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The density condition in quotients of
quasinormable Fréchet spaces

by

ANGELA A, ALBANESE (Lecce)

Abstract. It is proved that a separable Fréchet space is quasinormable if, and only
if, every quotient space satisfies the density condition of Heinrich. This answers positively
& conjecture of Bonet and Dfaz in the class of separable Fréchet spaces.

The class of quasinormable locally convex spaces was introduced and
studied by Grothendieck in [9]. Recently Bonet and Dfaz [6, 7] and Diaz and
Fernandez [8] gave a characterization of the quasinormability of Fréchet—
Ké&the sequence spaces of order p, 1 < p < oo or p = (, in terms of the
density condition of their quotient spaces. They proved that a Fréchet-Kothe
sequence space of order p, 1 < p < oo or p = 0, is quasinormable if, and only
if, every quotient space satisfies the density condition of Heinrich [10]. Also,
Bonet and Dfaz conjectured (see [8]) that a Fréchet space is quasinormable if,
and only if, every quotient space meets the density condition. This question
was also recalled in the problem list of [1, Problem 15]. Here we show that,
within the class of separable Fréchet spaces, quasinormable spaces are the
only ones whose quotient spaces have the density condition (Theorem 4),
thereby giving a positive answer to the above question. Morecver, we show
that a separable non-quasinormable Fréchet space has a quotient space with
a normalized basis (Theorem 7). These results extend the previous ones of
Bellenot {2] on Schwartz and non-Schwartz Fréchet—Montel spaces.

1. Notation and preliminaries. In the sequel, given a Fréchet space
E we denote by (|| |x)» 2 fundamental system of increasing seminorms
defining the topology of E such that the sets Uy := {z € B : |z|x £ 1}
form a basis of 0-neighbourhoods in . The dual seminorms are defined by
171} = sup{|f(z)| : « € Uy} for f € E'; hence || ||}, is the gauge of Uy
in E'. We denote by B}, == {f € E' : ||f|l;, < oo} the linear span of Uy
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endowed with the norm topology defined by | ||, Clearly, (B}, || [I4) is a
Banach space and Fj, = (E/ker || ||x, || ||#)'-

Also, given a closed subspace F' of E and denoting by T the canonical
quotient map from F onto F/F, we define the seminorm | | induced by
[ lls on E/F by [Tz| = inf{|ly|s : Ty = To}.

If E is a Fréchet space with a continuous norm, we agsume that each
| % is & norm on E.

A Fréchet space F is called quesinormable if there exists a bounded
subset B of E such that

Yndm>nVe>043A>0: U, CAB+<0,.

By [5, Theorem] and [13, Theorem 7] a Fréchet space ¥ is quasinormable if,
and only if,

(1) Ynadm>nVk>mVe>03M>0: U, c AUy +eU,.

By polarization it follows that a Fréchet space F is quasinormable if, and
only if,

(2) Vndm>navVk>mVe>03A>0: AUSNUL Celyl.

The density condition was introduced by Heinrich in his study of ultra-
powers of locally convex spaces [10]. A Fréchet space F is said to satisfy
the density condition (see [4, Proposition 2]) if for any sequence (\,), of
strictly positive numbers there exists a bounded subset B of E such that

m
(3) VnIm>ndA>0: ([ NU; CAB+Un.
i=1
The density condition was thoroughly studied for Fréchet and Kothe spaces
by Bierstedt and Bonet [4]. It was proved there that a Fréchet space F
satisfies the density condition if, and only if, the bounded subsets of its
strong dual are metrizable. Every quasinormable and every Montel Fréchet
space meets the density condition.
Let E be a Fréchet space. A sequence (zn)n in F is a basis of E if for every
z € E there is a unique sequence of scalars {an)p s0 that ¢ = fo:l Cp .
In this case, the sequence (f,)n C B’ defined by fo.(Zm) = 6pnm is called the
dual basis of {(zy)n.
A sequence (2n), in F which is a basis of its closed linear span [z, :
n € N is called a basic sequence. If || || is a seminorm on [z, : n € N|, then

(Zn)n is a K -basic sequence with respect to | || if for all scalars {@n)r and
integers p and ¢,

r
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g
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Moreover, a basic sequence (z,), in F is said to be normalized if it is
bounded and there exists a 0-neighbourhood ¥ with z,, € U for each n € N.
For all undefined notation we refer to [11, 12].

2. The results. We start with a preliminary result which is the basic
step towards Theorems 4 and 7 and which seems to be interesting in itself.

THEOREM 1. Let E be a separable Fréchet space with a continuous norm.
Let {|| ||n)n be a fundamental sequence of norms for E with dual norms
(I n)n- If E is non-quasinormable, then E has a quotient space F which
has a continuous norm and o basis (2;z);ken with biorthogonal functionals
(gik)jren such that:

(2) (24 )5,ken 15 basic with respect to each norm | |n,

(b) sup{|zjkln: 7 € N} = amp < o0 for all k € N and n < k,

(c) lgsulsy S 1 for all 5,k €N,

(d) limy oo |gjklaq = 0 for all k €N,
where (| |n)r 18 the system of norms induced by (|| ||p}n on F and (| |1)n 4
the system of dual norms on F'.

Proof Let E be a non-quasinormable separable Fréchet space. Then,
by {2),
ImVYm>nIk>mIa>0VA>0: AENU; ¢ ol

Without loss of generality, we may then assume that there is a decreasing
sequence {cy }yen of numbers with 0 < o < 1 so that

Ve ENVASO0: AUR, NUT ¢ axly,
or equivalently
4y VkeN: inf{|flip:fe B, [f1<1 Ifls >} =0
Actually, we bave more. If G = {f € E': f{x) = 0 for all z € L} with L

some finite subset of B, then from (4) it follows that, for each & € N and
0<e< oy,

() el € G, FIE S L4e, IF] > n—e} =0.

To prove (5) assume that L == (z;)]%, is linearly independent. Since || |}
is a norm on E, B is o(E', E)-dense in B’ so we can find {¢;)72; C Ej
such that (z;, g;)7%, is biorthogonal. Then the map P : E — E} defined by
Pf=3"T, f(2)g: is a projection with ker P = G and P is continuous with
respect to each norm [} ||%.

Now, fix k € Nand 0 < £ < o By (4) we can find a sequence (f;); C B}
with |51 < 1, | f5ll > ax for each j € N and lim;_,o I[fjll\i_,_l =0
Then Bmy_,co || Pfj %ty = 0; hence, since P(E]} is finite-dimensional, also
im;ee || Pf;||} = 0. Therefore, there exists a jo € N such that ||Pf;[|} <'e
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for each j > jo. It follows that the sequence (h;)i>jo = (f; — Pfi)izj0 CG
satisfles
IRslly < WAl +1PF 1L S 1+e, bl 2 Ifillk — 1Pfll% > ow — e,

for each 7 > jo. Clearly, also lim;_,cc [|;[}1, = 0. Hence we conclude that
condition (5) holds. .

We can now construct the desired quotient. Our construction is by in-
duction.

Let (dy,)n be a dense sequence in E and Eq the vector subspace it gen-
erates. Let v : N — N2 be a bijective map and put y(n) = (y1(n}, v2(n)).

For n = 1, by (4), we find fyny € Bf with [ Syt 1 15,0 >
Oiyg(1) DA Hf.r(l)Him(l)_{_l < 1. Since Ey is dense in E there is z,¢y € Ep
such that fqy(zyq)) =1

We now consider the space

G2y = {f € B : fzy)) = f(d1) = 0}.

Fix k = y2(n} and € = @y, (r) /2. Then, by (5), we can find f, 2y € G(2) with
Iyl > @n@/2 ol € 1+ ane/2 <2 and |[f@l,ean <
12(2)”'”(2). Since Eg is dense in E, we can choose 2.5y € Ep such that
Frio) (@) = 1 and f1)(Z4() = 0.

Turning to the induction step we assume that we have determined a
biorthogonal system (z.;), fq(i))?__'_“ll such that, for each i =1,...,n ~1,

(€y@)ia C Bo,  fyw(ds) =0, Vigi-1,
IFymlh € 1+ amy9/2 < 2,
vy > Cae /2,
la M n < 227,

Then we consider the space

Gymy={f€ B : flzy) = fldi)=0fori=1,...,n -1}

and we apply condition (5) with k = y2(n) and & = @, (n)/2- So, we find
F1(n) € Gayn) with

”f'r{n)Hll Ll ay,m/2<?,
oy > Camy /2
vy mypn < v2(m) ™7,
Since Hg is dense in F, we can choose Zoy(m) € Eg such that fq«(n)(%(n)) =1

and f,0;y(Ty(n)) = 0fori =1,...,n—1. Proceeding inductively, we construct
a biorthogonal system (2. (n), fy(n))n satisfying

(6) o {(@ym)n C B,
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(7) (f’}’(n)) c E;. and “f"f(ﬂ)“i < 21 vn = NJ
(8) Fyimy(dm) =0, VYneN ¥Ym<n,
(9) “f-y(n)“!fyg(n) > a’)’z('n)/QJ Vn € Na
(10) 1yt ragmyr < 72(n) ™, ¥n e N,

Conditions (6)-(8) mean that the biorthogonal system (Z(n}, fy(n))n
satisfies agsumptions (a) and (b) of Theorem 1 of [3] (see also Proposi-
tion 5 of [3]). Therefore, there exists a subsequence (@y(n(i)); fy(n(e)))i Of
(Zoyn)s f,y(n))n such that the quotient space F == E/ﬂiENker fy(np)y has a
continuous norm and the image of (#,(n())i under the canonical quotient
map T from E onto F is a basis with respect to each norm | |,, induced
by || ll= on F (| |» is a norm on F because [,y ker f,(n()) is closed with
respect to || ||l» for each n by (7)). Moreover, by recalling the proofs of
Proposition 1 and Theorem 1 of [3] it is easy to see that we can choose
the subsequence (v(n(1))); of couples of integers in such a way that, for
each k € N, 1a(n(4)) = k for infinitely many 4. (Indeed, it suffices to re-
peat the proof of Theorem 1 of [3] with minor changes as follows. By (6)—
(8) we can apply Proposition 1 of (3] to (Ey, || [i1), (du)ns (@yinys Fom)In
to obtain a subsequence (ny(i)); so that if My = [\,oyker fy(n, iy and
Ty : (Eo, H ”1) — (Ey, || [l1)/ M is the quotient map, then (Tl(a:,,(m(,,;))))i
is 4-basic in (Eq, | |}1)/My and spans it. Also, by the proof of Proposi-
tion 1 of [3], we can select {n(¢)); in such a way that, for each ¢ € N
12(n(i)) = 2 (d).

Proceeding inductively, we apply Proposition 1 of [3] to (Eu, || [[4), (dn)n,
(To(nn_a())> Frinn_s(i)))é to Obtain a subsequence (nn(i))i of (np—1(i))i so
that if My = ();cn ker fonn () and Tk (Eo, || ||a) — (Eo, || |n)/Mp, then
(Th{Zy(nn))))i is 4-basic in (£o, |l ||n)/Mp and spans it and also, for each
i €N, 72(nn(2)) = 12(i).

Now we consider the diagonal sequence (r;(i)};. Then, for each i € N,
v2(ni(1)) = ¥2(i} and so, for each k € N, v2(n;(¢)) = k for infinitely many <.
From this point on, one proceeds exactly as in the proof of Theorem 1
of [3].)

Thus, for simplicity, we can also denote by (Z(n), f,y(n))n such a subse-
quence.

Now put, for each (j, k) € N?,

zip = 20 k.
Then the vectors z;;, form a basis of F which is basic with respect to each

nort | |n; hence (a) follows.
Also, define gy € F’ by

gie{Tx) = 5 fin(z)-
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Then g;1. is well defined, linear and continuous since F' = E/[ i wen Ker fig.
It is immediate to verify that (z;x, gjr);,ken 18 @ biorthogonal system and so
(gs# )4 ken is the dual basis of (z;k)j,ken. Moreover, if | |1, is the dual norm
of | |n, we have

9ikln = sup |gis(T2)| =3 sup |fin(z)l = 3llFm .

|Te),<1 z]in<1
It follows, by (7}, (9) and (10), that
(11) lgiels €10 lggnli > /4y gsmliqr < 5577,

and so we have (¢} and (d). Finally, since (2;5);xen is basic with respect to
each norm | |, and (g;x);ken is its dual basis, for each k € N there exists
Cy > 0 such that, for each 7 € N, .
115l < |zxle < Cu/lgseli
and so, by using (11), for each k, 5 € N,
|Zikle < 40 /aup,
which implies that (b) holds. Thus the proof is complete.

In order to state and prove our first main result we also need the following
two technical lemmas. The first one, due to Bonet and Diaz [7] and stated
in a dual version in [8, Lemma 1], gives sufficient conditions to ensure that
a Fréchet space F does not satisfy the density condition.

LemmMA 2. Let E be a Fréchet space. Assume we can find (zi5); jen in
E and (gi5)i,jen tn B’ with the following properties:

(a) gij(zi5) =1 for all i,j € N,

(b) llgs;]l3 < 1 for alli,j € N,

(c) sup{||zin]l; :1 €N, n>j} < o0 forallj €N,

(d) lim;. o0 ||gij|\;;+1 =0 forall 7 e N
Then F does not satigfy the density condition.

LemMA 3. If E is a non-quasinormable Fréchet space, then it has o
guotient space which is non-quasinormable and has a continuous norm.

Proof. Suppose E is a non-quasinormable Fréchet space. Then, by (1),
INENYM>nIk>mI>0VA>0: Uy ¢ Ny -+ el

Put F = E/ker|| {». Then F has a continuous norm and (T'(Up))m is a
basis of 0-neighbourhoods in F such that

Vm>n3k>mae>0VA>0: T(Uy) ¢ AT(Us) + eT(Uy).
This means, by (1), that F' is non-quasinormable. The proof is complete.

We now have our main result which gives a positive answer to a conjec-
ture of Bonet and Diaz in the setting of separable Fréchet spaces.
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THEOREM 4. A separable Fréchet space E is quasinormable if, and only
if, every quotieni space satisfies the density condition.

Proof. Every quotient space of a quasinormable space is again quasi-
normable and, hence, satisfies the density condition. Thus the necessity of
the condition follows.

We now suppose that £ is a separable non-quasinormable Fréchet space.
By Lemma 3 we may assume that E has a continuous norm. Let (|| [jn)n
be a fundamental sequence of norms for F. Then, by Theorem 1, E has a
quotient space F' which has a continuous norm and a basis (z;%); ken With
biorthogonal functionals (gjx);ren satisfying conditions {(a)—(d) of Theo-
rem 1.

We will show that F has a quotient space without the density condition,
hence so does E. To see this we write the first N in NxN as a countable union
of disjoint infinite subsets, hence we may write (z,;jk, Gigh )i,5,keN instead of
(%3k> 95k )j,ken- Thus,

(12) sup{|zijrin 14,7 € N} = anpp <00, VkeEN, ¥n <k,
(13) |lgielt €1, Vi j,keN,
(14) '.'}«1—»120 ;gl’jkrk-i-l = 9, VJ: ke Na

where | |,, denotes the norm induced by || |j» on F and | |/, the dual norm
of | |-
Now, proceeding in a similar way to [§], we put

oy Jmax{|gigaliy 1 <s<G) i<k,
C("d:.?’k)"'{l a4 iflSkS]
We also define

_ - e(4,9: k)
gi  F — R m—)Zgijk(m) ( oE
k=1

Then, by (13), for each 1,7 € N we have

o

T (@) < ey Y 127 <l
k=1

Therefore, for each ¢,5 € N,
(15) : |gisly € 1.
Moreover, by (13) again,

- ] t ek S o cld, a9, k)
155 (2)| < lolian (D lgisklfa2 ™+ 9iiklj41— 55—
k=1 k>3

< max{|ginliey 0 1<Kk < Gl
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then [y |51 < max{|ginlfp o1 < k < 5}, where max{|girliy : LSk <5}
< max{|gialfy, 1 1 < k < g} and so, by (14),

(16) 11_1_)1’{)10 |§ij|;ﬁ+l = 0.

Now we are ready to construct the desired quotient space.

Let G = [ jen kergy;. We consider the quotient space F/ G, with quo-
tient map S : F — F/@, and we check that it does not satisfy the density
condition.

We denote by (|| [ln)» the quotient norms induced by (| |n)n on F/G
(each [|| ||l is & norm because G is closed with respect to each | [n) and put,
for each 7,7 € N,

Eij(sm) = ?ij(m)-
Clearly ;; is well defined, linear and continuous, Further, since |71l =
17411, for each 4,7, n € N, it follows from (15) and (16) that

l“ﬁ;mfl <1 and EH&!HEUH\;H =0

hence conditions (b) and (d) of Lemma 2 hold. ~

Next, put %i; = §(22;;1) for each 4,j € N. Then g,,(%i;) = 813055, imply-
ing that condition (a) of Lemma 2 is also satisfied. Finally, fix j € N. Given
n > j, we observe that 22,1 — 29 2in; € G and so, by (12),

IZenllly < 1220m1 — (22im1 — 2 200y < 2 l2msls < 2oy
it follows that sup{|||Zin|l; : i € N, n > j} < co for each j € N and hence
condition (c) of Lemma 2 is also satisfled, Thus, Lemma 2 can be applied

to conclude that F/G does not satisfy the density condition and the result
follows.

Remark. The quotient space F/G in the above proof can be con-
structed in such a way that it also has a basis. To see this, we proceed
as follows,

We use the notation of Theorems 1 and 4. Let e, be equal to T(d,)
for cach n € N. Then (en)n i a dense sequence in F; let Fy be the vector
subspace it generates, Now, we observe that from the proof of Theorem
1 it follows that the biorthogonal system (zjx,gjk)jken, besides satisfying

conditions {a)-(d) of Theorem 1, has the following properties:
(2jk)s0en C Fo,  gsulen) =0 for each j,k € N with y71(j, k) > n.

Next, for each k € N we write (2ijk, gijk)i,jen instead of (zjk, gix)jen S0 as
to have -

ga}jk(en) =10
for each 7 € N and i sufficiently large (depending only on n).
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Now, defining §;; € F as in the proof of Theorem 4, we see that (i5)i5 C
Fy, the sequence (2zi51});,; C Fp is biorthogonal to (g;;)s,;, and Gij(en) =0
for each j € N and 7 sufficiently large (depending only on n). Then we can
proceed exactly as in the proof of Theorem 1 to conclude that there is a
quotient space F/G, with quotient map S, such that (5(2z;1))s,; is a basis
of G whose biorthogonal functionals are defined by

4 (Sz) = gy;().
Also, G has a continuous norm and does not satisfy the density condition
as can be shown by repeating the same argument of Theorem 4.

As an immediate consequence we obtain a well known result of Bellenot
[2, Corollary 5.3]:

COROLLARY 6. A Fréchet space E is Schwartz if, and only if, every
quotient space iz Montel.

Finally, from Theorem 1 we also obtain the following:

THEOREM 7. Let E be a separable Fréchet non-quasinormable space.
Then E has an infinite-dimensional quotient space with o continuous norm
and with a normalized basis.

Proof Let F be a separable Fréchet non-quasinormable space. By Lem-
ma 3, we may assume that F has a continuous norm. Let (|| {|n)n be a fun-
damental sequence of norms for E. Then, by Theorem 1, F has a quotient
space F' which has a continuous norm and a basis {z;)jken with biorthog-
onal functionals {g;r);ken satisfying conditions (a)—(d) of Theorem 1.

We will show that F has a quotient space with a continucus norm and
with a normalized basis, and hence so does E.

We define, for each j € N,

0o oz
g;: F—=R, z— 9_5’..2_?(0__),
k=1
By (b) and (c) of Theorem 1, it follows that, for each j, ks € N,
a7) 27 Fagy < lgglk < losh < 1,

where | |,, denotes the norm induced by || ||, on F and | ||, the dual norm
of | |n. '

Now, using the notation of Theorem 1, let e, be equal to T'(d,) for each
n € N. Then (e,), is a dense sequence in F'; let F be the vector subspace
it generates. Moreover, g;(en) = 0 for j sufficiently large (depending on n).
Put z; = 224 for each § € N, (2;); C Fp and is biorthogonal to {g;};, as is
easy to verify. We can then apply Theorem 1 of [3] to conclude that there
exists a subsequence (Z;(i), gjs))i Of (25,9;); such that the quotient space

G = F/(;en ker gj(iy has a continuous norm and the image of (z;(;)); under
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the quotient map S from F onto G is a basis with respect to each norm
Il llln induced by | | on G.
Next, we observe that the functionals defined by

Ty (52) = gj0) ()
form the dual basis of {Sz;(;)); and, for eachiand nin K, 1T 11n = 195015
Then, by (17),

(18) 2 oy < Tl < 135l < 1

for each i, k € N. Since (Sz;;))i is basic with respect to each ||} [|[n, for each
k € N there exists a constant Cy > 0 so that

lIFs0 1 < WSzl < Cr/llF;0lk
for each 1 € N. This together with (18) implies that, for each i,k € N,
1< 1875l < 1Szienllls < 2" arCh.
Thus, (5z;(;)): is a normalized basis of & and the proof is complete.
Theorem 7 implies a well known result of Bellenot [2, Theorem 5.1].

COROLLARY 8. Let E be a Montel Fréchet non-Schwarty space. Then E
has an infinite-dimensional quotient space with a normalized basis.

Thus, Theorems 4 and 7 are proper extensions of Theorem 5.1 and Corol-
lary 5.2 of [2] to the case of separable quasinormable and non-quasinormable
Fréchet spaces.
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