

(3789)

96

- [Pl1] W. Pleśniak, On superposition of quasianalytic functions, Ann. Polon. Math. 26 (1972), 73-84.
- [P12] —, Remarques sur une généralisation de l'inégalité de S. Bernstein, C. R. Acad. Sci. Paris Sér. A 284 (1977), 1211-1213.
- [P13] —, Markov's inequality and the existence of an extension operator for C^{∞} functions, J. Approx. Theory 61 (1990), 106-117.
- [Sa] A. Sadullaev, An estimate for polynomials on analytic sets, Math. USSR-Izv. 20 (1983), 493-502.
- [Si1] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357.
- [Si2] $\stackrel{--}{\longrightarrow}$, Extremal plurisubharmonic functions in \mathbb{C}^n , Ann. Polon. Math. 39 (1981), 175-211.
- [Si3] —, Rapid polynomial approximation on compact sets in \mathbb{C}^n , Univ. Iagell. Acta Math. 30 (1993), 145–154.
- [Sin] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer, Berlin, 1970.
- [Z] A. Zeriahi, Inégalités de Markov et développement en série de polynômes orthogonaux des fonctions C[∞] et A[∞], in: Proc. Special Year of Complex Analysis of the Mittag-Leffler Institute 1987-88, J. F. Fornaess (ed.), Princeton Univ. Press. Princeton, N.J., 1993, 693-701.

Institute of Mathematics
Jagiellonian University
Reymonta 4
30-059 Kraków, Poland
E-mail: baran@im.uj.edu.pl
plesniak@im.uj.edu.pl

Received December 2, 1996 Revised version February 24, 1997

STUDIA MATHEMATICA 125 (1) (1997)

An irreducible semigroup of idempotents

by

ROMAN DRNOVŠEK (Ljubljana)

Abstract. We construct a semigroup of bounded idempotents with no nontrivial invariant closed subspace. This answers a question which was open for some time.

Let $\mathcal{B}(X)$ denote the algebra of all bounded linear operators on a (real or complex) Banach space X. A (multiplicative) semigroup \mathcal{S} in $\mathcal{B}(X)$ is said to be *irreducible* if the only closed subspaces of X invariant under all members of \mathcal{S} are $\{0\}$ and X. Otherwise, \mathcal{S} is called *reducible*. An operator $P \in \mathcal{B}(X)$ is called *idempotent* if $P^2 = P$. In this note we answer the following question negatively:

Is every semigroup of idempotents reducible?

It seems that this problem was first considered by Heydar Radjavi [3]. He proved that a semigroup \mathcal{S} of idempotents on a Hilbert space is reducible provided \mathcal{S} contains a nonzero finite-rank operator. The above question was explicitly mentioned in the paper [1] by P. Fillmore, G. MacDonald, M. Radjabalipour and H. Radjavi, where it was shown that a finitely generated semigroup of idempotents on a Banach space is reducible. Recently, the problem has also been mentioned in the survey article [4] by H. Radjavi.

Our construction of an irreducible semigroup of idempotents was inspired by the construction of a weakly dense semigroup of nilpotent operators (see [2]).

THEOREM. There exists a semigroup S of idempotents on the Hilbert space l^2 , which is weakly dense in $\mathcal{B}(l^2)$. In particular, the semigroup S is irreducible.

Proof. If A and B are $k \times k$ matrices, then let $P_{A,B}$ be the $3k \times 3k$ matrix

This work was supported by the Research Ministry of Slovenia.

¹⁹⁹¹ Mathematics Subject Classification: Primary 47A15, 47D03.

Key words and phrases: invariant subspaces, idempotents, operator semigroups.

An irreducible semigroup of idempotents

99

$$P_{A,B} = \begin{bmatrix} A \\ A \\ I \end{bmatrix} \begin{bmatrix} B & -B & I \end{bmatrix} = \begin{bmatrix} AB & -AB & A \\ AB & -AB & A \\ B & -B & I \end{bmatrix},$$

where I is the identity matrix of order k. Let $T_{A,B}$ be the infinite blockdiagonal matrix

$$T_{A,B} = \text{diag}\{D_0, D_1, D_2, D_3, \ldots\},\$$

where the block D_i is equal to $P_{A,B}$ if the number i is representable in the ternary system by 0's and 1's only, and D_i equals the identity matrix of order 3k otherwise. We regard $T_{A,B}$ as an operator on the Hilbert space l^2 . It is easy to see that $T_{A,B} T_{C,D} = T_{A,D}$ for all $k \times k$ matrices A, B, C and D. In particular, $T_{A,B}^2 = T_{A,B}$.

For each n = 0, 1, 2, 3, ... let S_n denote the set of all operators $T_{A.B}$ as A and B range over all $3^n \times 3^n$ matrices, and let S be the union of all S_n . It is clear that S_n is a semigroup of idempotents. If $T_{A,B} \in S_n$ and $S \in S_m$ with m < n, then there exists a $3^n \times 3^n$ matrix M such that

$$S = \text{diag}\{C_0, C_1, C_2, C_3, \ldots\},\$$

where the block C_i is equal to M if the number i is representable in the ternary system by 0's and 1's only, and C_i equals the identity matrix of order 3^n otherwise. Since

$$\begin{bmatrix} A \\ A \\ I \end{bmatrix} \begin{bmatrix} B & -B & I \end{bmatrix} \begin{bmatrix} M & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & I \end{bmatrix} = \begin{bmatrix} A \\ A \\ I \end{bmatrix} \begin{bmatrix} BM & -BM & I \end{bmatrix},$$

we have $T_{A,B}S = T_{A,BM}$. We conclude similarly that $ST_{A,B} = T_{MA,B}$, and so $S_m S_n \subseteq S_n$ and $S_n S_m \subseteq S_n$ for all m and n with m < n. Therefore, S is a semigroup of idempotents on l^2 .

In order to prove that S is weakly dense in the algebra $\mathcal{B}(l^2)$ we first observe that

$$||T_{A,B}||^2 \le 4||AB||^2 + 2||A||^2 + 2||B||^2 + 1 \le (2||A||^2 + 1)(2||B||^2 + 1)$$

for all A and B. Choose $T \in \mathcal{B}(l^2)$ and $x, y \in l^2$. For each $n \in \mathbb{N}$ there exists an operator $T_n := T_{A,I} \in \mathcal{S}_n \subseteq \mathcal{S}$ such that the matrix of $T - T_n$ is of the form

$$\begin{bmatrix} 0 & U \\ V & W \end{bmatrix}$$
,

where the 0 is $3^n \times 3^n$ zero matrix. Writing $x = (x_1, x_2)$ and $y = (y_1, y_2)$ with respect to the same decomposition of the space l^2 , we have

$$|\langle (T-T_n)x,y\rangle| \leq ||U|| \cdot ||x_2|| \cdot ||y_1|| + ||V|| \cdot ||x_1|| \cdot ||y_2|| + ||W|| \cdot ||x_2|| \cdot ||y_2||.$$

Since $||x_1|| \le ||x||$, $||y_1|| \le ||y||$ and

$$\max\{\|U\|, \|V\|, \|W\|\} \le \|T - T_n\| \le \|T\| + \|T_n\|$$

$$\le \|T\| + \sqrt{3(2\|A\|^2 + 1)}$$

$$\le \|T\| + \sqrt{3(2\|T\|^2 + 1)} =: K,$$

we obtain

$$|\langle (T - T_n)x, y \rangle| \le K(||y|| \cdot ||x_2|| + ||x|| \cdot ||y_2|| + ||x_2|| \cdot ||y_2||)$$

If n is sufficiently large, then $\max\{||x_2||, ||y_2||\}$ is arbitrarily small, which implies that the semigroup S is weakly dense in $\mathcal{B}(l^2)$. From this it follows easily that S is an irreducible semigroup.

References

- P. Fillmore, G. MacDonald, M. Radjabalipour and H. Radjavi, Towards a classification of maximal unicellular bands, Semigroup Forum 49 (1994), 195-215.
- D. Hadwin, E. Nordgren, M. Radjabalipour, H. Radjavi and P. Rosenthal. A nil algebra of bounded operators on Hilbert space with semisimple norm closure, Integral Equations Operator Theory 9 (1986), 739-743.
- H. Radjavi, On the reduction and triangularization of semigroups of operators, J. Operator Theory 13 (1985), 65-71.
- -, Invariant subspaces and spectral conditions on operator semigroups, in: Linear Operators, Banach Center Publ. 38, Inst. Math., Polish Acad. Sci., 1997, 287-296.

Faculty of Mathematics and Physics University of Liubliana Jadranska 19 1000 Ljubljana, Slovenia

E-mail: roman.drnovsek@fmf.uni-lj.si

Received January 9, 1997 (3818)