On strong generation of $B(\mathcal{H})$
by two commutative C^*-algebras

by

R. BERNTZEN (Münster) and A. SOLTYSIAK (Poznań)

Abstract. The algebra $B(\mathcal{H})$ of all bounded operators on a Hilbert space \mathcal{H} is generated in the strong operator topology by a single one-dimensional projection and a family of commuting unitary operators with cardinality not exceeding $\dim \mathcal{H}$. This answers Problem 3 posed by W. Żelazko in [6].

Let \mathcal{H} be a complex Hilbert space and let S be a subset of the algebra $B(\mathcal{H})$ of all bounded linear operators on \mathcal{H}. We say that the algebra $B(\mathcal{H})$ is strongly generated by S if the smallest $*$-subalgebra of $B(\mathcal{H})$ closed in the strong operator topology and containing S coincides with $B(\mathcal{H})$. The first result on the strong generation of $B(\mathcal{H})$ was given by C. Davis in [2]. He proved, in the case when the Hilbert space \mathcal{H} is separable, that the algebra $B(\mathcal{H})$ is strongly generated by two unitary operators. Later, E. Nordgren, M. Radjabaliportal, H. Radjavi, and P. Rosenthal have shown ([3]) that two Hermitian operators strongly generate $B(\mathcal{H})$, which implies that $B(\mathcal{H})$ is singly generated as a von Neumann algebra. See also [5], pp. 160–163, for other results concerning generation of $B(\mathcal{H})$ when \mathcal{H} is separable. These results show that for a separable Hilbert space \mathcal{H} the algebra $B(\mathcal{H})$ is strongly generated by two commutative C^*-algebras. In [6] W. Żelazko raised the following

Problem. Is the algebra $B(\mathcal{H})$ of all operators on a complex Hilbert space \mathcal{H} always generated in the strong operator topology by two commutative C^*-algebras?

We show that the answer to this question is positive. Namely we prove the following

Theorem. Let \mathcal{H} be a complex Hilbert space. The algebra $B(\mathcal{H})$ is strongly generated by a single one-dimensional (orthogonal) projection and a commuting family of unitary operators with cardinality not exceeding $\dim \mathcal{H}$.

1991 Mathematics Subject Classification: Primary 47D25; Secondary 47C15, 47A15.
Research supported by the Heinrich Hertz-Stiftung.
We need the following simple

Lemma. Every non-empty set \(I \) can be given a structure of an Abelian group.

Proof. If the set \(I \) is either finite or countable, then the result is clear. Assume that \(I \) is uncountable. Take the family \(\mathcal{M} \) of all subsets \(J \) of \(I \) having an Abelian group structure and order it by the following relation:

\[
J_1 \leq J_2 \quad \text{if and only if} \quad J_1 \text{ is a subgroup of } J_2.
\]

The relation \(\leq \) is a partial order in \(\mathcal{M} \). Notice that \(\mathcal{M} \) is non-empty because every singleton \(\{x_0\} \subset I \) can be given a group structure. If \(\{x_n\} \) is a chain in \(\mathcal{M} \), then \(J = \bigcup_{n=0}^{\infty} J_n \) is an Abelian group containing every \(J_n \) as a subgroup. By the Kuratowski–Zorn lemma \(\mathcal{M} \) contains a maximal element \(J_0 \). If the cardinality of \(J_0 \) is smaller than that of \(I \), then the sets \(I \setminus J_0 \) and \(I \) have the same cardinality. Hence we can find a copy \(J_1 \) of \(J_0 \) in \(I \setminus J_0 \), i.e., there exists a one-to-one mapping \(\varphi : J_0 \to I \setminus J_0 \) with \(J_1 = \varphi(J_0) \). Identifying \(J_0 \cup J_1 \) with \(\mathbb{Z}_2 \times J_0 \) via the map

\[
(e, j) \mapsto \begin{cases}
 j & \text{if } e = 0, \\
 \varphi(j) & \text{if } e = 1,
\end{cases}
\]

we get an Abelian group structure on \(J_0 \cup J_1 \) with \(J_0 \) as a proper subgroup, contradicting the maximality of \(J_0 \). Therefore, \(J_0 \) must have the same cardinality as \(I \) and via a bijection from \(J_0 \) onto \(I \) we can define an Abelian group structure on \(I \).

Proof of the Theorem. Let \(\{e_i : i \in I\} \) be an orthonormal basis for the Hilbert space \(\mathcal{H} \). By the Lemma we can introduce an Abelian group structure on \(I \). Denote the group operation by + and let \(i_0 \) be the zero element. Let \(P_0 \) be the (orthogonal) projection on the one-dimensional subspace spanned by \(e_{i_0} \). For every \(j \in I \) we define a unitary operator \(S_j \) by

\[
S_j(e_i) = e_{i+1} \quad (i \in I).
\]

Commutativity of the group \(I \) implies that the operators \(S_j \) mutually commute. Let \(f \) be an arbitrary vector in \(\mathcal{H} \) of norm one and let \(P_f \) be the one-dimensional projection defined by

\[
P_f(x) = \langle x, f \rangle f.
\]

We will show that \(P_f \) belongs to the von Neumann algebra \(A \) generated by \(P_0 \) and \(\{S_j : j \in I\} \). Since we can approximate \(f \) by elements of the form \(g = \sum_{k=1}^{n} \lambda_k e_{i_k} \), we can approximate \(P_f \) uniformly by operators \(P_g \) given by

\[
P_g(x) = \sum_{k=1}^{n} \sum_{l=1}^{n} \lambda_k \lambda_l \langle x, e_{i_l} \rangle e_{i_l} = \sum_{k=1}^{n} \sum_{l=1}^{n} \overline{\lambda_k} \lambda_l S_i P_0 S_{-i_k} (x),
\]

which implies that \(P_g \in A \) and hence \(P_f \in A \) as well. Consequently, every finite-rank projection is in the algebra \(A \). Since every projection \(P \) is a limit in the strong operator topology of the net of all finite-rank projections with ranges included in the range of \(P \) (cf. [4], p. 106, Lemma 3.3.2) we find that \(A \) contains all projections. Since \(B(\mathcal{H}) \) is the norm closed linear span of all projections we conclude that \(A = B(\mathcal{H}) \) (see [1], p. 280, Prop. 4.8).

Corollary 1. \(B(\mathcal{H}) \) is generated in the strong operator topology by two commutative \(C^* \)-algebras, one of them being one-dimensional.

Remark. Using a similar method to the one in the proof above we can give another proof of the fact that in the separable case \(B(\mathcal{H}) \) is singly generated as a von Neumann algebra (see [3]).

Choose an orthonormal basis \(\{e_n\}_{n=0}^{\infty} \) and let \(S \) be the unilateral shift, i.e., \(S^*e_n = e_{n+1} \) for \(n = 0, 1, \ldots \). Then \(SS^* = S^*S \) is the projection \(P_0 \) onto \(\langle e_0 \rangle \). Every operator of the form \(P_g(x) = \langle x, g \rangle g \) with \(g = \sum_{k=0}^{n} \lambda_k e_k \) can be written as

\[
P_g = \sum_{k=0}^{n} \sum_{l=0}^{n} \overline{\lambda_k} \lambda_l S^l P_0 S^{*l*}.
\]

Hence \(P_g \) is in the \(* \)-algebra generated by \(S \). As above, this implies that every one-dimensional projection and therefore every projection is in the von Neumann algebra \(A \) generated by \(S \). Hence \(A = B(\mathcal{H}) \).

Now we show that in the non-separable case the Theorem is the best possible result with respect to the number of generators.

Proposition 1. Let \(\mathcal{H} \) be a non-separable Hilbert space. If \(\{T_j : j \in J\} \) is a family of operators of cardinality smaller than \(\dim \mathcal{H} \), then it has a non-trivial common invariant subspace. In particular, the von Neumann algebra generated by \(\{T_j : j \in J\} \) is a proper subalgebra of \(B(\mathcal{H}) \).

Proof. We may suppose that the identity belongs to the family \(\{T_j : j \in J\} \). Fix an arbitrary non-zero vector \(x \in \mathcal{H} \) and define

\[
M = \text{span}_Q \{T_j(1), \ldots, T_j(n)(x) : j(1), \ldots, j(n) \in J; n \in \mathbb{N}\},
\]

where \(\text{span}_Q \) denotes the linear span over the field \(Q \) of rational numbers. Then the closure \(\overline{M} \) of \(M \) is a closed subspace of \(\mathcal{H} \) containing \(x \) with \(T_j(\overline{M}) \subseteq \overline{M} \) for every \(j \in J \), hence \(\{0\} \neq \overline{M} \) is a common invariant subspace of \(\{T_j : j \in J\} \). Let \(\{e_i : i \in I\} \) be an orthonormal basis for \(\overline{M} \). Then, for each \(i \in I \), we can find an element \(x_i \in \mathcal{H} \) such that \(\|e_i - x_i\| < 1/2 \). This implies that the mapping \(i \mapsto x_i \) from \(I \) into \(\overline{M} \) is one-to-one, and hence, \(\text{card} \overline{M} \leq \text{card} \mathcal{H} \). Since the cardinality of \(\mathcal{H} \) is at most \(\max \{N_0, \text{card} J\} < \dim \mathcal{H} \), we see that \(\overline{M} \) is a proper closed subspace of \(\mathcal{H} \).

Finally, we show that in the Theorem one cannot replace the strong operator topology by the uniform topology.
PROPOSITION 2. Let \(\{ T_\lambda : \lambda \in \Lambda \} \) be a family of operators on an infinite-dimensional Hilbert space \(\mathcal{H} \) such that the algebra generated by it is uniformly dense in \(B(\mathcal{H}) \). Then the cardinality of \(\Lambda \) is at least \(2^{\dim \mathcal{H}} \).

Proof. Since the algebra generated by \(\{ T_\lambda : \lambda \in \Lambda \} \) is uniformly dense in \(B(\mathcal{H}) \), the same is true for
\[
\mathcal{A}_0 = \text{span} \{ T_{\lambda(1)} \ldots T_{\lambda(n)} : \lambda(1), \ldots, \lambda(n) \in \Lambda; n \in \mathbb{N} \},
\]
which has cardinality at most \(\max \{ n_0, \text{card} \Lambda \} \).

Now choose an orthonormal basis \(\{ e_i : i \in I \} \) of \(\mathcal{H} \). For every subset \(J \) of \(I \) let \(P_J \) denote the projection onto \(\text{span} \{ e_j : j \in J \} \). For every \(J \in I \) we can find \(T_J \in \mathcal{A}_0 \) with \(\| P_J - T_J \| < 1/2 \). Since \(\| P_J - P_{J'} \| = 1 \) for \(J \neq J' \), we deduce that the mapping \(J \mapsto T_J \) from the family of all subsets of \(I \) into \(\mathcal{A}_0 \) is one-to-one, hence card \(\mathcal{A}_0 \geq 2^{\dim \mathcal{H}} \). This implies card \(\Lambda \geq 2^{\dim \mathcal{H}} \).

COROLLARY 2. The \(C^* \)-algebra generated by a countable family of operators on a separable Hilbert space \(\mathcal{H} \) is always a proper subalgebra of \(B(\mathcal{H}) \).

Acknowledgements. The second author wants to thank Professor George Maltese and Doctor Rainer Berntzen for their warm hospitality during his visit to the Westfälische Wilhelms-Universität where this paper was written.

References

STUDIA MATHEMATICA 125 (2) (1997)

Diffeomorphisms between spheres and hyperplanes in infinite-dimensional Banach spaces

by

DANIEL AZAGRA (Madrid)

Abstract. We prove that for every infinite-dimensional Banach space \(X \) with a Fréchet differentiable norm, the sphere \(S_X \) is diffeomorphic to each closed hyperplane in \(X \). We also prove that every infinite-dimensional Banach space \(Y \) having a (not necessarily equivalent) \(C^p \) norm (with \(p \in \mathbb{N} \cup \{ \infty \} \)) is \(C^p \) diffeomorphic to \(Y \setminus \{ 0 \} \).

In 1966 C. Bessaga [1] proved that every infinite-dimensional Hilbert space \(H \) is \(C^\infty \) diffeomorphic to its unit sphere. The key to proving this astonishing result was the construction of a diffeomorphism between \(H \) and \(H \setminus \{ 0 \} \) which is the identity outside a ball, and this construction was possible thanks to the existence of a \(C^\infty \) non-complete norm in \(H \). In [5], T. Dobrowolski developed Bessaga's non-complete norm technique and proved that every infinite-dimensional Banach space \(X \) which is linearly injectable into some \(c_0(\Gamma) \) is \(C^\infty \) diffeomorphic to \(X \setminus \{ 0 \} \). More generally, he proved that every infinite-dimensional Banach space \(X \) having a \(C^p \) non-complete norm is \(C^p \) diffeomorphic to \(X \setminus \{ 0 \} \). If in addition \(X \) has an equivalent \(C^p \) smooth norm \(\| \cdot \| \) then one can deduce that the sphere \(S = \{ x \in X : \| x \| = 1 \} \) is \(C^p \) diffeomorphic to any of the hyperplanes in \(X \). So, regarding the generalization of Bessaga and Dobrowolski's results to every infinite-dimensional Banach space having a differentiable norm (resp. \(C^p \) smooth norm, with \(p \in \mathbb{N} \cup \{ \infty \} \)), the following problem naturally arises: does every infinite-dimensional Banach space with a \(C^p \) smooth equivalent norm have a \(C^p \) smooth non-complete norm? Surprisingly enough, this seems to be a difficult question which still remains unsolved. Without proving the existence of smooth non-complete norms we show that every infinite-dimensional Banach space \(X \) with a Fréchet differentiable (resp. \(C^p \) smooth) norm \(\| \cdot \| \) is diffeomorphic (resp. \(C^p \) diffeomorphic) to \(X \setminus \{ 0 \} \), and we deduce...