6, = o, " Py.
By (0.23) we have

(4.6) LEMMA. There exist C,dy,da > 0 such that for every u € R,
(4.7) lo¥lln—n < Cle® + e®¥).

Now we choose r in (4.2). Let dy, dy be as above. Let
(48) A= A(T1,Ta) = Ag (T1, To)Y/% + Ay (T1, Tp) M/ 4

+ Apa, (T1, To) Y/ P0) o Agy, (Ty, Ty) Y/ (2403,
‘We put
r=r(Ty,Ts) = log A.

Of course, r depends on the trajectory a; also, our Ty and 7% will vary and
consequently so will r. In view of Lemma (4.6) we now have

(4.9) LEMMA. There are c,dy,dy > 0 such that
[8ellar—ar < C((* AT, To) ™)™ + (672 ATy, Th)) ™),
187 lv—n < O P AT, Ta) 1) ™% + (7 ATy, Ty)) ).
We start with the following integral estimate for Py.

(4.10) THEOREM. There is C such that for every a, every Ty, Ty and
EVEWTI <3 <tST2:

(4.11) {PI(s,t,2)e2® dz < C,
where r = r(Ty,Ty).

Proof. As in [H] we take a non-negative, not identically zero function
¢ € C.(N) and we notice that

Lo p(z) < o(z) < co* dlz)

for a ¢ = ¢(¢). Moreover, |X;0 * ¢(z)| and | X;X;0 * ¢(x)| are bounded
functions on N. For fixed s we write

(Fa(s,t),€%) < C(Pi(s,1),e¢*?)
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and

a
it

d L]
(Pi(s,1),€%%) = <EP§(s,t%8"*¢>= (Lo Pa(s: 1), )

= (Pr(s,t), (Lggn)*e®) < e(l10:]] + 16:l1) (P (5, 8), e2%).

Therefore there are constants ¢1, ¢z > 0 such that
¢

(PL(5,1), %) < cuexp (2 | (16]] + 6.11%) du).
a8
Now (4.11) follows from (4.8) and Lemma (4.9).

(4.12) COROLLARY. Given a neighborhoodU of e in N, there are C, > 0
such that for every T1, Ty, every a and every Ty < s <t < T,

n
(4}.3) L§c P&(S: t, 9:) dz < Oexp (_Adl + Adz )’
where A = A(Ty,T%).
Proof. By (4.4),

S Pa(s,t,x)dz = S e TCP(s,t, 07T (x))dz = S
oo Ue (U

Pl(s,t,z)dz.

Since o~ is an automorphism of N, by (4.7) we have

(4.14) o(z) < |lollle(c™"(2)) < C(A_‘il + A%) (0" ().
Therefore
(4.15) oly) z E‘E_ﬂ

for y € o~ (U*). So, in view of (4£.11),

n
S P:(S,t, y) exp (— Ad'1 + Ad2> dy S G
= (U°)

and the conclusion follows.

We need the following simple lernma with almost the same proof as
Lemma (0.3). '

(4.16) LEMMA. For a constant C = C(I, 0) we have

1/2
X7 Flizaen € 50 I FIEZ N1 e
|J1<]22|
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Indeed,
X7 fl20eey < §(XTF(2)) - (X7 f(2))e™ dr
N

< 3 o §IX75(@) - f@)e? ) dz

[FIg]2f N
< > el X flleeliflloigee
jri<lan

Let now Ty = 0, T» = oo, r = (0,00} and 8; be defined by (4.5).

(4.17) LEMMA. Let 3 : 2 - Rt be any function which o every tra-
jectory a assigns a non-negative number B(a). For every multi-index I =
(%1,... %), there are C, M > Q such that for every trajectory a, everyz € N
and every t > B(a) + 1, if | X1l <1 then

(418)  |XTPI(0,t,2)e?™| < C(1+£(8,8+ 1) + (B, 6+ 1)M.

Proof. Let X7 be the right-invariant differential operator corresponding
to the left-invariant operator X!, Since by Theorem (4.10),

1 Pa (8 ) lizi(eey < C
for every a, every t > A(a) + 1 and every 0 < s < ¢, we have
| X7 P10, 2)e2™| < C| X PL(0, 8+ 1,0 3o | PL (B + 1,8, -} | 1 eny
< G| XTPL(0,8+1,)¢% 0| oo,
But again, in view of {2.2) and Theorem (4.10),
| X7 PZ(0,8+1, )% pec
< CIPL(0,5, Yz | XTPL(B, 8 +1, )€ o
< CIIXTP(8,6+1, )|z
< CIPL(B,B+1/2, )| p2(e2a) | X PL(B + 1/2, 8+ 1, ) || na(eo)-
Now by Lemma (4.16) and Theorem. (4.10),
IPE(8, 8 +1/2, M z2eae) | XT P (B +1/2, B+ 1, )| p2(era)

<|BLBB+ 12 0E2 S IXTPIB+1/2,6+ 1, )|,
J1<27|

which, together with Theorem (3.5), implies (4.18).
Now we are going to prove the existence of the limit

(4.19) t}ir& Pa(0,t,2) = Pa(0, 00, )

and to estimate P, (0, 00) and its derivatives.
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(4.20) THEOREM. For every I = (i3,...,ix) there are constants Cy, Ca,
My, My such that for every a,

|XIPa(0,oo,-'B)| < Cle_Q]-OEA(A“dl + A“dz)M; (1+ (eA(ﬁ=ﬁ+1)A—1)ct1
+ (MBBHL) g=1yda | (o= NBH+H) gy
4 (e MBEHL) 4)d2) M2 g =)/ (Ca(A%2 +AT2))
where A = A(0,00) and || X*|| < 1.
Proof. Let X7 be the right-invariant differential operator corresponding
to X{. Then
w(s, t,z) = | X1 Pa(0, 5)(z) — X? Pa(0, t)(z)|

< | | X7 P(0,8,2) = X Pa(0, 5, my~")| Pa(s, t,) dy.
N

If a is fixed, in view of (4.4) and (4.18), Xip, (0, 8) is bounded independently
of s > f(a) + 1. Given a compact set K, there is U, such that for every
5> f(a) + 1, every y € Ua and every z € K,

| X1 P,(0,5,2) — X Paf0,5,2y7%)| <&
Therefore

W(S,t, .I,‘) S £+ 2”561-130(0: S)HL"“ S Pa(sa tv y) dy
Uc

a

But in view of Corollary (4.12) applied to Ti = s, T = oo,

n(a)
Lgc Pa(s,t,y)dy < Cexp (— A5, 00 + A(s,oo)dz)’
and so
= n{a)
w(s,t,z) < €+ 2“XIPa(Os 8)|| Lo exp (_ A(s, 00y i.A(s, 00)%2 )

Consequently, limsup, , ., (s, t,z) < ¢ for € K. This proves the
existence of X! Pa(0,00,%). Also we see that X'Pa(0,t,z) converges to
XTP,(0,00,2) as t — oo, uniformly on compact sets. Therefore, in view

of Lemma (4.17), for A = A(0,00) we have
(4.21) |X1Pa(07001m)| = tlfglc iXIP.,(U, t,)]
< lim e~ 98 4|57 XIPT(0, ¢, 07" (z)]
{00

< Qe Qe || M
% (L+£(8, B+ 1) +1(8, B+ 1)) Meem2l7 "),
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Therefore
|XIP°(0’OO! z)| < CIEWQIDSA(A_dl + A—dz)Ml
% (1+€(B, 8+ 1) + (B, 8 + 1))Mea(=)/ (Ca(a® +a%2))

and the conclusion follows by Lemma (4.9).

5. Estimation of the Poisson kernel. The main goal of this section
is to obtain pointwise estimates for the Poisson kernel and its derivatives in
terms of the norm defined by (0.20).

(5.1) TurOREM. {a) There are constants Cy,C2 such that
Cy(1+|2))~ 97 S viz) € Co{l+ |2))~%"7, zeN.
(b) For I = (iy,..., i) and all X' = XV X where X\ € V¥,
with || X*|| < 1, there are constants C such that
[XTv(@)] < C(L+ |a) =%~ log(2 + [z])] Vo,

where
k

2l =3 dgds,  dy =R\,
j=1

k

2o = 3 i;D;

J=1
Proof Let vX be the measure defined by

FlexpxH) = S flz) v*(z) dz.
N

Dj = dimV)\j -1

Then, in view of (1.4),

(5.2) vX = |det o ¥ |v (o™ %(z)).
The crucial estimates are:

(5.3) |XTvX(z)| < Ce™  for || =1,
(5.4) vX(z) = C1e"™  for |z} = 1.

Then the conclusion is obtained via a homogeneity argument. Indeed, for
y in N by (0.21) there is exactly one x such that e™% = |y| and y =
oX(z) with |z| = 1. '
We then apply (0.23) to obtain for || X7 < 1,
(X u(y)| = |detoX] - |o¥ X TvX(y)| < |deto¥|M(x) sup [VEuX(y)|
¥7)<t
< Cldet o | M (x)eX,
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where
k
M(x) = exp (3 isldyx + Dlog(2 + )],
F=1

with d; = RA; and Dj =dim V), — 1. Hence, substituting —y = log |y| we
obtain (b).

For the lower bound for v we proceed precisely in the same way using
{5.4) and the fact that v > 0.

(5.3) for I = 0 and (5.4) were proved in [D2] for ady diagonal. The proof
relied heavily on boundary Harnack inequalities due to Ancona [A], [D2]. It
tarns out that the space § = NA considered here fits in the framework of
Ancona theory precisely in the same way as it did for the diagonal action of
ady (cf. [D3]). All the proofs given in [D2] adapt easily to our situation and
lead to (5.3) for I = 0 and (5.4). Since Ancona’s method is based heavily
on potential theory nothing of that works for the derivatives. Therefore, to
estimate them we use the evolution P,(s,t,z). We prove that

(5.5) XTuX(z) = By X7 Pa(0, 00, z)

and estimate the right side of (5.5) for |z| > 1. This is done in the rest of
this chapter.

Let dg = 2d;, dg = 2dg, k = (kq, k2, ks), 7 be the stopping time defined
in Theorem (2.21), and ¢ in (2.11). Let

Qup = {21 AY" ~ M A ALY <&M for j £ pAAB2) ~ ks
A A(((E-a),((Ora) + 1) ~ ka}
for p=1,2,3,4. Then by (2.22),
(5.6) P (2 p) < cpetXe~ kg™ Plki—kal=Diki—ks|
(5.7) LEMMA. Given r > 0 there is C = C(r) such that for p(x) > r > 0,
By | X7 Pa(0, 00, )| £ Ce™™.

Proof. Letag f,. Then e* < A < 4e*. Putting o(a) = ((Ora), in
view of (4.21) we have

|XIP&(D: DO,EN
< Cfle-hQ(e—-kidl + e"kidﬂ)lfl

% (1 + e(kg——kl)dl + e(ka'—'kl)di + e(ki"ks)dl + e(kl_ks)dﬂ)M

o(z)
<o (~grmhr )
for every a € §2. Let d = max{d;,ds) and dp = min{d1, da). Cl_early if
k1 > 0, then
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(58) IXIPB_(O, OO,.’L')l < Cl.'e—thMdMa—k1|eMd|k1—kﬂ’
and if k; <0, then
(5.9) | X1Pa(0,00,2)|

—k1@—kad|I| ,Mdlkz—k1| ,Mdlky ~ks] __ol=)
< Che e e exp Creiada

Now we are able to estimate
E,|X7Pa(0,00,8){ = Y _ Exlay | X Pa(0, 00,2)|
k.p
for z such that o(x) > r. In view of (5.13), (5.15), (5.16) we have
ZExlﬂk,p|XIPB(O: oy .’E)l |
k.p
< CD Z e')’xe"k]_Q—’Yk']_e(Md—D)Lkg“kl|‘+‘(Md""DHk1—k3|

k1 20.ke ka,p
+ep Z @YX g—k1Q—kyd|f|—vky
leU,kzqks,P
x glMd=D)lka=k1|+(Md—D)lk1—Fal gy { ”; —).
Cae 160

Hence the conclusion follows.
Let
XU = fu(o—xT).
We have (cf. [T}
7 () (z) = | Pa(0,t, @) dW,(da) = Ey Pa(0,1,3).

On the other hand, mn{4f) tends *weakly to X as £ — oo. Indeed,

§ F) drn (i) (@) = § £ omn(s) di¥(s) = | £ (mw(eXa)) dfin(s)

N "8 g
= S f(exﬁrN(s dﬁt(s) = S f(exm) dyt(m)
) N
- S fleXz) dv(z) = Sf(a:) dvi(z).
N N
Therefore,

(5.10) (f, XTvxy = hm (XTf, mn (X)) = 11m (X‘If,ExPa(O t)}.

In order to prove (5.5) we must pass with £ to infinity, i.e. replace Pa(0,1)

by Pa(0, o0} in (5.10). This is included in the following lemma.
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(5.11) LEMMA. For every f € CP(N\{e}),

tl-i-{rolo(XIf’ ExPa(0,1)) = (f, Ex X7 Pa(0, 00)),
Proof First we prove that for f € C®°

tl_i,n(}o<XIf: By Pa(0; £)) = Ex (f, X7 Pa (0, 00)).

Clea*rly (Xjfa EXP&(OJ t)) = EX (er: P&(O! t))
Since P,(0,?) tends to Pa(0,00) uniformly on compact sets (which is
shown in the proof of Theorem (4.20)}, we have

Jim (X1, Pa(0,8)) = (X7, Pa(0, 00)).
But

(X7 £, Pa(0,8))] < |1 X7 f| oo -
Hence (5.12) follows by the Lebesgue bounded convergence theorem.
Since by Lemma (5.7),

{I£1, Ex| X! Pa(0,00) [} < Ce™|fl1s < o0,
we have
Ey {f, X1 P5(0,00)) = (f, By X T Pa(0,00))
and the conclusion of Lemma (5.11) follows.

Now, (5.10) and Lemma (5.11) imply (5.5), which together with Lemma
(5.14) leads to the estimate (5.3).
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Hardy spaces associated with
some Schrodinger operators

by

JACEK DZIUBANSKI and JACEK ZIENKIEWICZ (Wroctaw)

Abstract. For a Schrédinger operator A = —A + V, where V i3 a nonnegative poly-
nomisal, we define a Hardy HY space associated with A. An atomic characterization of
HY is shown.

1. Introduction. Let A be a Schrddinger operator on R? which has the
form
(1.1) A=-A+V,
where V(z) = 3} gc, apz” is a nonnegative nonzero polynomial on R%,
a=(o,...,00)-

These operators have attracted attention of a number of authors (cf. [Fe],
[HN], [Zg) Recent results of J. Zhong [Z] deal with the Riesz transforms
R; = 32~ A~Y/2. Among other things it is proved in [Z] that H'(R?) is

=
mapped by R; into L*(R?). In general, however, this does not characterize
HY(R%), i.e. the norm || f|| 2 +Z?=1 |R; f|i is not equivalent to the H'(R%)
norm. _

The operator A, however, gives rise to a perhaps more natural notion
of the space HY which is the following. Let {T;}i>0 be the semigroup of
operators generated by —A (e.g. on L*(R%)), Ty(z,y) being their kernels.
We notice that, since ¥V is nonnegative, we have
(12)  0<Ti(e,y) < Bilwy) = @rt) P exp(~lo — o]/ (42)).

Let

(1.3) Mf(z} = sup T3 f(z)|.
t>0

By (1.2), M is of weak type (1, 1). Therefore we may say that a function f
is in the Hardy space H& associated with A4 if

(1.4) I fllzy = [MSFlizs < o0
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