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On the Lj-convergence of Fourier series
by

8. FRIDLI (Budapest)

Abstract. Since the trigonometric Fourier series of an integrable function does not
necessarily converge to the function in the mean, several additional conditions have been
devised to guarantee the convergence. For instance, sufficient conditions can be constructed
by using the Fourier coefficients or the integral modulus of the correspending function. In
this paper we give a Hardy-Karamata type Tauberian condition on the Fourier coefficients
and prove that it implies the convergence of the Fourier series in integral norm, almost
everywhere, and if the function itself is in the real Hardy space, then also in the Hardy
norm. We also compare it to the previously known conditions,

Main result. Let L; = L;[—n, 7] denote the space of complex-valued
27-periodic functions that are integrable on [—, 7] with the usual norm de-
noted by ||-}|;. We use the conventional notations for the Fourier coefficients
and for the Fourier partial sums with respect to the complex and the real
trigonometric systems, i.e. for any f € Ly,

Snf(t) = Y F(k)exp(ikt)
Jk|=0
T
—a0+2 akcoskt-{—bksmkt) (—r <t<Lm neN).
k=1
N, Z, C stand for the set of natural numbers integers and complex numbers
respectively.
Let [z] denote the integer part of the real number ¢ and for any sequence
(ck, k € Z) of complex numbers let Age = ¢, — exy1 if k is non-negative and
Ape = ¢, — g1 if k is negative.
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162 S. Pridli

Then our main result reads as follows.

THECREM 1. Let f € L, be such that

[n)
(1) lim Tm |AF(E)|log* EAF (k)| =

A—1t n—oo

[k|=n-+1
Then

(1) Ump—oo || f = Snfllz = 0 if and only if 11m|ni__,°oj n)log [n| = 0,
(1) f(z) = glz)/x (0 < |z| < ) where g € Lo.

Remark 1. It is easy to see that for the real trigonometric system
condition (1) has the following equivalent form:

[An]
lim lim Z (1Aak|log™ (k| Aag|) + | Abx| log™ (k| Abg|)) =

A—1t+ n—oo
- k=n+41

We note that the proof of Theorem 1 will be presented for this vérsion,
i.e. for the real trigonometric system, in order that we can point out the
difference between the behavior of the even and the odd parts of the series.

Remark 2. The decomposition in (ii) of Theorem 1 provides informa-
tion about the structure of integrable functions that satisfy condition (1).
We note that by Carleson’s Theorem and by the proof of (ii) one can de-
duce the a.e. convergence of 5, f. However, this also follows from a condition
that is weaker than (1). Namely, Chen [4] proved that if f is an integrable
function for which,

[An]
o D A7 =
|ke|=n+1L

then the Fourier series of f converges almost everywhere.

Let H denote the real Hardy space on [—,n]. Recall that H is the
collection of those real-valued f in Ly for which also the trigonometric con-
jugate f is integrable, and the norm is defined as IFile = | Fllx+ 1| fll1. The
following corollary is an immediate consequence of Theorem 1 and of the
well known relation between the Fourier coefficients of the function and of
its trigonometric conjugate.

CoroLLary 1. Let f & H with SF(t) = ap+Y gy (ak cos kt+by sin kt). If
[An]
lim Tm Y (|dax| log™ (k| Aakl) + |Abk|log™ (k| Abk|)) = 0

A—1% n—oo
. k=n-+1
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then
Jim ||~ Spflle =0 if and only if I llim (|an] + |bal)log |n] = 0.

Throughout this paper ¢ will always denote a positive constant not
necessarily the same in different occurrences.

Comparison with previous conditions. We note that the classi-
cal convergence conditions on the Fourier coefficients given by Young [19],
Kolmogorov [9], Sidon [13] and the more recent ones by Telyakovskil {18],
Fomin {5], €. V. Stanojevié and V. B. Stanojevié [16] all generate the equiv-
alence in (i) of Theorem 1. This led to the concept of L-convergence classes.
Let F denote the set of sequences of Fourier coefficients of integrable func-
tions, Then a subset C of F is called an Ly-convergence class if for any
f € Ly with (f(k), k € Z) € C we have

lim ||Snf — fli =0 ifandonlyif lim F(n)logln|=0.

netoo |ri—+oc
Using this terminology we may say by Theorem 1 that condition (1) induces
an Lj-convergence class. Let us denote this class by &.

Thus (¢x, k € Z) € &S if and only if there exists f € Ly such that

[An]
Flky=cx (keZ) and Jim Jm ST |Ack| log™ [kAck| = 0.
= bl=n

First we show that our condition is the best possible for lacunary Fourier
series and for the case when the Fourier coefficients of a real function form
a decreasing sequence. By the latter we mean (in terms of the real trigono-
metric system) that (an,n € N) and (bn41,n € N) are decreasing sequences
It is known (see e.g. [20]) that in both of these cases limyn o0 f Fln)log|n| =
itself is sufficient to conclude the Lj-convergence of the correspondmg
Fourier series. Thus the best we can expect is that (1) does not add an
unnecessary restriction to that. Indeed, as is easy to see, if the coefficient
sequence is lacunary then (1) reduces to

o 11m |AF(n)|log™ [nAf fm)] =0,
which is even weaker than limy—e F(n)log |n| = 0.
Similarly, if (4,7 € N) and (bn+1,n € N) are decreasing then
[An)]
> (|Aax)log™ [kAak| + | 8bx|log™ [kAbi|)
. |kl=n-t1
'L G((an+1 ~apany+1)108 7 + (bny1 — bany+1) 10g 7?«)
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where € does not depend on n. Consequently, (1} follows from lims oo (|an|
+ [ba]) log in| = 0.

At the beginning of this section we listed papers of several authors that
contain Ly-convergence classes. In the last decade especially Stanojevié and
his coauthors have done much research in this feld (see {2], [3], [7], [14],
[15]). They have constructed Lj-convergence classes that contain those in
19], [9], [13], [18], [5], [16]. (For a summary of previous conditions we refer
to [4] and [17].) The final version of their results (see [7]) reads as follows.
It is shown in [7] that £, is an Ly-convergence class for any 1 < p < oo
where £, denotes the set of sequences (ﬁ, k € Z) of Fourler coefficients of
integrable functions for which

[n]
ST AR <00 (p>1)

(2) lim lim
A—1t n—co
[k|=n+1
and
[An]
(3) lm Emo 30 [Af(R)lloglki=0 (p=1).
|ki=n-+1

We show that & containg all of these classes:

THEOREM 2.
s2 £,
p21
Remark 3. The following condition was used in earlier papers of Stano-
jevié and his coauthors (see e.g. {14], [3]}:
[An]
(4) lim lim
A—=1T n—oe
|ki=n+1

K=Y AF(k)F = 0.

We note that it was observed by Aubertin and Fournier [1] that although
(2) looks weaker than (4) they are essentially equivalent. Namely (see [1}),
if (2) holds for a sequence with some p then the sequence satisfles (4) with
p replaced by any g smaller than p. Furthermore, it is easy to show (see e.g.
l4]) that {2) is equivalent to

2n
dim 3 KE-L AF(E)|P < oo
Lk}:nrl—l

Finally, we note that several other conditions have been constructed
implying the Li-convergence of Fourier series. The most recent ones can be
found in {7} and [1}. Here we only note that their structure is substantially
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different from, and more complicated than, that of (1). Therefore they are
quite difficult to check, and it would also be difficult to compare them.

Proofs. Let Dy and Dy, denote the kth (k € N) trigonometric and conju-
gate trigonometric Dirichlet kernel resp. The following Sidon type inequality
holds true for the conjugate kernels.

LEMMA 1. There exigts C > 0 such that

N N
- + |ex] )
(5) ” Z CA:DR:“_L < }: ICk:|(1+IOS (N—K+1)-t E?‘;ﬂcﬂ

k=K k=i

for any ¢ € C with on_ e cx =0 (K, N € N).
(Here and later 0/0 will be considered to be equal to 1.)

Proof. Only an outline will be given because the proof is similar to
the one of the corresponding result for the Dy’s (see [6]). Let us start with
the Sidon type inequality proved by Schipp [11] for complex trigonometric
kernels. Set Dy(t) = 37 gexpijt (ke N, i = v/—1). Then (see [11])

N
1
e < C, K, NeN
(6) K—N+1H]§{C’“D’°”1~OK?1??NC’°| (cn € )

provided ZkN= x ¢k = 0. Schipp used this result to prove a Sidon type in-
equality for the Dy’s employing the concept of atomic decomposition of the
real non-periodic Hardy space. For this last concept we refer to [8]. {Con-
cerning the method of proof see also [12].) Based on Schipp’s result the
author proved the following shifted Sidon type inequality in [6] by using the
notion of atomic decomposition, certain norm inequalities and the uniform
boundedness of the 1-norms of the Fejér kernels:

N N N
W>Hg;%MM£GO%wtfxﬂg;%

N lcx|
+ Z ck|<1+103+ (N_K-‘rl)ule'v-_-K }c_,|)>

feze I

(ck € C, K, N € N). Then taking the imaginary part in (6) one can derive
(5) by repeating the considerations used in [11] and [6] to prove (7). The
only difference is the necessity of the additional condition SN ek = 0.
The reason behind it is that the Li-norms of the arithmetic means of the
conjugate kernels are not uniformly bounded. w I
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LEMMA 2. There exist absolute positive constants Cv, Ca such that for
any K < N (K,N e N} we have

Crlog(N — K +1) < 1HZ(Dk—DK)H < Cylog(N ~ K +1).

N - K
Proof We may suppose that N — K is large enough. An easy calculation
shows that

1 Al -

VORI J;{(m(ﬁ) — Dk(z))

= cos Kz Fyox (@)

+ (sinKz Fy_gia{(z) - cos Kz) (K,N €N),

where F,, and F, denote the nth (n € N) Fejér and conjugate Fejér kernel
respectively.

Then the upper estimate follows from || D1 < Clog(n + 1} and from
the uniform boundedness of [|Fy.|1 (n € N).

For the lower estimate write

Fy_x1()
_ 1
T N-K+1

Using | Dn(z)| < n/2 (z > x/n) and ||Dy|; < Clog(n +1) (n € N, n > 0)
again we have

(((N -K+1)- DN_.K+1(:U)) cot ?2" + 5N—K+1(T)>-

T ko
S cos Kz Fy_gya1{z) de > % S |cos K'z| cot g dx
0 7w/ (N-K+1}
_ losV — K +1)
N~K+1

> Clog(N — K +1}.
Consequently,

N—_lﬁﬁH i(ﬁk ‘“EK)Hl > Colog(N - K +1). m
ks K

LeMMA 3. Let (cx, k € N) be a sequence of non-negative real numbers.
Then

(An]
A, 2 vleg(ba) =0

implies
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[An]
. T + ([)‘n] n)Ck —
(®) )\l-l-fﬁ nlgréo Z Ck (1 +1log E[Anl g =0
k=n-+1 j=n+4-1"7

Proof. We use the fact that the sum in (8) can be associated with
an Orlicz norm. Let Ls denote the Orlicz space generated by the Young

function oi? . o
1/2)|z o<z <L,
M(z) = {:(L/{ra Jl |'muog|m1 if 2| > 1.
For the definition and properties of Orlicz spaces we refer to [10]. It is known
(see e.g. [6]) that
1 1
(9 |mmmw§m(ru%+wmﬁ<hemw.

Let 4 stand for the characteristic function of 4 C [0,1). If for a complex
vector (ck) = (cj,. .., ¢1) the step function I‘(ck) is defined as follows:

r(ck).{i = Z CuX[(k—7)(1—g+1)~{k—d+1)(I—F+1)7*)

ke=1
then (8) can be written in the form

Jim_ T (] = ) [Pz = 0

In order to prove this form of (8) we modify the cx’s (k € N) as follows:
d ce - if e 2 efk,
ET Vefk ieop <efk,
Since the Orlicz norms are monotonic, 1.e. |hllzy < |92y whenever |h| <
lg| (h,g € Lag), we have
I0(e) 2 e < TRz (€.

Recall that dy > e/k (k € N, k > 0). Consequently, by (9) we have

. T An,
Jim_ T ((an] = )P

(ke N, k>0).

[An]
< lim Tm 3 di(L+log™(ndi))
AL ek
[Ar]
<2 lim §m Y dy, log ™ (kdy)
A—1F n—oo amalt]
C el
: <2 lim Iim Z (cklog™ (kex) +e/k)=0. m
ALt n00
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Proof of Theorem 1. Suppose that f € L, satisfies condition (1).

In our proof of (i) we will need the concept of the generalized de la Vallée

Poussin means, which are defined as

1 [Ar]

Vinf= MTH—HI;S” (neN, A>1).

[An]

It is known that lim, oo ||Vanf — fil = O for any f € Ly and XA > 1.

Therefore limy,.,o0 | Snf — flj1 = 0 is equivalent to

(10) Al—i;nll+ n@o ”VA,nf - Snf“l =0.
Since
[An] k
Vanf(t) - Snf(t) = Z Z a;j cos jt
[)\’.’1] n+l k=n+1 j=n-1
[An] k
Z Z b; sin Jt
[,\n -4+ 1 Momy ey

= Ay {t) + Ban(t)
we see that (10) holds if and only if

lim [im Aanllt =0 and AE[{1+nan; | Ba,nlla = 0.

A—1+ n—oo

Let us start with Ay ,. By an Abel transfromation we bave

_ Dwl-n
(11) Ann= o=t

1
[)m] 7+ 1

(_an+1)Dn

[An]-1

> (M) — k) Aax Dy,
k=m+41
[An]

1
+ ——— E opDy
An] —n+1 it

= A)\,n + Ag\,n + A)\,fn

To estimate the norm of the third term we use the well known inequality

(12) %H ickaH < 01’2;32‘ lex| (e €C, neN)
k=1

that can be easily derived from (7). (For its original proof see [18].) Thus

AL < 02 ,
M5l < O3=7 | max ||
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Since f € Ly implies ar, — 0 as n —+ oo,

Jm 14,1 =0 (A> D).

To estimate HAimill let us reformulate (7) by using (9) as follows:

N N N N
” Z Ck:Dk:Hl < O(log W’ kEKCk’ + (N - K +1)HI‘(Ck)K”LM>
k= IC =

(cx € C, K, N € N). Applying it to A3 , we obtain

[An]—1
1 [An
: E —~k)A

+ C|T((n] = k) Aag)ort ™ ||LM = Xl + Xo.

It is easy to see that Xj converges to 0. Indeed,

o 1 log [)\n | % (@ 1"0:1;:)!
X1= [An] —-n+1 —-n+1 wh

[,\n]
A 1
< Clog | |an41| + ———— aki)
= Og)\—l(la +1| {)\TL] Thnr1 Z+1

< Clog |ak|-

max
A — 1 nt1<k<][An)]

Then similarly to || A3 ,,[1 we can conclude that X; — 0 asn — o0 (A>1).
For Xo we take advanta,ge of the monotony of Orlicz norms. By (9) we

have :
[An]-1

Xy < C(wn]) —n~ 1)|T(Aak)nyi 1|2 0
e (An] = n— 1) Aay
<C Aay| (1 + log™ )
k:Zn—:l-l | E[—m—l V—“aﬂ

Thus by Lemma 3 it is clear that (1) implies

lim fm |43, =0.
A1t n—00

Finally, it is obvious that limy_.i+ iMn_oo |4} ,llz = 0 if and only if
lim, o0 |an|logn = 0. In summary, if (1) holds for f € Ly then

lim fim [|Axnli =0 ifandonlyif lim lay| logn == 0.
A—+1+ n—oo ! . n—

To reach the same conclusion for By , we need a slight modification of the
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above method. We begin with the decomposition that corresponds to (7), i.e.

[An]
] —n 5 - k)4b.D
) Rt R SNY, R S ([An] — k) Abk Dy
Brin [An] —n+ it +1) [n] —n+1 k;—l
) hal
o — by Dy
[An] —n +1 k=§rl

Observe that to estimate the middle term we can only use Lemma 1 if the
sum of the coefficients is zero. To this end let us modify the above decom-

position. Noticing that

Z ([An] — n)Aby == z (b1 — bi)
k=n-4-1 k=n+1
we have
1 [An] _ _
b N (Dy ~ B
Ban = bnya DAl —n+ 1 kgn( k )
L1
[An] —n+1
[n] L bl N
- = ot — b)Y D
x Y (([/\n} k) Aby, Sl = _Z (N bj)) ;
k=n+1 j=n+1
) [An] NS
.t b — b-) By
+[)m]—n—|—1k;l(k [)\n]—njr_zn_l_lj

= B%\,n + B?\,n + Bi,n'

We can basically use the same considerations as for the corresponding A'f\'n
(j = 1,2,3) terms. Indeed, by Lernma 1, (9) and again using the monotony
of the Orlicz norms we have

183 all < c'”r (bk _ W}i_ﬂ_ ‘i”:] bj)[w

" =4l n+tl

<C  max _|bkl
Lar nt1<kL ]

Hence, similarly to || A3 |1, we infer
lim (B}, [li=0 (A>1).
n—0co 4
To estimate ||B} /|1 first observe that the sum of the coefficients is zero and

IR = Rllixp,llzare S 2Ly (b € La).
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Then using Lemma. 1 and following the steps applied for the estimation of
Xsin ||A§,n | we find that the hypothesis of Theorem 1 implies

s [T 9 _
Ji |l (1Bl = 0.

Finally, by Lemma 2 we have
Oy b1 (log(A — 1) +1ogn) < [ B} nli € C2bnga(log(d ~ 1) +logn)

for n large enough. Consequently, limy .1+ imn_c0 || B} ,ll1 = 0 is equiva-
lent t0 limp—vco | B} ulli = 0 (A > 1). Clearly, for the latter it is necessary
and sufficient that lim,— e br logn = 0.

In summary, we have

)\1_1::(11"5r nlgréo |[Banllt =0 if and only if Jim bnlogn = 0.
Part (1) of Theorem 1 is proved.

In order to prove (ii) write

Snf(sc) e i Aay, Dk(x) + i Aby, ﬁk (.’L‘) -+ (an+1Dn(m) + bn+115n(m)).
k=0 k=1

Then
= = 2k +1
ZSingSnf(m)x(Zdaksin(2k;1m)+zzlbkcos( ;m)>
k=0

2n+1
-+ (C!mq_j_ sin (2"1; 1m> ~ Dppt cos( nt x) - by cos —g)

= An(z) + By(z).

By (i) we know that the left side converges to an integrable function h as
n — oo, where h(z) = 2sin(z/2)f(z) (0 < |z| < 7). We will show that the
right side is convergent in the norm of Ly. Hence h € L, which was to be
proved. .

Obviously, littiy— eo By (2) = 0 uniformly in z.

On the other hand, A, converges in the norm of Ly if and only
S0 1 (1Aak[? + | Abg|?) < o0. Tt is easy to see that if (1) holds then

n
Tim Z | Aag|log™ (k| Aax|) < co.

0
k==n-1
MOIGOVBI, WO Inay suppose that

2n
K 1
(13) :':il | Aay|log™ (klAaxl) <5 (n€N).
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For j,n € N define
L={keN: 277 < Agy 279, 2" <k <2V
Then by (13} we have

(5 € N).

L\JI)—'

[EE < > |Aakllog* (klAax|) <

keﬂg n

(|42, 5| denotes the cardinality of £2;,,.) Hence we infer [2j,] < 27 /(n—j~1)
(j<n—1).
As a consequence of (13) we see that |Aag| cannot be too large. Indeed,
Q= W for any j < [logn] (n 2 2). Thus

23+1

gn+t oo
o lawl= 30 > el
k=271 j=[logn] k€5 n

[2n/3] 132 1 2
T
DY anl(ﬁ) +2 (m)

J={logn]
Gn—-j5-1) 28
={log n}
[2n/3]
1 1 1 1
j={log n]

In a similar way we can show that 3 e, |Abk|? < co. The proof of Theo-
rem 1 is complete. m

Proof of Theorem 2. First we note that S O £ is trivial. Suppose
now that (2) holds for (f(k),k € Z) where f € Ly. Then, as mentioned in
Remark 3, there exist p > 1 and C' > 0 such that

[An]
(14) > IRFHARE)

|k =ntl

meN 1<A<g2)

Let 1 < g < p, and let z, > 1 be such that xlogz < 7 whenever & 2 Zq.
Then

Bl . [An]—n
S 1AFk) gt kATR) < €OV -1) YT (*kﬂg\n] )+ )7
s o
D kAf(k)|
PO E l[,\ﬂ &n +27(A — 1)el.

|&|=n-+1
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Clearly, the second term tends to 0 as A — 17. For the first term, by (14}
we have
[An]=-

" kAR Drlon  p AR (R P Y7
A-1 — < (A1 bt A NN
( )\k|=n~|-1 [rn] = n = )(|k|=zn:+1 [An] -n )
[Anl—n
<A - 1)1“‘1/13( Z Eklp_lldf(k)lp)q/p
|k|=n+1

<O —-1) 9P,

Consequently, § 2 Up> 1 £p. In order to show that the inclusion is proper we
use the sequences constructed by Grow and Stanojevié in [7] when discussing
the relation between £y and ), £p. Namely, let

1 1/log? k| if |k| =2", neN, 1/1k

otherwise,

if |k| even & #£ 0,
otherwise.
It is shown in [7] that

Des\|JL, and P el )L\l

P>l p>1

Let ¢ = ¢V -+ c®), We conclude from & 2 U, Lp that both ¢ and ¢
belong to S. Hence, ¢ € S. On the other hand, since

| Acy| > & max{| A}, 1Ac ]}

for k large enough, we have ¢ € ;51 Lp- Consequently,

CES\U,CP.I

p=l
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On strong generation of B(H)
by two commutative C*-algebras

by

K. BERNTZEN (Minster) and A, SOBETYSIAK (Poznaf)

Abstract. The algebra B(H) of all bounded operators on a Hilbert space H is gener-
ated in the strong operator topology by a single one-dimensional projection and a family
of commuting unitary operators with cardinality not exceeding dim H. This answers Prob-
lem 8 posed by W. Zelazko in [6).

Let M be a complex Hilbert space and let S be a subset of the algebra
B(H) of all bounded linear operators on #. We say that the algebra B(H)
iy strongly generated by S if the smallest subalgebra of B(H) closed in the
strong operator topology and containing S coincides with B(H}. The first
result on the strong generation of B(H) was given by C. Davis in [2]. He
proved, in the case when the Hilbert space M is separable, that the algebra
B(H) is strongly generated by two unitary operators. Later, E. Nordgren,
M. Radjabalipour, H. Radjavi, and P. Rosenthal have shown ([3]) that two
Hermitian operators strongly generate B(?), which implies that B(H) is
singly generated as a von Neumann algebra. See also (5], pp. 160-163, for
other results concerning generation of B(H) when 7 is separable. These re-
sults show that for a separable Hilbert space 7 the algebra B (H) is strongly
generatéd by two commutative C*-algebras. In [6] W. Zelazko raised the fol-
lowing

PROBLEM. Is the algebra B(H) of all operators on a comnplex Hilbert
space H always generated in the strong operator topology by two commutative
C*-algebras?

We show that the answer to this question is positive. Namely we prove
the following :

THEOREM. Let ‘H be a complez Hilbert space. The algebra B{H) is
strongly generated by o single one-dimensional (orthogonal) projection and a
commating family of unitary operators with cardinality not exceeding dim K.
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