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STUDIA MATHEMATICA 125 (3) (1997)

On the relation between complex and
real methods of interpolation

by

MIECZYSEAW MASTYLO (Poznan) and
VLADIMIR I. OVCHINNIKOV (Voronezh)

Abstract. We study those compatible couples of Banach spaces for which the com-
plex method interpolation spaces are also described by the K-method of interpolation.
As an application we present counter-examples to Cwikel’s conjecture that all interpo-
lation spaces of a Banach couple are described by the K-method whenever all complex
interpolation spaces have this property.

0. Introduction. One of the most fundamental problems in the theory
of interpolation spaces is the description of all interpclation spaces with re-
spect to a given compatible couple of Banach spaces. In almost all known
cases interpolation spaces are K-monotone or, equivalently, are described by
the K-method, which means that the norms of such spaces depend mono-
tonically on the K-functional of the couple. Moreover, at the early stages of
interpolation theory there was a conjecture that such a description is possi-
ble in general. However, it was soon shown (see, for example, [Cwl], {OD])
that there exist couples for which the complex method interpolation spaces
are not all described by the K-method. For other examples we refer to [M2]
and [MX]. In [Cw2] (see also [CN]) it was conjectured that all interpola-
tion spaces with respect to a Gagliardo complete couple are described by
the K-method whenever all lower complex method interpolation spaces are
K-monotone.

The main purpose of this paper is to present several examples for which
Cwikel’s conjecture fails. In particular, it is shown that interpolation with
respect to the couple X = {loo(loo), loo(€0(27™))} is not described by the K-
method, while the upper complex method interpolation space [X]? coincides

1691 Mothematics Subject Classification: Primary 46M35.

Research supported by KBN-Grant 2 PO3A 050 09.

Research supported in part by the International Science Foundation and Russian
Government Grant JD7100.

[201]



202 M, Mastylo and V. L. Ovchinnikov

with the extreme real interpolation space X o for every 0 < 8 < 1.

We also construct a couple of weighted ssquence Banach lattices with the
Faton property for which all complex interpolation spaces are described by
the K-method but for which there exists an interpolation space which is not
K-monotone. The spaces of this Banach couple can be used as parameters of
the real method. Thus the property of being a counter-example to Cwikel’s
conjecture can be lifted to couples of any nature, for instance to couples of
rearrangement invariant spaces.

Tt is well known (see, for example, [DKO], [BK]) that every interpolation,

space ig described by the K-method if and only if the interpolation orbit of
any element from. the sum of the spaces of the Banach couple coincides with
the corresponding K-orbit. We prove that for a quite large class of couples
of Banach lattices of two-sided sequences the interpolation orbits coincide
with the K -orbits for all elements having a quasi-power K-functional.

We note that the counter-examples to Cwikel’s conjecture were indepen-
dently found by both authors of the paper. We are very grateful to Michael
Cwikel for his kind suggestion which inspired the authors to prepare this
joint paper.

1. Preliminaries and notation. Qur notation and terminology is stan-
dard and we refer to [BL], [BK] and {O2]. For the reader’s convenience, we
give some definitions and results that will be used later.

Let X = {Xp, X1} be a Banach couple and let X be an intermediate
space with respect to X. We denote by X° the closure of A(X) := XoN Xy
in X. The couple X is regular if A(X) is dense in X, 7 =0, 1.

Let X = {Xo, X1} and Y = {Y;, Y1} be couples of Banach spaces and let
L{X,Y) be the Banach space of all linear operators T : X — Y (meaning,
as usual, that T : Xg+ X7 — Yo + Y7 is linear and 7' : X; — ¥; boundedly
for 7 = 0,1) equipped with the norm

”T“'f-—ff = IIlaX{HTllxo_;YU, nTi|X1—'Y1}'

The elements x € Z(X) := Xo + X, and y € Z(Y) are said to be
orbitally equivalent with respect to the couples X and ¥ if there exist linear
operators T : X — Y and §: ¥ — X such that T2 = y and Sy = z. The
couple X is a partial retract of Y if every z € Z(X ) is orbitally equivalent
to some y € £(Y).

Let 4 be any fixed Banach couple and let a € Ay - Ay. We recall (sgg
e.g. [02]) that the interpolation orbit Orb(a, A — X) of a in the couple X
is the Banach space consisting of all elements of the form z = T'a for some
T:A— X, equipped with the norm

(=]l := inf{||T|| z_,% : « = Ta}.
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So the orbital equivalence of z € Z'(X Jandye X (Y) with respect to X
and Y means that z € Orb(y, ¥ — X) and y € Orb(z,X — Y).
The K-functional is defined on Z(X) by

K(t:m;f) = inf{”wU”Xu + t”I]-HX1 tr=%p + wl}a £>0.

The K-orbit of the element 0 # a € Ag + A; in the couple X is the Ba-
nach space KO(a, A — X ) which coincides with the so-called Marcinkiewicz
space X 00 determined by the concave function ¢ = K(-,4; X), ie., the
space of all z € Xy + X7 such that

[zl ,00 == sUp{K (t,2; X) /() : t > 0} < oo.

The Banach spaces X and Y, intermediate with respect to X and ¥
respectively, are said to be relative K-monotone whenever £ € X and y €
Z(Y) with

Kty Y) <K(,z;X)

for all ¢t > 0 imply that y € ¥V, ie,, KO(2, X = ¥) =Y for any z € X.

Obviously, relative K -monotone spaces are relative interpolation spaces.
If all relative interpolation spaces with respect to X and Y are relative
K-monotone, then we say that interpolation is described by the K-method
(or equivalently that X and Y are relative Calderdn couples). f X =Y,
then X is said to be a Calderdn couple.

Clearly, interpolation with respect to X and ¥ is described by the K-
method if and only if for every 0 # z € Xo + X; the inferpolation orbit
Orb(z, X — Y) coincides with the corresponding K-orbit KO(z, X — 7).
Thus X and ¥ are relative Calderén couples provided for any z € (X)
and y € X(Y) satisfying K(t,4;Y) < K(t,z; X) for all ¢ > 0 there exists
an operator T : X — Y such that Tz = y. If there exists a constant ),
independent of z and y, such that ||[T}z_3 < A, then we say that X and
Y are relotive uniform Calderdn couples. If X =Y, then X is said to be a
uniform Calderdn couple.

We remark that X and {ls,le(27™)} are rtelative uniform Calderén
couples for any Banach couple X (see [CP], [Pe]).

Tt is well known that if X and ¥ are relative Calderén couples, then
the Gagliardo (relative) completion ¥ := {Y§, ¥} coincides with ¥ (see
for example [BK]). Recall that if X is an intermediate space with respect
to X then its Gagliardo completion X°¢ is the Banach space of all limits in
Xo 4 X1 of sequences that are bounded in X.

In what follows for a given Banach lattice and weight w we denote by
E(w) the weighted Banach lattice equipped with the natural norm ||z|| gy =
lawl|e.

The couples {I,,1,{27™)}, 1 < p < oo, and {cp, co(27™)} are denoted, as
usual, by I, and g, respectively.
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If F is a Banach lattice of sequences on Z and A is a subset of Z, then
the restriction of E to A is denoted by Ela. If A= {n € Z : n > 0}, we
simply write E' instead of E|4.

We note that the assumption that X is a uniformn Calderén couple is a
rather strong condition. In fact, from the K-divisibility theorem of Brudnyi
and Krugljak [BK] it follows that every interpolation space X with respect
to such a couple is a K-gpace. This means that for some intermediate space
E with respect t0 {loo; oo (27™)} we have X = (Xo, X1) g, where the K-space
Xp = (Xo, X1)p consists of all z € Xo + Xy with {K(2",2; X)}ncz € E.
The norm in X g is defined by

Izl g = I{E (2" 2 X}z

‘When E = lq(2‘“‘9), 1 < g < o0, we recover the Lions—Peetre scale Xg 4.
Note that X§ and X¢ are special cases of K-spaces obtained by choosing
E =ly and E = [,(27™), respectively.

2. Marcinkiewicz spaces constructed by the complex method.
Tn this section we study K-monotone spaces. As an application we present
examples of non-Calderén couples for which upper complex method inter-
polation spaces are Marcinkiewicz spaces. Thus these couples are counter-
examples to Cwikel's conjecture.

Tt should be mentioned that a description of Banach couples for which ev-
ery upper complex method interpolation space is equal to the Marcinkiewicz
space is unknown. Clearly, the couple {loc, loo(27™)} is among such couples,
as well as any of its partial retracts. In [CM1] it is shown that such equalities
for couples of Banach function spaces of the form {E, L}, or for any couple
of weighted spaces {E(wp), E(w1)}, with F satisfying the Fatou property,
imply that those couples are partial retracts of {lca,loo(27")}. As we shall
see below, there exist Calderén couples of sequence lattices whose upper
complex method interpolation spaces are Marcinkiewicz spaces, but which
are not partial retracts of {ls,l(2™™)}.

Let us consider partial retracts of {le,lo(27™)}. For completeness we
include here a new proof of the following theorem on partial retracts of
{loo:doe(27™)}, which was proved in [CM2] with the help of some factoriza-
tion results for weakly compact operators. Qur proof is based on one-sided
interpolation of compact operators by the real method (see [Cw3]).

Recall that a Banach couple is said to be non-trivial if A(X) is not a
closed subspace of Z(X).

THEOREM 1. Let X = {X;, X1} be a non-trivial Banach couple which

is a partial retract of loo = {loo,1o0(2™™)}. Then both Xy and Xy contain
subspaces isomorphic to . '
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Proof. For non-trivial couples {Ag, A1} one has (Ag, A0)f oo #
(Ao, A1)g,cc for any 6 (0,1) (see [CM2)]). Therefore, for any 6 € (0,1)

there exists £ = 2y € Xg,00 \ X and operators §: X — I, and T: 1, — X
satisiying TSz = .

Without loss of generality we suppose that X does not contain a sub-
space isomorphic to . Then by Rosenthal’s result [R], T : lo — Xp is a
weakly compact operator. Thus its restriction to €y is a compact operator
by the well knmown facts that cq has the Dunford-Peitis property and does
not contain a copy of Iy. By applying one-sided interpolation of compact
operators by the real method (see [Cw3]) we find that

T (e0,c0(27" )5 00 = (Ko X1)§ o0
is compact. This implies that

T+ (loos boo(27™)) 8,00 = (X0, X1)5 oo
because

(fos 1o (277))0,00 = Loo(27™) = (€0, €0(27™))g,00 = ((c0, €0(27™))3 00 )"
Interpolation yields
T = 5Tz € (Xp, X1)§ c0-
This contradiction completes the proof.

To state the next result on partial retracts of {le,l00(2™™)} we need
the following class X of couples. A Banach couple X belongs to & if there
exists a constant C' > 0 such that for any s > 0 we can find 2z, € Xy + Xy

satisfying
(1) min{1,¢/s) < K(t, x5 X) < Cmin(1,1/s)
for all ¢ > 0.

We also need another class &y of couples X for which there exist tg > 0
and €' > 0 such that for any z € Xy + X1 and t > ¢,

K(t,u;X) = K(tp, z; X),

and for any & € (0,49] we can find zs € Xo -+ Xy satisfying (1).

Examples of couples in X are I,, & and couples of Lebesgue spaces

{Lp, (R}, L, (R)} with pe # p1. For more examples of couples in X or X
we refer to [M2] and [MX],

The following result is motivated by considerations in [MX], where K-
monotone spaces with respect to the couple loo(X) = {leo(X0),leo(X1)}
were studied. Here, for a Banach space X, loo(X) denotes the Banach space
of X-valued two-sided sequences with the natural norm

| {&n}H] := sup ||zl x-
neZ
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LeMMA 1. Assume {Xg, X1} i3 a Gagliardo complete couple in X. If
{leo{X0), 1o (X1)} and {3, Y1} are relative Colderdn couples, then {Yo, 1}
is a partial retract of {leo, loc(27™)}.

Proof. Fix 0 # y € Y5 +¥1. By the concavity of ¢ = K(-,4;Y), for any
t > 0 we have

sup (2™ min{1,£/2") < o(t) < 2sup @(2™) min(1,£/2™).

nez
Now choose a sequence {z,} in X + X such that
min(1,£/2") < K(t, 2n; X) £ Cmin(1, £/2™)
for any t > 0 and n € Z, where C is a constant depending only on X. Thus

K(t: Y ?) < Sug K(ta Eniln, }?) < K, {snmn}; loc(jf)):
ne

where {s,} = {2¢(2")}. Since loo(X) and ¥ are relative Calderén couples,
there exists an operator

T : {loo(Xo)s loo (X1)} — {¥o, "1}

such that T'({sn2n}) = y. Consider the operator U defined by U{ = {€nn}
for £ = {£n} €l + 1o (27™). By the Gagliardo completeness of X we have

lonllx, = Jim K(t,20;X) /6" <C, nel j=0,1.

Hence U maps the couple {le, leo(27")} boundedly into {le(X0), loo(X1)}-
Now since ¥ and [, are relative Calderén couples (see [CP]) and

Kt {sn}ileo) = SHEK(Q”,y;?) min(1,/2") < K(,4;Y),
n&

there exists an operator S : {¥5,Y1} = {l,!

«(27™)} such that Sy = {s,}.
Hence we have

TUS‘y TU({Sn}) = {Sn'En}) =y

This implies that y € Yy -+Y} is orbitally equivalent t0 {8n} € lop -+ oo (27™).
Thus Y is a partial retract of lo. The proof is complete.

COROLLARY 1. Let X = {Xo, X1} be a couple in X or in Xp. Then
lw(X) is a Calderén couple if and only if X is a partial retract of [o

Proof If 1o (X) = {ls{Xo), b (X1)} is a Calderén couple, then clearly
lo(X) and X are relative Calderdn couples, Hence X is Gagliardo complete.
Thus if X € X, Lemma 1 applies. In the case X =V € Xy it can be shown,
as in the proof of Lemma 1, that X is a pa.rtlal retract of {loo, 1o (27™)}. The
proof of the converse is obvmus since {leo,lc(27™)} is a Calderon couple

by [Pe] and loo(X) is a partial retract of {lm, (27"} whenever X is a
partial retract of {lu, 1o (27")}.
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We now turn to the construction of Banach couples for which Cwikel’s
conjecture fails. In fact, we are going to show a bit more. We shall see that
even the stronger assumption that the scale [X|? coincides with the scale
X #,00 does not imply that X is a Calderén couple.

Note that if [Xg, X1]? = (X0, X1)s,00 the same is true for the couple
{lo(X0), loo(X1)}, but the latter is not Calderén if X € A is not a partial
retract of {lso, lee (277)}. By Bergh’s result [B] that [Ag, A;1]s = ([4o, 41]°)°
isometrically for any complex Banach couple {Ag, A1}, we conclude that

[loo(XO)z loc(Xl)]H = (loo(XO): loo(Xl))g,oo

for every 0 < @ < 1. This means that all complex interpolation spaces with
respect 10 {luo(X0), leo(X1)} are described by the K-methed. So we obtain
the following.

COROLLARY 2. Let {Xp, X1} € X be a couple of complex Banach spaces
such that [Xo, X1]% = (X0, X1)g,00 for every 0 < 8 <1 and X is not a par-
tial retract of loo. Then {loao(X0),lee{X1)} is a counter-ezample to Cwikel’s
congecture.

The conditions of the corollary turn out to be consistent.

THEOREM 2. The Gagliardo completion of the couple {co,co(27™)} is a
Calderdn couple which is not o partial retract of {lo,leo(27™)}

Proof. We first observe that for any operator T : {loo,lc(277)} —
{loc, leo(277)} the restriction of T' to A(¢y) maps A(cp), equipped with the
norm of ¢p(279™), continuously into 1o (277") N ¢p(min(1,27™)), j = 0, 1.
Now, by the definition of Gagliardo completion, it is easy to check that
(2) cp(279™)% = 1o (277™) Nep(min(1,27™), JF=0,1,
with equivalent norms. This implies, by the regularity of ¢y, that T : gy — §.
In consequence,

T {efco(277)F — {5, cof277) )
Hence, as I, is a Calderén couple (see [Pe]) and the equivalences
sup |6, min(1,/27) = K(t, & le) = K(2,£;T0) = K(t, &)
nEZ

hold for every £ = {£,} € ¢ + co(27™), we conclude that & is a Calderén
couple.

In order to show the second part of the theorem, we first cbserve that,
by (2), the natural map P defined by

Pléa} =1 10,80, 1bnyo -]

is a continuous projection of the couple & = {c§, c0(2““) } onto the couple
{it, et (27™)}. In particular, this implies that {If,c}(27™)} is a partial
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retract of 2. Thus, if § were a partial retract of {lo,lo0(27™)}, then clearly
{I&,, ¢t (27™)} would also be a partial retract of {leo, loa(27™)}. But ¢f (277)
ig separable, so we arrive at a contradiction with Theorem 1. This completes
the proof.

So we see that the couple {loo(c§), loo{co(27™)°)} constitutes a counter-
example to Cwikel’s conjecture.

Remark. Notice that the Gagliardo completion of gy = {en, co(27)}
is a A-closed subcouple of {lx,lo0(27™)} in the sense of Pisier [Pi]. Clearly,
by (2), it follows that & is a K-closed subcouple of {Fy, B4} = and that
the second Kéthe dual EY is equal to loo(27™), § = 0, 1. Thus {Ep, By }is a
Calderdn couple of lattices without the Fatou property such that any upper
complex method interpolation space between Ey and Fy coincides with the
Marcinkiewicz space but the couple is not a partial retract of {l, lo(27")}.

3. Parameters of the real method. We recall that a Banach lattice
F of sequences is said to be a parameter of the real method if A(lee} C F C
Z()and T : F — Ffor any T : I; — leo. It is easily seen that F is a
parameter of the real method if and only if the Calderdn operator P defined
by

[o4]
P(&)n =Y min(1,2"7%)g,
k=00

is bounded in F. For example, if E is any translation invariant Banach
lattice of two-sided sequences (i.e., {{({én—itnllz = [{&n}nllg for all k € Z),
then F = E(27™) is a parameter of the real method for all 0 < § < 1.
Indeed (see [A] for more general results),

1Ptz = [{ 3 min( s}, < Clélmg-)

k

for all £ = {£,} € B(2™™), where C = 3"32 _ min(1,2%)27% < co.

It is worthwhile to note that reiteration for spaces X g,, X g,, where Ep
and Ej are parameters, takes place in the most general form (see [DO),
[BK]). Namely, for any interpolation functor F we have

}_(XEQ ) X-El) = XF(EO,EU'

In this section we present a construction of non-Calderén couples of pa-
rameters of the real method having the Fatou property such that all complex
method interpolation spaces are described by the K-method.

First we observe that interpolation from {leo, oo (27™)} to {11, (27™)} is
not described by the K-method, which follows for instance from Theorem 1.
This can also be deduced from the description of the interpolation orbit of
any element a € log 4100 (27") in the couple {I1,11(27")}, which is equal to
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the space Iy (™ (277)} (see [O1], [02]), where (2) = K(t, a;{loo, lee(27™)})
and ¢*(t) = 1/p(1/t). So if we take ap = {2"%} with 0 < < 1, then
Orb (@i {luoy Lo} = {13, b (2™)}) = h(27™?),

while the K-orbit of ag is l(27 ™). Hence the K-orbit is not equal to
the orbit, and thus interpolation from {leo, loo(27™)} to {l1,21(27™)} is not
described by the K-method.

Let us cousider analogous couples of sequence spaces with non-trivial
weights & = {@n}nen, 8 = {Bn}nen, and consider interpolation from the
couple {loo, loo (@)} to {I1,11(8)}.

LeEMMA 2. Interpolation from {loo,loo(@)} to {l1,11(B)} is not described
by the K-method for any unbounded weights.

Proof Without loss of generality we can assume that ¢, > ag > 0,
g0 that lo(@) C leo. The unboundedness of the weight sequences o and 3
implies that o, (e) # lee and 11(8) 54 1.

Take any a ¢ loo(e) in the closure of [oo(c) In loo. Then a € cp and
hence the function @(t) = K(t, ; {le, loo(c)}) satisfies p(t) — 0 ast — 0
and ¢(t)/t — 0 as t — oo,

Since the interpolation orbit of ¢ with respect to all linear operators
mapping {le, leo (@)} into {I1,1:1(8)} is l1(¢*(B)), we have to show that

B(e* (B)) # (1, 1 (B))p oo

To prove this we construct a sequence £ such that
K(t,&{h, b(8)}) < Cp(t)
for all £ > 0, and
oo
3 leale*(8a) = co.

n=0
It is easily seen that there exists a subsequence §,,; such that 8, < 8y,

and
{P(-’B;L-l) ﬁn '+1(P(,8.,:.1
mi; RS L >9

(3) B (W(ﬁ;nlu) Jgnj ‘P(ﬁnjil) ) =

for all 7 > 1. If we now take &, = 0 for n # n; and &, = ¢(1/8,) for n =n;,
then

K(t, & {l]_, ll(ﬁ)}) = Z ‘P(l/l@ﬂj) min(latﬁnj)‘
F=1
Obviously the sequence {ﬁ;jl} is uniformly sparse for ¢ (see [J]) and
therefore

(BN & {1, h(B))) = w(B7)
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for all § (see [02], Lemma 4.2.3). Since K (¢,£; {I1,1:(8)}) is linear on every
interval [ﬁﬁjl, ﬁ;jil] and o is concave, we deduce that for any ¢ > 0,

K(t,6{0, 1 (B)}) < Colt).

Since o
S leale* (Ba) =D @(B)/@(Brt) = oo,
n=0 F=1

the lemma is proved.

In what follows we will construct a translation invariant Banach sequence
space F on Z such that for some infinite subset A C Z the restriction of the
space E to the set A is equal to the restriction of l. to that subset, and
the restriction to another infinite subset B C Z is equal to the restriction
of 11 to B. In other words, we will construct a translation invariant Banach
sequence space which is extremely non-rearrangement invariant.

First, let us consider any Banach lattice G of sequences {£z}ren Which
has the same property, i.e., G|la = lh]a and G|p = lo|p for some disjoint
infinite sets A and B. For instance, we can take for A the set of odd numbers
and for B the set of even numbers and define the norm on G by

€l = sup [an) + 3 lansal-

k=0
Now, take any sequence {£n}nez and consider the functional

1€ll5 = sup [{&m-2+}ullo-
MmEL

It is easily seen that it is translation invariant, and the space E = {£ :
|¢liz < oo} is a translation invariant Banach lattice with the Fatou property.

Let us show that the restriction of E to the set C = {—2% : k € N} is
equal to G. Indeed, the intersection of C with any C -+ m (m # 0) has at
most one point., If there were two points, then

o =gl _m, 2 =2k_m

for some natural numbers ki, ko, I3, [z, which implies 251 — 2k = gh . 2l2
and hence ky = [y if k1 > ko or ko == I3 if ko > k1. Thus, m = 0.
Therefore for any £ with suppf C C we have

sup [{€m—artelle = 1€/l
D
and

sup [[{&m-2x}ella = [{E-2x Yo
mEZ

This implies that for some infinite subset 4 of C we have Ejq = lo|a
and for some disjoint infinite subset B we have E|p == [;|p with equal norms.
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THEOREM 3. Let a # 1 be a positive number. Then {E, E(a™™)} is a
non-Calderén couple for which any complex interpolation space is described
by the K -method.

Proof. If interpolation for {E, E(a~™)} were described by the K-meth-
od, then interpolation from {E|4, E{a™)|a} to {E|g, E(a™™)|g} would
also be described by the K-method. But this yields that interpolation from
{loos loo{@)} to {l1,11(8)} is described by the K-method for some unbounded
weights o and 3, which is impossible by Lemma 2. Thus, {E, E(a™™)} is
not & Calderén couple.

Consider now the complex method interpolation spaces for the couple
{E, E{a~™)}. They are easily described by using the Calderén construction
for lattices (see [Cal). By [S], the space [E, E(a~™)]y is equal to the closure
of ENE(e™™) in

EI*BE(CL“”)H — E(a—na).
Since oo Nloo(a™™) € I1(a™™), we conclude that the closure of ENE(a™")
in B(a™™) is Eo(a™™), where E, denotes the regular part of E, ie., the
closure of the set of sequences with finite supports. Therefore

(B, E(a™™)]s = Ey(a™™).

Clearly, Ey is also a translation invariant Banach lattice, hence Ey(a—"?)
is invariant with respect to the operator of convolution with the sequence
{min(1,a ") }nez. Thus for the real method functor F(Xg, X:) = {z :
{E{a™ z;X)} € E(a=™?)} we have

F(l, 11(a™)) = Flloo, loo{0™™)) = Eo{a™™).
Combining this with the continuous inclusions I} — B — I, we have
F(E,E(a™™)) = Eg(a™"?).
Hence
B, B(a™™)]p = Eo(a™"*) = F(E, E(a™)).
Thus, all complex method interpolation spaces between F and E(27") are

described by the K-method, yet {E, E(27™)} is not a Calderén couple. The
theorem is proved.

Any couple {E(2"%0), B(277%1)} with different real numbers fy and 6,
is obviously isomorphic to {E, E{a™™)}. If we take 0 < 6y < 61 < 1, then
we can use the spaces of the couple {E(27"%0), B(27™1)} as parameters of
the real method and generalize the previous example.

THEOREM 4. Let X = {X3, X1} be any Bonach couple in X. Then every
couple of the form {X g(g-neny, X ga-ner)} fails to be a Calderdn couple, yet
any complex interpolation space of this couple is described by the K-method.
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This statement follows immediately from the following result, if we apply
the reiteration theorem for parameters of the real method.

THEOREM 5. Let {Eo, E1} be a couple of real parameters. Then for any
Banach couple X € X the couple {Eqg, E1} is a partial retract of {X g,, X g, }.

Proof. Notice that from the proof of Theorem 4.5.7 in [BK] it follows
that any couple X € X is Convg-abundant, i.e., for every quasi-concave
function ¢ : Ry — Ry such that ¢(t) — 0 as ¢t — 0 and @(t)/t — 0 as
t — oo there exists z € (Xg + X1)° with ¢(2) < K(¢,z; X).

Now take £ € Eg-+ Ey. Then £ € I; + 11 (27"), and hence K{t,&;11) — 0
as £ — 0 and K(t,&;11)/t — 0 as t — oo. Since X belongs to X, there exists
z € Xo-+ X1 such that

K(t,2;X) = K(t,¢]).

Let us show that £ is orbitally equivalent to z € Xz, + Xg,. Denote by
a. the sequence {K{2",z; X)}, which is equivalent to az = {K (2% &1}
Note first that a; and £ are orbitally equivalent with respect to {Ep, F1}.
Indeed, 1£| < P{|€|) and {P(I£[}n} =< a¢, where P is the Calderdén operator,
and P : {Ep, E1} — {Ep, By} since Fp and By are parameters of the real
method. Now, by Theorem 7.3.1 of [02], z and a, are orbitally equivalent
with respect to {Fy, By} and {X g,, X g, }. The proof is complete.

It can also be shown that analogous results are true for ordered Ap
couples. So we are able to construct counter-examples to Cwikel’s conjecture
with couples of rearrangement invariant spaces of functions on the interval
[0,1] or [0, c0). To see this, it suffices to apply Theorem 5 for the couples X =
{L1i,Ls}. The next result gives other examples of couples of rearrangement
invariant spaces for which Cwikel’s conjecture fails.

THEOREM 6. For any 1 < p < oo there ezrists a rearrangement invariont
space X on [0,00) such that the Boyd indices of X satisfy py = qx = p and
{L1,X} is not a Calderdn couple, yet any complex method interpolation
space for this couple is described by the K -method.

Proof. In [M1] it is shown that if X is a rearrangement invariant space
on [0,00) such that 1 < px = gx < oo, then the Calderén spaces (L)t~ Xx?
_are described by the K-method for any 0 < # < 1.

Now consider the weighted Banach sequence lattice B(w™), where 1 <
w < 2 and F is any translation nvariant Banach sequence lattice on Z such
that E* is a symmetric sequence space which is not an lp-space. Then, by
[K], the space X of measurable functions f on [0, 00} such that

Il = {27 K Q2" £; {L1, Loc D) mm) < o0
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is a rearrangement invariant space on [0, 00) for which
px = gx = (logyw)™1,

and {I;l,X } is not a Calderén couple. The proof is finished by taking
w = 21/P

4. K-orbits. In this section we study interpolation orbits in couples of
the form {Fg, E1(27")}, where {Ep, E1} is any couple of translation invari-
ant Banach lattices of two-sided sequences. We will consider orbits of all
elements for which the K-functionals are in the class Pt~ of quasi-power

functions. In what follows a quasi-concave function ¢ is said to be of class
Pt~ if the dilation indices of ¢ defined by

. Ins,(t)
= Hm el = lim —*—*
e = Int °’ Be tli;rlolo Int
are non-trivial, i.e., 0 < ap < B, < 1. Here s,,(t) = sup,,,q s{tu)/s(u) for
t>0.
Note that by (KPS, p. 75, ¢ € P™~ if and only if
< ds
f min(1, ¢/5)p(5) 22 < oft).
0
Remark. If ¢ is a quasi-concave function, then for any ¢ > 0 there
exists a constant C' = C(g) such that
(4) 8,(t) < Cmax(t¥= =, 1Pete),

Before presenting the main result of this section, we shall need some
estimates of the K -functional for spaces obtained by the Lions-Peetre con-
struction. In the following lemma we simplify Holmstedt’s formula for the
K-funetional.

LeMmMa 3. Let X = {Xo, X1} be a Banach couple and ¢ € Xo + X; be
such that K(t,2; X) is a quasi-power function. Then for any 8y and 0y such
that 0 < Oy < ax < Br < 0y < 1 we have

K(t, @ {YﬂrJ,QOv Xﬁl,ql b= tw%/wl_en)K(tl/wlman)1 mif)
forall 1 < q0,q1 < 00.

In 5, (%)

Proof. Since 0 < 8y < ax < Bx < 81 < 1, the function
go(t) = t—ﬁu/(ei—ﬁn)ﬁ'(il/(gl“90), x; _)—{)
belongs to P+, Thus, from Holmstedt’s formula [H]

oo
— = = d
K(t,x; Xop1,Xp,1) = S K(s,z; X) min(s~%, ts7%1) ?S
0
it follows that the latter integral is equivalent to ¢(2).
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Similarly, using the equivalence (see [H})
K(t,x;{X py,00: Xo,00}) X su[(.]) K(s,2; X) min(s~%, t57%)
o>

and conditions on the dilation indices of K(-,z;X), one can easily check
that the latter supremum is equivalent to

K(s,2; X) min(s™%, ts7%)
| when s~% = ts~% . Hence,
K (t,5;{ Xop 00, Xy 00} ) < £7007 Or=00) g (41783 =00} o, X0,
Now, by the well known. continuous inclusions (cf. [BL])
fe,l — }_(_ﬂ,q ha -5(”9,001
we obtain
K{t,2;{Xoq1, Xo1.1}) =< E(t, 7 {X 00,401 Xoa D)
=< Kt 2 { X 85,00y X 1,00} )
which yields the required equivalence.
LEMMA 4. Let z € Xgg,00 + X 6y,q be such that
p(t) = K(t,z; {Xi%,qm X_ﬂlm})
is a quasi-power funection. Then
plt) = ¢/ OO R (280 5 ),
and By < ag < fBr < ;.

Proof Again, as in the proof of Lemma 3, the non-triviality of the
dilation indices of ¢ implies that we can reduce the general case to g =
q1 = co. Thus, we have

(5) @(t) = sup K (s, 2; X) min(s~% £s~%}
s>0
= sup u~ o/ (b1=%0) g (3, /(P1—60) . X) min(1,t/u).
u>0

Then, for some quasi-exponential sequence {un} (i.e., a sequence equivalent
to some geometric progression)

pun) < u;%/(ﬁ“Gu)K(uqll/(ﬂl—ﬂo): z; X).
So we have to show that if
() = sup A(s) min(1,%/s),

>0
then we can find & quasi-exponential sequence {s, } such that A{s,) = ¢(sn).
First choose {s,} such that A(s,) increases, A(s,)/s, decreases and

o(t) = sup A(s, ) min(1,t/sp).
K
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According to Lemma 4.2.1 of [02] the sequence {s,,} will be a semi-filling

for ¢, which means that there exists ¢ > 0 such that for any t > 0 there
exists n with

(p(t) S C(,D(Sn),
If we take t = 2%, then
(6) p(2%) < Cp(s),  w(2%)/2% < Co(sy)/ s

Since ¢ € P77, it follows by (4) that there exist C; > 0and 0 < a < 8 < 1
such that

©()/t < Co(sn)/sn-

e(s) < Crmax((s/)%, (s/t)P)(t)
for every s,t > 0. Therefore, if ¢(t) < Cp(s), then t < Cas for a suitable
Cz > 0. Thus (6) implies that sz = 2*. Consequently, we obtain
K (vn, 2 X) = vio (vl %),

1/(61—60) . .
where v, = u/ 7% ig also quasi-exponential. Hence,

Kt z; X) = tg“cp(t'gl_e").

Ome can easily show that 6y < ax < Sx < 6;, and this completes the
proof.

We now state the main theorem of this section about interpolation orbits

in the couple {Fg, E1(27™)}, where Ey and E; are translation invariant
Banach sequence spaces.

THEOREM 7. Let Ey and By be any translation invariont Banach lattices
of two-sided sequences. Then the interpolation orbit in {Ey, E1(2™™)} of any
element © € Eg + E1(27") such that ¢ = K (-, z; {Eo, B1(2~™)}) is a quasi-
power function coincides with its K -orbit, both being equal to Lo (p™(27™)).

Proof Let X = {Ep, E1(27™)}. Since Ey — loo, F1{27™) = 1o(2™™)
and

Orb(z, X — X) — (Xo, X1)p,000

it follows from the easily verified equality (leo. loo (27" ))e,00 == loo (¢*(277))
that

Orb(z, X — X) < loo (" (27™)).
Thus, we need to show the reverse inclusion. To do this let z, denote

the sequence {¢(2™)}nez. It is easily seen that |z| < Cz, for some universal
constant C > 0 which does not depend on z. We also have

Kty X) < K(t,2;{l, 127} < Kt zp; (I, L(27™)}).
Since ¢ is a quasi-power, we have
Kt 203 {0, 1(277)}) = K (6 25 {loc, 1oa (277)1) < 0(2).
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Combining these estimates we have
(7) K (23 {l, (27} = Kt 25 {l, 1(277)}) =< ¢(t).
To finish the proof, we need only show that z, € Orb(z, X — X), since

that implies L
loo (p*(27 ™)) = Orb(z, X — X).
To this end, we extrapolate the couple {Eo, By (27™)}, ie., consider the
couple A = {lo(2"), 0o (272")} for which we have
Ep = (leo(2"), lea(27*™)
® BL(27) = (oo 27), 1o 2",
where Fy = Eqo(27"3), F; = E1(272"/3), and
ll = (loo(zn)l lw(2—2n))1/3,1,
®) 127 = (oo (2 doa(27"))2/3,1
In view of (7), (9) and Lemma 4 we get
() = 00/ =80 e (41/01=00) g )
and
ot} = t-Go/(Gr-ao)K(tl/(ﬁ“@o)’ Tips z)
Hence
K(t,z; &) < K(t,z4; A).
Since A is a Calderén couple (see [Pel]), there exists a linear operator
T : A — A such that T(z) = z,. Then, by (8), T : {Eo, E1(27")} —
{Ep, B1{(27™)}, and thus
%, € Orb(z, {Eg, B1(27™)} — {Eo, E1(27™)}).
This completes the proof.
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On convergence for the square root of the Poisson kernel
in symmetric spaces of rank 1

by

TAN-OLAV RONNING (Skévde)

Abstract. Let P(z, 8) be the Poisson kernel in the unit disk U, and let Py f(z) =
SBU P(z,go)l/Q""\f(so) di be the A-Poisson integral of f, where f e LP(8U). We let Py f
be the normalization P f /Py1 IE X > 0, we know that the best (regular) regions where
Psf converges to f for a.a. points on AU are of nontangential type.

. If A = 0 the situation is different. In a previous paper, we proved a result concerning
the convergence of Pyf toward f in an LP weakly tangential region, if f € LP(9U) and
p > 1. In the present paper we will extend the result ta symmetric spaces X of rank
1. Let f be an L? function on the maximal distinguished boundary X /M of X. Then

Pof(x) will converge to f(kM) as & tends to kM in an LP weakly tangential region, for
a.a. kM ¢ K/M,

1. Introduction. Let X = G/K be a Riemannian symmetric space of
noncompact type and of rank 1. (The notation is explained in Section 2)
On X, we consider the A\-Poisson operator

Paflg-o)= | fFlkM)P re(iM, gy dki,
/M
where P(k2M, ) is the Poisson kernel of G/K, f € LP(K/M),and A+g € a.
We know that Py f satisfies the equation

AR = (A* ~ o) P,
where 4 is the Laplace—Beltrami operator on X.

IfA >0, it is known that Py f (g) daes not necessarily converge to FlkM)
as g tends to kM. To obtain convergence, we need to consider the normal-
Ization Py f = Py f/P\1. We know that PaJf converges admissibly to f a.e.
on the boundary if f € I?, p> 1. In a previous paper, [JOR], we proved
that if X is the hyperbolic unit disk I and ) = 0, we have convergence in
a larger region, which we call an L? weakly tangential region (1 < p < oo).

1891 Mathematics Subject Clussification: 42B25, 43A85.
Key words and phrases: maximal function, square root of the Poisson kernel, conver-
gence region, symmetric space of rank 1. )
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