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P A restriction theorem
for the Heisenberg motion group

by

P. K. RATNAKUMAR, RAMA RAWAT
and §. THANGAVELU ({Bangalore)

Abstract. We prove a restriction theorem for the class-1 representations of the Heisen-
berg motion group. This is done using an improvement of the restriction theorem for the
special Hermite projection operators proved in [13]. We also prove a restriction theorem
for the Heisenberg group.

1. Introduction. The inversion formula for the Fourier transform on

B”™ can be written in the form
o

Fo)=Cn | Fron(@nntdA
0

where ) is the Bessel function given by
(@) = (Na]) T a1 (Mal)-
Then for f € LP(R*),1 < p < 2(n+ 1)/(n+ 3), there follows the inequality

[1F* @l < Call Fllp-

From this one gets the Stein—Tomas restriction theorem for the Fourier
transform [11):

| 1f©rd <cizl3,
[gl=1
for f € LP(R*),1 < p £ 2(n + 1)/(n + 3). The restriction theorem finds
applications in the study of Bochner-Riesz means for the Laplacian.
Analogues of the above restriction theorem have been studied in various
set ups. As f+ ¢y are eigenfunctions of the Laplacian 4 on R™, it is natural
to study the LP-L? mapping properties of projection operators associated
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2 P. K. Ratnakumar et al

with eigenfunction expansions. In the case of spherical harmenics and eigen-
function expansions on compact Riemannian manifolds such theorems have
been proved by Sogge in [9] and [10]. In the non-compact set up, restriction
theorems for Hermite and special Hermite projection operators have been
studied by Thangavelu in [13].

Restriction theorems have also been studied in the case of the Heisenberg

group H™. Let

[se]

f=1{Psdr

0
stand for the Strichartz decomposition [12] of f in terms of eigenfunctions
of the sublaplacian £ on H™. In [5] Miiller has studied mapping properties
of Py, Some extensions have been treated in [14] and [15] and the restriction
theorem has been found useful in the study of Bochner—Riesz means for the
sublaplacian [6].

Our aim in this note is to prove a restriction theorem for class-1 rep-
resentations of the Heisenberg motion group. The main theorem should be
compared with the corresponding theorem for the spherical harmonic pro-
jections stated and proved in Sogge [9] in the language of representation
theory. To prove the main theorem we need a restriction theorem for special
Hermite projection operators proved in [13]. We take this opportunity to
present a simpler proof of a crucial estimate used in [13] and also to show
that the restriction theorem is valid in a slightly bigger range of p than es-
tablished in [13]. In the last section we also prove a restriction theorem for
the Heisenberg group by considering individual projections.

For many facts we use regarding the Heisenberg group and special Her-
mite expansions we refer to the monographs [1] and [16] and also to the
paper of Strichartz [12].

2, A restriction theorem for the Heisenberg motion group. Con-
sider the Heisenberg group H™ = C* x R equipped with the group law

(z,)(w,8) = {2+ w,t+ s + L Im(z.W)).

The group U(n) of n x n complex unitary matrices acts on H™ by the
automorphisms -

o(z,t) = (cz,t), oecU(n).

The Heisenberg motion group is then the semi-direct product G = H"« U (n)
which acts on H" in the following way:

(0,2, t)(w,8) = (2 + ow,t + s+ 1 Im (cw.%)).

Functions on H™ can be viewed as right U(n)-invariant functions on the
Heisenberg motion group G. To formulate our restriction theorem for &
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we need to recall a family of class-1 representations of G which have been
studied in [8] and [12].

For each A € R, A # 0 we have an irreducible unitary representation 7y
of H™ which is realised on'L?(R™} and acts by

ma(z, thp(€) = eMterEEHinvlp g 4y,

for ¢ € L*(R™). Up to unitary equivalence these 7 give all the infinite-
dimensional irreducible representations of H™. Let &, o € N?, be the nor-
malised Hermite functions on R™. (For the explicit definition of &, we refer
to [16].) For A # 0 define &) () = | A"/ 4@, (|\*/?z) and let
By 5(2,t) = (ma(z, )&, 85)

be the entry functions of the representation 7. The functions &, g(z) =
(2m)~"/2EL (%, 0} are called the special Hermite functions and it is well
known that {Q—"a g :a, 3 € N*} forms an orthonormal basis for L2(C").

‘We recall some general facts about the class-1 representations. Let N be
a locally compact topological group and Ky be a compact subgroup of N.
Let 7 be an irreducible unitary representation of N on a Hilbert space H.
We say that = is a class-1 representation for the pair (N, Ky) if the space
Hy of Ky-fixed vectors in H, ie. Hy = {v € H: w(k)v = v Yk € Ky}, is
not {0}.

In case (N, Kp) is a Gelfand pair, i.e. if the algebra {f € L(N) :
f(kizks) = f(z) Vki, k2 € Ko, z € N} is commutative with respect to
the usual convolution on N, it is known (see [2]) that for =, H, Hy as above,
dim Hy = 1.

‘We now list a family of class-1 representations for the pair (G, U(n)). For
each A # 0 and k € N, let H} be the Hilbert space for which an orthonormal
basis is given by

{E ,B(z t) o, 3 e N, !6' = k}
and the inner product being :
(F9) =M A" | f(z,008(=, 0) dz
En
The space H" can be characterised as a certain elgenspace of the sublapla-
clan (see Strlchartz [12]). On H} define a representation g of G by
92(‘7: z,t)p(w, 8) = ‘10((03 z,t)” ('w?s))

for ¢ € H} and (w, s) € H™ Then gfq‘ is an irreducible unitary representation
of G. As noticed in [8], the vector

e (z,t) = (2m) ™2 Y (ma(2,0)8), &)
|al=k
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is a U(n)-fixed vector. As (@, U(n)) is a Gelfand pair (see [3]), we conclude
that e} is the unique (up to a scalar multiple) U(n)-fixed vector in H3.

Let f € LY(H™); viewing f as a right U{n)-invariant function on G we
can define the operator

ad(f) = | flz.t)er(o, 2, t) do dz dt
¢
which acts on the Hilbert space M. It is easy to calculate the action of
o) (f) on a function p € H}. In fact, letting
e*(z)= | wloz,0)do
Un)
be the radialisation of ¢,

ey =\ f(z,t)dt
be the inverse Fourier transform of f in the t-variable and
g *x3h(z) = S g(z — w)h(w)e!A 2D Im(z0) g4,
cn
be the A-twisted convolution of g and h we can show that

R (Fplz,t) = €M F x % (2).
It is easy to see that o2 (f) is a bounded operator on Hj. In fact, since
QQ is a unitary operator we have the norm estimate

(%) lod(Nleo < | 1£(2,1) dzdt
H'ﬂ
where we have used | - |0 to denote the operator norm.
When f € L' N L?(H™) we can say more about the operator gp(f). Let
L%~ be the kth Laguerre polynomial of type n — 1 and let
pnlz) = Ly 2)e
be the Laguerre function. Let ¢} (2} = @i (jA|*/22).

PROPOSITION 2.1, For f € L' N LA(H™), op(f) is o Hilbert-Schmidt
operator on 'H,’c‘ and
kl{n —
—T n
128 = or) A e
Here | - |2-denotes the Hilbert—Schmidt norm.

Proof. We calculate the norm of oy (f)p when p = E

ezt = @) 3 (e, 0}, 2)
|p|=k

)) [ 157 %0 o) .

2 5 |8 = k. Since
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is the essentially unique U(n)-invariant function in Hﬁ, the radialisation
e (2) = S E} s(oz,t) do
U(n)

should be a constant multiple of e}(z,t). From the definition of E)

n,p We
infer that E) 2(0,8) =0 for o # f and consequently

Qk.(f) @8 — =0, a#p
When o = J we have
| B2 o(02,0)do = Ae}(z,0)
U(n)
where A is a constant. We evaluate the constant by taking 2 = 0:
Any (37 1) = | doe=1.
lul=k Uin)

This gives

U(Sn) E;‘\’a(orz,O) do = (zw)"ﬂHek (2,0).

It is well known (see [8]) that
ei (2, 1) = (2m) 260 (2)
and consequently

RUNBLaln1) = ™7 1 ()

for || = k. Finally,
le2(NB = 3 Iek(FE aliy

o] =k
and after simplification we obtain

12 (F)2 = MIAI (20)7 | 1F w0 ()2 d.

cn
This proves the proposition.

For 0 < g < o0, let 5, stand for the Schatten—von Neumann class of
operators on H% whose singular numbers belong to £9. In particular, Sy will
denote the class of Hilbert-Schmidt operators. Let | - |, stand for the norm
in §;. We are now ready to state the following restriction theorem for o
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Let L1 (H™) stand for the space of all functions on H™ for which

o= 1 (] 7o) az)” <o
o

TuEOREM 2.1. Let f € LEV(H™), 1 <p < 2(3n+1)/(3n+4), ond let
g < (3n—2)p'/(n+1). Then pp(f) € Sq and
12()l, < OB E k553 )0,

To prove the theorem we need the following restriction theorem for the
special Hermite projections. For functions f on € let

Frouz) = | flz—w)elNED g (w) dw
C’n
which is called the fwisted convolution of f with @y, We need
PRroPOSITION 2.2. Let f € LP(C") and 1 < p < 2(3n+1)/(3n+4). Then
If % @rllz < CEmH/P=Y2=12) 7L,

We postpone the proof of this proposition to the next section. Assuming
it for a moment we will prove the theorem. From equation () we have

Vo (Dloe < NAlla,0)-
Assuming A > 0 for definiteness we see that
F (2 = AT X ae(M22)
where
) = FATVR)
Applying the proposition we get
£ %3 @hllz < CIAPG/P=H/2n(/p=1/2=3 /3 £
< G|A|ﬂ(1/p—~1/2)kn(lfxa“1/2)—1/2||f“(p,1)’
Using this estimate in Proposition 2.1 we get
e} (H)lz < CIN™PE> ) fll o).
We pretend as if Proposition 2.2 is true at the end point po =
2(3n + 1)/(3n + 4). (A slight modification required is left to the reader.)
ThlS gives
n{dnf4 _n{3n—2
Lo (la < CIAFERE K355 | £l 1)
Appealing to the non-commutative interpolation theorem of Peetre—Sparr [
we abtain for 1 £ p < 2(3'n, +1)/(3n + 4),

|q < G')\I zésn+159k 2§Sn+1j‘ ”.f”{p 1)

A restriction theorem 7

where p, ¢ and ¢ are related by
1 4 0= 2(3n+1) 1

g 2 T 3—2 p

Simplifying we see that g = (3n — 2)p'/(3n + 1), thus completing the proof
of the theorem.

3. Special Hermite projection operators. In this section we prove
Proposition 2.2. By the special Hermite expansion we mean the series

F&)=2m)™ Y f X ou(2)
k=0

which converges in L? norm for f € L?(C"). The above is the compact form
of the expansion in terms of the special Hermite functions, namely

F(2) =33 (fiap)®ap.
a g

Summability and multipliers for the above expansions have been studied
in [13]. A crucial ingredient for proving summability results is the LP-L?
restriction theorem stated in Proposition 2.2.

The proposition was proved in [13] for the slightly smaller range 1 < p <
2n/(n+1). The main idea of the proof is to embed the operator f —+ f X @3
into an analytic family of operators, get estimates at the end points and then
appeal to Stein’s analytic interpolation theorem. The analytic family used
for this purpose is the one given by twisted convolution with the Laguerre
function
Ik + 1)+

vi(z) = I(k+c+1)
Here these functions can be defined even for complex ¢ with Reae > —1. In
[13] it was shown that g (z) are bounded uniformly in k and z provided
Rea > 0. In the following proposition we show that the same is true as long
as Rea > —1/3.

1 L (o2 /26,

ProrosITION 3.1. Let a = o+ir with —1 < o < n. Then with a constant
C independent of k we have

sup [4£(2)| < C(1 +|r[)*/3
z
provided o > —1/3.

Proof. This proposition was proved in {13] for ¢ > 0 by expressing
% in terms of Hermite functions and then using estimates for the latter.
Here we use the following formula which connects Laguerre polynomials of
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different types:

Tk+p+v+1)
T (k+u+1)

From the above formula we have

Yi(z) = e 11/—13(?—{0!11 1/3) S —1/3(1 )a—2/3w’:1/3(\/§z)e—-(l—s)|z|2/4 ds

() = s*(1 — 8)* "1 LE(ts) ds.

Ql..d'nl—‘

for o > —1/3 and it is clear that the above can be defined even for complex
o provided Rea > —1/3.
Using Stirling’s formula for the Gamma function we can show that
Tla+l)
Tla+1/3)
For the Laguerre functions 9 (z) various L? estimates are known (see Mar-
kett [4]). From the Lemma of [4] we can infer that

sup v () < €

< C(1L+ |3

where C is independent of k. This completes the proof of the proposition.

Once we have the proposition we look at the analytic family of operators
o —1/3 1/3
Bf = f oy AR,

Then by interpolating between the cases Rea > 0 and Rea = 1 we get the
desired result. For details we refer to [13].

As we have already mentioned the restriction theorems are useful in the
study of Bochner—Riesz means. Recall that

2% +n\’
spr=n Y (1-552) £

are called the Bochner—Riesz means of order § > 0 associated with the
special Hermite expansions. Using Proposition 2.2 we can prove

TueoreM 3.1, Let 1 < p < 2(3n + 1)/(3n + 4) and 6§ > §(p) =
n(1/p—1/2) —1/2. Then S§f are uniformly bounded on LP(C").

The theorem was proved in [13] for the smaller range 1 < p < 2n/(n+1).
The same proof yields the above theorem in view of Proposition 2.2.

In the case of radial functions the estimate of the proposition remains
true in the bigger range 1 < p < 4n/(2n+1). This has been observed in [13].
Based on that it was conjectured that the same is true for all functions. In
what follows we show that the proposition is not true above a certain value
of p. More precisely, we have the following theorem:

A restriction theorem 9

THEOREM 3.2. The estimates of Proposition 2.2 are not valid for p >
2(n+1)/(n+2).

Proof The proof is by contradiction. Assume that the estimate
(%) I % prlla < CRM/PmHRD2) £,
is valid in the range 4/3 < p < 4n/(2n + 1). Recall that if f is polyradial,

ie., f(Z) = f(|zllv |32|,. ) izn|)> then
Fxpu =Y (g F(w)Poa(w) dw)@m(z)
|| ==k

and the @,,(2) are expressible in terms of Laguerre functions of type 0:

Poa(z) = H w5 (z.v

By taking

e
f(2) = g(lal)e P14, 2= (a,2),
and using the orthogonality properties of the Laguerre functions we get

% pu(z) = ( g g(r) L2 /20 r dr g ) 1 /4,
The estimate (#+) now gives us
|§ 01202 /20 rar| < i1 (§ fgerar)
0 [

Taking supremum over all g € LP(C} with unit norm we get

eo 7
(§ 122myer2p’ar) ™ < cpreioamir
0
From the Lemma of [4] already mentioned we infer that the left-hand side

of the above equation behaves like k/2=1/7 and hence the estimate cannot
be valid unless p < 2(n + 1)/(n+ 2).

4, Heisenberg group revisited. In this last section we briefly re-
call Miiller’s restriction theorem for the Heisenberg group and then prove a
slightly different restriction theorem for individual projections. The spectral
decomposition of a function on H™ is given by

f(z,t) = (2m)~ ”12 S fxep(z, )| A" dA.
k=0 —00

Defining
&)z, 1) = e/ B (2 1)
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we can write the above as

[~} o0
Flot) = @n) " Yk +m) T | fxE(z )" A
k=0 —00
or in & more compact form
fzt)= | Paf(z0)A"dA

where

o
Paflzt)=(2m) "7 ) _(2k+n) T f 2 (2, 8).
k=0
The restriction theorem of Miiller states that

1Pxfll iz 00) € A fllpys 1S <2

Instead of considering all fxe} together we will consider them separately.

So we define

Pk,af(zat) = S .f*eﬁ(zat)i)‘!nd)\

—a

and will see what LP-L? mapping properties these projections possess. Our
result is:

THEOREM 4.1. Let f € LP(H™) and 1 <p < 2(3n+1)/(3n +4). Then
| Profla < Ckn(1/p-1/2)—l/2a(n+1)(1/29—1/2)||pr_

For the proof we need the following simple lemma:

LEMMA 4.1. For f € LP(R) with 1 < p < 2 one has

T . 1/2
(§1Fpan) " < catr 12 g,

Proof. Let x, be the characteristic function of the interval ~a <t < a
s0 that ¥4 (A) = A~!sinal. By Plancherel and Young,

1/2

(§FE)” = o(§If « e e) " < ClLAIL IR

where 1/p+ 1/g ~ 1=1/2. But
g 1
dt) ,

(Szatare )" = (|

which equals a constant times a'~1/2, Since 1/¢— 1= 1/2 —1/p the lemma
follows.

sin at
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Coming to the proof of the theorem we have, by a simple caleulation,

| Frerznamdr = | e a gh(2)A" .

—a —a

Therefore,

a

H S f*eﬂ)q"d)\Hz:O’S S [F2 %5 0p (2) A" dX dz.
—a & —a

In view of Proposition 2.2 a simple calculation shows that

2/
S |7 %3 ‘Pi‘:(z)lz dz < Can(l/p—l/Z)—l)\~3n+2n/p(S]f)\(z)lp dz) P
Cn

Thus

“ § fxeq \/\I”dA“Z < QEEri/p=1/2)-1 CSL |/\|—n+2n/P(Sif)\(z)ipdz)z/jp .

—a

Now applying Minkowski’s integral inequality we get

a

(§ (i @pas) " o)™

Ssdz( § 1A]—n+2ﬂlp'f>«(z)iz dA)p/Z

< ﬁ',11—1'51)/25 dz( (§ |f)\(z)|2d)\)‘u/2
< CamPi2a 22 ([ (2,0 ds dt

where we have used the lerama. Finally,
@
| 1 7= cdiarman|, < crrtimaimmizgeantir sy,
=k

follows.
COROLLARY. Let Q = 2n + 2 be the homogeneous dimension of H™.
Then for f € LP(H™) and 1 < p < 2(3n + 1)/(3n + 4) we have
,2/2 '

H { f*e%lxi“d,\\lzsk‘Q/”‘”P‘m)‘”zllf!lp-
—k2/R
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The Minlos lemma for positive-definite
functions on additive subgroups of R™

by

W. BANASZCZYK (Lo6dd)

Abstract. Let H be a real Hilbert space. It is well known that a positive-definite
function ¢ on H is the Fourier transform of a Radon measure on the dual space if (and
only if)  is continuous in the Sazonov topology (resp. the Gross topology) on H. Let G
be an additive subgroup of H and let GSC (resp. G} be the character group endowed
with the topology of uniform convergence on precompact (resp. bounded) subsets of G. It
is proved that if a positive-definite function ¢ on & is continuous in the Gross topology,
then ¢ is the Fourier transform of a Radon measure g on G’Qc; if ¢ is continuous in the
Sazonov topology, 4 can be extended to a Radon measure on GQ

1. Introduction. Every continuous positive-definite function on an LCA
group G is the Fourier transform of a (unique) Raden measure on the char-
acter group (*. This fact, known as the Bochner theorem, has been gener-
alized to certain abelian topological groups which are not locally compact;
a brief survey can be found in [1, Sec. 11], see also Remark 1.5. In particular,
R. A. Minlos [7] proved that the Bochner theorem remains valid if & is a
nuclear locally convex space. In what follows, D is an n-dimensional ellip-
soid in R™ with centre at 0 and principal semiaxes of lengths A1,..., An. By
@ -y we denote the euclidean inner product of vectors 2,y € R”. The proof
of the Minlos theorem is based on the following fact (see Lemma 4.1 in [11,
Ch. VI)):

Lemma 1.1 (R. A. Minlos). Let pu be a probability measure on R* and
the characteristic functional of

Alz) = | eV dp(y),
e

xeR".
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