Pointwise multipliers on weighted BMO spaces

by

EIICHI NAKAI

Abstract. Let E and F be spaces of real- or complex-valued functions defined on a set X. A real- or complex-valued function g defined on X is called a pointwise multiplier from E to F if the pointwise product fg belongs to F for each $f \in E$. We denote by $\text{PWM}(E, F)$ the set of all pointwise multipliers from E to F. Let X be a space of homogeneous type in the sense of Coifman–Weiss. For $1 \leq p < \infty$ and for $\phi : X \times \mathbb{R}_+ \to \mathbb{R}_+$, we denote by $\text{bmo}_\phi(X)$ the set of all functions $f \in L^p_{\text{loc}}(X)$ such that

$$\sup_{a \in X, r > 0} \frac{1}{\phi(a, r)} \left(\frac{1}{\mu(B(a, r))} \int_{B(a, r)} |f(x) - f_{B(a, r)}|^p \, d\mu \right)^{1/p} < \infty,$$

where $B(a, r)$ is the ball centered at a and of radius r, and $f_{B(a, r)}$ is the integral mean of f on $B(a, r)$. Let $\text{bmo}_2(X) = \text{bmo}_{\phi_1}(X)$ and $\text{bmo}_1(X) = \text{bmo}_{\phi_1}(X)$. In this paper, we characterize $\text{PWM}(\text{bmo}_{\phi_1}, \text{p}_1(X), \text{bmo}_{\phi_2}, \text{p}_2(X))$. The following are examples of our results.

\begin{align*}
\text{PWM}(\text{bmo}_{\phi(1/r)}^{-\alpha}((T^n), \text{bmo}_{\phi(1/r)}^{-\beta}((T^n))) & = \text{bmo}_{\phi(1/r)}^{-\alpha - \beta - 1}(T^n), \quad 0 \leq \beta < \alpha < 1, \\
\text{PWM}(\text{bmo}_{\phi(1/r)}^{-\alpha - 1}(T^n), \text{bmo}(T^n)) & = \text{bmo}_{\phi(1/r) + 1}(T^n), \\
\text{PWM}(\text{bmo}(T^n), \text{bmo}_{\phi(1/r)}^{-\alpha - 1}(T^n)) & = \text{bmo}(T^n), \quad 1 < p < \infty.
\end{align*}

1. Introduction. Let E and F be spaces of real- or complex-valued functions defined on a set X. A real- or complex-valued function g defined on X is called a pointwise multiplier from E to F if the pointwise product fg belongs to F for each $f \in E$. We denote by $\text{PWM}(E, F)$ the set of all pointwise multipliers from E to F.

For L^p-spaces on a σ-finite measure space X, it is known that

$$\text{PWM}(L^{p_1}(X), L^{p_2}(X)) = L^{p_3}(X), \quad 1/p_1 + 1/p_2 = 1/p_3.$$

The purpose of this paper is to characterize

$$\text{PWM}(\text{bmo}_{\phi_1}, p_1(X), \text{bmo}_{\phi_2}, p_2(X)).$$

Keywords and phrases: multiplier, pointwise multiplier, bounded mean oscillation, space of homogeneous type.
where \(\text{bmo}_{\phi_i, p_i}(X) \) \((i = 1, 2)\) are function spaces defined using the mean oscillation and weight functions \(\phi_i : X \times \mathbb{R}_+ \to \mathbb{R}_+ \) \((i = 1, 2)\).

Janson [6] characterized PWM \((\text{bmo}_o(T^n), \text{bmo}_o(T^n))\) on the \(n\)-dimensional torus \(T^n\) for a weight function \(\phi : \mathbb{R}_+ \to \mathbb{R}_+ \). His result was extended in [13–15] to the cases of the \(n\)-dimensional Euclidean space \(\mathbb{R}^n\) and spaces of homogeneous type. Bloom [2], Gotoh [5] and Yabuta [18] have also characterized pointwise multipliers from a weighted BMO space to itself. In this paper, we consider pointwise multipliers from \(\text{bmo}_{\phi_1, p_1}(X) \) to \(\text{bmo}_{\phi_2, p_2}(X) \).

Let \(X = (X, d, \mu) \) be a space of homogeneous type in the sense of Coifman–Weiss [3, 4], i.e., \(X \) is a topological space endowed with a Borel measure \(\mu \) and a quasi-distance \(d \) such that \(d(x, y) \geq 0, d(x, x) = 0 \) if and only if \(x = y \), \(d(x, y) = d(y, x) \), \(d(x, y) \leq K_1(d(x, z) + d(z, y)) \), \(x, y, z \in X \),

\[
d(x, y) \leq K_1(d(x, z) + d(z, y)), \quad x, y, z \in X,
\]

the balls \(B(x, r) = \{y \in X : d(x, y) < r\} \) centered at \(x \) and of radius \(r > 0 \) form a basis of open neighborhoods of the point \(x \), and

\[
0 < \mu(B(x, 2r)) \leq K_2 \mu(B(x, r)) < \infty, \quad x \in X, \ r > 0.
\]

We assume that there are constants \(a_0 \) \((0 < a_0 \leq 1)\) and \(K_3 \geq 1 \) such that

\[
d(x, z) - d(y, z) \leq K_3(d(x, z) + d(y, z))^1 - a_0 d(y, z)^a_0, \quad x, y, z \in X.
\]

If \(d \) is a distance, then (1.1) and (1.3) hold for \(K_1 = K_3 = a_0 = 1 \).

For a function \(f \in L^1_{\text{loc}}(X) \) and for a ball \(B \), let

\[
f_B = \frac{1}{\mu(B)} \int_B f(x) \, d\mu, \quad \text{MO}_p(f, B) = \frac{1}{\mu(B)} \int_B |f(x) - f_B| \, d\mu.
\]

For \(1 \leq p < \infty \) and for \(\phi : X \times \mathbb{R}_+ \to \mathbb{R}_+ \), let

\[
\text{MO}_p(f, B(a, r)) = \left(\frac{1}{\mu(B(a, r))} \right)^{1/p} \int_{B(a, r)} |f(x) - f_{B(a, r)}|^p \, d\mu,
\]

\[
\text{MO}_{\phi, p}(f, B(a, r)) = \frac{1}{\phi(a, r)} \text{MO}_p(f, B(a, r)).
\]

We define

\[
\text{BMO}_{\phi, p}(X) = \{ f \in L^p_{\text{loc}}(X) : \sup_B \text{MO}_{\phi, p}(f, B) < \infty \},
\]

\[
\|f\|_{\text{BMO}_{\phi, p}} = \sup_B \text{MO}_{\phi, p}(f, B),
\]

\[
\|f\|_{\text{bmo}_{\phi, p}} = \|f\|_{\text{BMO}_{\phi, p}} + \|f_{B(x_0, 1)}\|_{\text{BMO}_{\phi, p}} \quad \text{for fixed } x_0 \in X.
\]

Let \(\text{bmo}_o(X) = \text{bmo}_{\phi, p}(X) \) for \(p = 1 \) and \(\text{bmo}_o(X) = \text{bmo}_{\phi}(X) \) for \(\phi \equiv 1 \). Then \(\text{bmo}_{\phi, p}(X) \) is a Banach space under the norm \(\|f\|_{\text{bmo}_{\phi, p}} \). The closed graph theorem shows that every pointwise multiplier from \(\text{bmo}_{\phi_1, p_1}(X) \) to \(\text{bmo}_{\phi_2, p_2}(X) \) is a bounded operator. For each ball \(B(x_1, r_1), \|f\|_{\text{BMO}_{\phi, p}} + \|f_{B(x_1, r_1)}\|_{\text{BMO}_{\phi, p}} \) is comparable to \(\|f\|_{\text{bmo}_{\phi, p}} \) (see (3.2)). Moreover, if \(\mu(X) < \infty \), then \(\|f\|_{\text{BMO}_{\phi, p}} + \|f_{B(x_0, 1)}\|_{\text{BMO}_{\phi, p}} \) is comparable to \(\|f\|_{\text{bmo}_{\phi, p}} \) (see (1.16)).

Usually, \(\text{bmo}_{\phi, p} \) is denoted by \(\text{BMO}_{\phi, p} \) and equipped with the seminorm \(\|f\|_{\text{BMO}_{\phi, p}} \). Then \(\text{BMO}_{\phi, p} \) modulo constants is a Banach space. But the pointwise multipliers are defined on function spaces or on such spaces modulo null-functions. To consider pointwise multipliers, the space \(\text{bmo}_{\phi, p} \) is therefore more suitable than \(\text{BMO}_{\phi, p} \).

For \(1 \leq p < \infty \) and \(\phi : X \times \mathbb{R}_+ \to \mathbb{R}_+ \), let

\[
L_{\phi, p}(X) = \left\{ f \in L^p_{\text{loc}}(X) : \sup_{B(a, r)} \frac{1}{\phi(a, r)} \max_{a, r} \left(\frac{1}{\phi(a, r)} \right)^{1/p} \right\},
\]

\[
\|f\|_{L_{\phi, p}} = \sup_{B(a, r)} \frac{1}{\phi(a, r)} \max_{a, r} \left(\frac{1}{\phi(a, r)} \right)^{1/p},
\]

and \(L_{\phi, p}(X) = L_{\phi, p}(X) \) for \(p = 1 \). If \(\phi \equiv 1 \) then \(L_{\phi, p}(X) = L^p(X) \). Let \(X_0 = \{ x \in X : \phi(x, r) \to 0 \text{ as } r \to 0 \} \). If \(f \in L_{\phi, p}(X) \), then \(f(x) = 0 \) a.e. \(x \in X_0 \).

We shall consider the following conditions on \(\phi \):

\[
1 \leq \frac{1}{A_1} \leq \frac{\phi(a, s)}{\phi(a, r)} \leq A_1, \quad \frac{1}{2} \leq \frac{s}{r} \leq 2,
\]

\[
\frac{\phi(a, r)}{\phi(a, s)} \leq A_2 \frac{s}{s_0}, \quad 0 < s < r,
\]

\[
\frac{\mu(B(a, t))^{1/p} \frac{\phi(a, t)}{t}}{t} \leq A_3 \mu(B(a, r))^{1/p} \phi(a, r), \quad r > 0,
\]

\[
\frac{1}{A_4} \leq \frac{\phi(a, r)}{\phi(b, r)} \leq A_4, \quad d(a, b) \leq r,
\]

where \(A_1 > 0 \) \((i = 1, 2, 3, 4)\) are independent of \(r, s > 0, a, b \in X \).

If there is a constant \(A_5 > 0 \) such that

\[
\frac{\phi(a, r)}{\phi(b, r)} \leq A_5 \frac{b}{a} \quad \text{for } B(a, r) \subset B(b, s),
\]

then, for \(1 < p < \infty \), we have

\[
\text{bmo}_{\phi, p}(X) = \text{bmo}_o(X) \quad \text{and} \quad \|f\|_{\text{bmo}_o} \leq \|f\|_{\text{bmo}_{\phi, p}} \leq C_p \|f\|_{\text{bmo}_o},
\]

by Hölder’s inequality and John–Nirenberg’s inequality.

For \(\mu(X) = \infty \), we shall consider the following condition. There are constants \(r_0 \geq 0 \) and \(A_6 > 0 \) such that

\[
\left\{ \int_{r_0}^{r} \frac{\phi_2(x_0, t)}{\phi_1(x_0, t)} \mu(B(x_0, t)) \frac{d(B(x_0, t))}{t} \right\}^{1/p} \leq A_6 \left(\int_{r_0}^{r} \frac{\phi_2(x_0, t)}{\phi_1(x_0, t)} \mu(B(x_0, r)) \right)^{1/p}, \quad r > r_0.
\]
The following are equivalent (see Lemma 5.2 of [15]):

\[B(x_0, K_4 r) \setminus B(x_0, r) \neq \emptyset, \quad r > r_0, \text{ for some } K_4 > 1, \]

\[\mu(B(x_0, r)) \leq \frac{1}{2} \mu(B(x_0, K_5 r)), \quad r > r_0, \text{ for some } K_5 > 1, \]

\[\int_{r_0} B(x_0, t) \mu(B(x_0, r)) \leq K_6 \mu(B(x_0, r)), \quad r > r_0, \text{ for some } K_6 > 0, \]

where \(K_4, K_5 \) and \(K_6 \) are independent of \(r \). On the assumption that (1.10) holds, if there are constants \(A_7 > 0 \) and \(\varepsilon > 0 \) such that

\[\left(\frac{\phi_2(x_0, r)}{\phi_1(x_0, r)} \right)^{p+\varepsilon} \mu(B(x_0, r)) \leq A_7 \left(\frac{\phi_2(x_0, s)}{\phi_1(x_0, s)} \right)^{p+\varepsilon} \mu(B(x_0, s)), \quad r_0 < r < s, \]

then (1.9) holds.

For \(\Phi \), we define

\[\Phi^*(a, r) = \Phi^*_a(a, r) = \int_1^{\max(2, d(x_0, a), r)} \frac{\phi(x_0, t)}{t} \, dt, \]

\[\Phi^{**}(a, r) = \Phi^{**}_a(a, r) = \int_r^{\max(2, d(x_0, a), r)} \frac{\phi(a, t)}{t} \, dt. \]

If \(\phi \) satisfies (1.4) and (1.7), then, for each \(x_1 \in X \), \(\Phi^*_a + \Phi^{**}_a \) is comparable to \(\Phi^*_a + \Phi^{**}_a \). For \(\Phi_i (i = 1, 2, 3) \), we define \(\Phi_i^* \) and \(\Phi_i^{**} \) by (1.14) and (1.15), respectively.

The letter \(C \) will always denote a constant, not necessarily the same one.

Our results are the following.

Theorem 1.1. Suppose that \(\Phi_1 \) satisfies (1.4)–(1.8) for some \(p_1 (1 \leq p_1 < \infty), \phi_2 \) satisfies (1.4), (1.7) and (1.8), and \(\phi^*_a + \phi^{**}_a \) \(\phi^{**}_a \). If \(\mu(X) = 0 \), then assume that (1.9) holds with \(p = 1 + \varepsilon \) for some \(\varepsilon > 0 \). Let \(\Phi_2 \) and \(\Phi_3 \) by (1.4) and (1.7), respectively.

The letter \(C \) will always denote a constant, not necessarily the same one.

Our results are the following.

Theorem 1.1. Suppose that \(\phi_1 \) satisfies (1.4)–(1.8) for some \(p_1 (1 \leq p_1 < \infty), \phi_2 \) satisfies (1.4), (1.7) and (1.8), and \(\Phi^*_a + \Phi^{**}_a \) \(\phi^{**}_a \). If \(\mu(X) = 0 \), then assume that (1.9) holds with \(p = 1 + \varepsilon \) for some \(\varepsilon > 0 \). Let \(\Phi_2 \) and \(\Phi_3 \) by (1.4) and (1.7), respectively.

Corollary 1.2. Under the assumptions of Theorem 1.1, if \(\Phi^*_a + \Phi^{**}_a \leq C \phi_2 / \phi_1 \), then

\[\text{PWM}(\text{bmo}_{\phi_1}(X), \text{bmo}_{\phi_2}(X)) = \text{bmo}_{\phi_3}(X). \]

Moreover, the operator norm of \(g \in \text{PWM}(\text{bmo}_{\phi_1}(X), \text{bmo}_{\phi_2}(X)) \) is comparable to \(\|g\|_{\text{bmo}_{\phi_3}} + \|g\|_{L^{\phi_2} / \phi_1}. \)

Corollary 1.3. Under the assumptions of Theorem 1.1, if \(\Phi_2 \leq C \phi_2 / \phi_1 \), then

\[\text{PWM}(\text{bmo}_{\phi_1}(X), \text{bmo}_{\phi_2}(X)) = \text{bmo}_{\phi_3}(X). \]

Moreover, the operator norm of \(g \in \text{PWM}(\text{bmo}_{\phi_1}(X), \text{bmo}_{\phi_2}(X)) \) is comparable to \(\|g\|_{\text{bmo}_{\phi_3}} + \|g\|_{L^{\phi_2} / \phi_1}. \)

Theorem 1.6. Let \(1 < p_2 < p_1 < \infty \) and \(p_2, p_3 \geq p_1 + p_2 \). Suppose that \(\phi_1 \) and \(p_1 \) satisfy (1.4)–(1.7), \(\phi_2 \) satisfies (1.4) and (1.7), and \(\Phi^*_a + \Phi^{**}_a \) \(\phi^{**}_a \). If \(\mu(X) = 0 \), then assume that (1.9) holds with \(p = p_2 \). Let \(\phi_3 \) and \(\phi_4 \) by (1.4) and (1.7), respectively.

Corollary 1.7. Under the assumptions of Theorem 1.6, if \(\Phi^*_a + \Phi^{**}_a \leq C \phi_2 / \phi_1 \), then

\[\text{PWM}(\text{bmo}_{\phi_2}(X), \text{bmo}_{\phi_4}(X)) = \text{bmo}_{\phi_3}(X). \]

Moreover, the operator norm of \(g \in \text{PWM}(\text{bmo}_{\phi_2}(X), \text{bmo}_{\phi_4}(X)) \) is comparable to \(\|g\|_{\text{bmo}_{\phi_3}} + \|g\|_{L^{\phi_2} / \phi_1}. \)
Moreover, the operator norm of \(g \in \operatorname{PWM}(\bmo_{\phi_1, p_1}(X), \bmo_{\phi_2, p_2}(X)) \) is comparable to \(\|g\|_{\bmo_{\phi_2}} \).

Theorem 1.8. Let \(1 \leq p_2 \leq p_1 < \infty \). Suppose that \(\phi \) and \(p_1 \) satisfy (1.4)–(1.7). If \(\mu(X) = \infty \), then assume that (1.10) holds. Let \(\psi = \phi/(\delta^* + \delta^{**}) \). Then

\[
\operatorname{PWM}(\bmo_{\phi, p_1}(X), \bmo_{\phi, p_2}(X)) = \bmo_{\phi, p_2}(X) \cap L^\infty(X).
\]

Moreover, the operator norm of \(g \in \operatorname{PWM}(\bmo_{\phi, p_1}(X), \bmo_{\phi, p_2}(X)) \) is comparable to \(\|g\|_{\bmo_{\phi, p_2}} + \|g\|_{L^\infty} \).

Corollary 1.9 (15). Let \(1 \leq p < \infty \). Suppose \(\phi \) and \(p \) satisfy (1.4)–(1.7). If \(\mu(X) = \infty \), then assume that (1.10) holds. Let \(\psi = \phi/(\delta^* + \delta^{**}) \). Then

\[
\operatorname{PWM}(\bmo_{\phi, p}(X), \bmo_{\phi, p}(X)) = \bmo_{\phi, p}(X) \cap L^\infty(X).
\]

Moreover, the operator norm of \(g \in \operatorname{PWM}(\bmo_{\phi, p}(X), \bmo_{\phi, p}(X)) \) is comparable to \(\|g\|_{\bmo_{\phi, p}} + \|g\|_{L^\infty} \).

Theorem 1.10. Let \(1 \leq p_1, p_2 < \infty \). Suppose that \(\phi_1 \) and \(p_1 \) satisfy (1.4)–(1.7) and \(\phi_2 \) satisfies (1.4). Let \(X^* \) be the set of all points \(x \in X \) such that there are constants \(K_x > 1 \) and \(r_x > 0 \) such that

\[
\mu(B(x, r)) \leq \frac{1}{2} \mu(B(x, K_x r)), \quad 0 < r \leq r_x,
\]

and \(X_0 \) the set of all points \(x \in X \) such that

\[
\phi_2(x, r)/\phi_1(x, r) \to 0 \quad \text{as} \quad r \to 0.
\]

If \(g \in \operatorname{PWM}(\bmo_{\phi_1, p_1}(X), \bmo_{\phi_2, p_2}(X)) \), then \(g(x) = 0 \) a.e. \(x \in X^* \cap X_0 \).

In the next section we give some examples obtained from our results. We state some lemmas in Section 3 and propositions in Section 4 to prove the results in Section 5.

2. Examples. In this section, we assume that \((X, d, \mu)\) has the following property: there are constants \(C > 0 \) and \(\delta > 0 \) such that

\[
(2.1) \quad \frac{\mu(B(x, t))}{\mu(B(x, r))} \leq C \left(\frac{t}{r} \right)^\delta, \quad x \in X, \quad 0 < t < r.
\]

Then (1.11) follows from (2.1). If \(\phi(a, r)^{\alpha}/(\delta \leq \delta/p) \) satisfies (1.8), then \(\phi \) and \(p \) satisfy (1.6). For example, the Muckenhoupt \(A_p \)-weights on \(\mathbb{R}^n \) satisfy (2.1).

2.1. The case \(\mu(X) < \infty \)

Example 2.1. For \(0 \leq \beta < \alpha < 1 \),

\[
\operatorname{PWM}(\bmo_{(\log(1/r))^{\alpha}}(X), \bmo_{(\log(1/r))^{-\beta}}(X)) = \bmo_{(\log(1/r))^{\alpha - \beta - 1}}(X).
\]

For \(\alpha = 1/2 \) and \(\beta = 0 \) in particular,

\[
\operatorname{PWM}(\bmo_{(\log(1/r))^{\alpha}}(X), \bmo(X)) = \bmo_{(\log(1/r))^{\alpha - \beta}}(X).
\]

Example 2.2.

\[
\operatorname{PWM}(\bmo_{(\log(1/r))^{\alpha}}(X), \bmo(X)) = \bmo_{(\log(1/r))^{\alpha - \beta}}(X).
\]

Example 2.3.

\[
\operatorname{PWM}(\bmo_{(\log(1/r))^{\alpha}}(X), \bmo(X)) = \bmo_{(\log(1/r))^{\alpha - \beta}}(X) \cap L_{(\log(1/r))^{\alpha - \beta}}(X),
\]

where \(\mu(R) = \int_0^1 (1/\log t) \, dt \).

Example 2.4.

\[
\operatorname{PWM}(\bmo_{(\log(1/r))^{\alpha}}(X), \bmo(X)) = \bmo_{(\log(1/r))^{\alpha - \beta}}(X) \cap L_{(\log(1/r))^{\alpha - \beta}}(X).
\]

If \(X = \mathbb{T}, \, d(x, y) = |x - y| \) and \(\mu \) is Lebesgue measure, then the example above is known (Janson [6] and Stegenga [17]).

Example 2.5. For \(\alpha > 1 \),

\[
\operatorname{PWM}(\bmo_{(\log(1/r))^{\alpha}}(X), \bmo(X)) = \bmo_{(\log(1/r))^{\alpha - \beta}}(X).
\]

Example 2.6. For \(0 < \beta \leq \alpha \leq \alpha_0 \),

\[
\operatorname{PWM}(\bmo_{(\log(1/r))^{\alpha}}(X), \bmo(X)) = \bmo_{(\log(1/r))^{\alpha - \beta}}(X).
\]

If \(X = \mathbb{T}, \, d(x, y) = |x - y| \) and \(\mu \) is Lebesgue measure, then \(\bmo_{(\log(1/r))^{\alpha}}(X) = \bmo_{(\log(1/r))^{\alpha - \beta}}(X) \). Therefore, for \(0 < \beta \leq \alpha \leq 1 \),

\[
\operatorname{PWM}(\bmo_{(\log(1/r))^{\alpha}}(X), \bmo(X)) = \bmo_{(\log(1/r))^{\alpha - \beta}}(X).
\]

Example 2.7. For \(-1 < \alpha < \beta \leq \alpha + 1, \, 1 < p_2 < p_1 < \infty, \, p_1 p_2 \geq \beta_1 + p_2 \),

\[
\operatorname{PWM}(\bmo_{(\log(1/r))^{\alpha}}(X), \bmo_{(\log(1/r))^{\alpha - \beta}}(X)) = \bmo_{(\log(1/r))^{\alpha - \beta - 1}}(X).
\]

2.2. The case \(\mu(X) = \infty \)

Example 2.8.

\[
\operatorname{PWM}(\bmo_{(\log(1/r))^{\alpha}}(X), \bmo_{(\log(1/r))^{\alpha - \beta}}(X)) = \bmo_{(\log(1/r))^{\alpha - \beta - 1}}(X). \cap L_{(\log(1/r))^{\alpha - \beta}}(X).
\]

If \(X = \mathbb{T}, \, d(x, y) = |x - y| \) and \(\mu \) is Lebesgue measure, then the example above is known (14)).

Example 2.9. For \(0 < \beta \leq \alpha \leq \alpha_0 \),

\[
\operatorname{PWM}(\bmo_{(\log(1/r))^{\alpha}}(X), \bmo_{(\log(1/r))^{\alpha - \beta}}(X)) = \bmo_{(\log(1/r))^{\alpha - \beta - 1}}(X) \cap L_{(\log(1/r))^{\alpha - \beta}}(X).
\]

Example 2.10. For \(0 < \alpha \leq \alpha_0, \, 0 \leq \beta \leq \alpha + \delta > 0 \),

\[
\operatorname{PWM}(\bmo_{(\log(1/r))^{\alpha}}(X), \bmo_{(\log(1/r))^{\alpha - \beta}}(X)) = \bmo_{(\log(1/r))^{\alpha - \beta - 1}}(X) \cap L_{(\log(1/r))^{\alpha - \beta}}(X).
\]
Example 2.11. For $1 < p < \infty$, \[
\text{PWM}(\text{bmo}(X), \text{bmo}_{\log}(d(x_0, a) + r^{1/\alpha}), p(X)) = \text{bmo}(X).\]

Example 2.12. Let w be an A_p^α-weight on \mathbb{R}^n. Then
\[
\phi(a, r) = \left(\int_{B(a,r)} w(x) \, dx \right)^{\alpha} \quad \text{satisfies (1.4)–(1.7) for } -1/(pp') < \alpha \leq 1/(np'), \text{ and (1.8) for } \alpha \geq 0.
\]
Let \[
\phi_i(a, r) = \left(\int_{B(a,r)} w(x) \, dx \right)^{\alpha_i}, \quad i = 1, 2, \quad 0 < \alpha_2 \leq \alpha_1.
\]
Then \[
(\phi_2^{\alpha_2} + \phi_2^{\alpha_2})/\phi_2 \leq C(\phi_1^{\alpha_1} + \phi_1^{\alpha_1})/\phi_1.
\]

3. Lemmas. First, we state some simple inequalities and four lemmas of [15]. Let $1 \leq p < \infty$. Then
\[
|F(x_1) - F(x_2)| \leq C|x_1 - x_2| \Rightarrow \text{MO}_{\phi,p}(F(f), B) \leq 2C\text{MO}_{\phi,p}(f, B),
\]

(3.2) \[
|f_{B_1} - f_{B_2}| \leq \frac{\mu(B_2)}{\mu(B_1)}\text{MO}(f, B_2) \quad \text{for } B_1 \subset B_2,
\]

(3.3) \[
\text{MO}_p(f, B_1) \leq 2\left(\frac{\mu(B_2)}{\mu(B_1)} \right)^{1/p}\text{MO}(f, B_2) \quad \text{for } B_1 \subset B_2,
\]

(3.4) \[
|f_{B(a,r)} - f_{B(a,s)}| \leq 2K_2^2(\log 2)^{-1}\int_{r}^{s} \frac{\text{MO}(f, B(a,t))}{t} \, dt \quad \text{for } 0 < r < s.
\]

If ϕ satisfies (1.4), then
\[
\int_{r}^{s} \frac{\phi(a, t)}{t} \, dt \leq (1 + A_1)\int_{r}^{s} \frac{\phi(a, t)}{t} \, dt \quad \text{for } 0 < 2r \leq s.
\]

Lemma 3.1. Let $1 \leq p < \infty$. Suppose that ϕ satisfies (1.4)–(1.7). Let
\[
f_a(x) = \frac{1}{d(a, x)} \int_{d(a, x)} \frac{\phi(a, t)}{t} \, dt.
\]
Then f_a is in $\text{bmo}_{\phi,p}(X)$ for all $a \in X$, and there is a constant $C > 0$, independent of a, such that $\|f_a\|_{\text{BMO}_{\phi,p}} \leq C$.

Lemma 3.2. Let $1 \leq p < \infty$. Suppose that ϕ satisfies (1.4). Then there is a constant $C > 0$ such that
\[
|f_{B(a,r)}| \leq C\|f\|_{\text{bmo}_{\phi,p}}(\Phi^*(a, r) + \Phi^{**}(a, r)),
\]
where C is independent of $f \in \text{bmo}_{\phi,p}(X)$, $a \in X$ and $r > 0$.

Lemma 3.3. Let $1 \leq p < \infty$. Suppose that ϕ satisfies (1.4)–(1.7). If $\mu(X) = \infty$, then assume that (1.10) holds. For any ball $B(a, r)$, there is a function $f \in \text{bmo}_{\phi,p}(X)$ such that
\[
\|f\|_{\text{bmo}_{\phi,p}} \leq C_1, \quad f_{B(a,r)} \geq C_2(\Phi^*(a, r) + \Phi^{**}(a, r)),
\]
where C_1, C_2 are independent of $B(a, r)$ and $f \in \text{bmo}_{\phi,p}(X)$.

Lemma 3.4. Let $1 \leq p < \infty$. Suppose $f \in \text{bmo}_{\phi,p}(X)$ and $g \in L^\infty(X)$. Then fg belongs to $\text{bmo}_{\phi,p}(X)$ if and only if
\[
\sup_{B} |f_B|\text{MO}_{\phi,p}(g, B) < \infty.
\]

In this case,
\[
\|fg\|_{\text{BMO}_{\phi,p}} - \sup_{B} |f_B|\text{MO}_{\phi,p}(g, B) \leq 2\|f\|_{\text{BMO}_{\phi,p}}\|g\|_{L^\infty}.
\]

We need more precise lemmas.

Lemma 3.5. Let $1 \leq p < \infty$. Suppose ϕ satisfies (1.4). Then $\text{bmo}_{\phi,p}(X) \subset L_{\Phi^*, \Phi^{**}, p}(X)$ and $\|f\|_{L_{\Phi^*, \Phi^{**}, p}} \leq C\|f\|_{\text{bmo}_{\phi,p}}$, where C is independent of $f \in \text{bmo}_{\phi,p}(X)$.

Proof. If $2r \leq \max(d(x_0, a), 2)$, then
\[
\text{MO}_p(f, B(a,r)) \leq \phi(a,r)\|f\|_{\text{MO}_{\phi,p}} \leq C\Phi^*(a,r)\|f\|_{\text{MO}_{\phi,p}}.
\]

If $2r > \max(d(x_0, a), 2)$, then $B(a,r) \subset B(x_0, 3K_1 r)$. From (3.3) and (3.5), it follows that
\[
\text{MO}_p(f, B(a,r)) \leq 2\left(\frac{\mu(B(x_0, 3K_1 r))}{\mu(B(a,r))} \right)^{1/p}\text{MO}_p(f, B(x_0, 3K_1 r)) \leq C'\Phi^*(a,r)\|f\|_{\text{BMO}_{\phi,p}}.
\]

By Lemma 3.2, we have
\[
\left(\frac{1}{\mu(B(a,r))} \int_{B(a,r)} |f(x)|^p \, d\mu \right)^{1/p} \leq \text{MO}_p(f, B(a,r)) \leq C(\Phi^*(a,r) + \Phi^{**}(a,r))\|f\|_{\text{bmo}_{\phi,p}}.
\]

Corollary 3.6. Let $\mu(X) < \infty$ and $1 \leq p < \infty$. Suppose ϕ satisfies (1.4). Then $\text{bmo}_{\phi,p}(X) \subset L_{\Phi^*, p}(X)$ and $\|f\|_{L_{\Phi^*, p}} \leq C\|f\|_{\text{bmo}_{\phi,p}}$ where C is independent of $f \in \text{bmo}_{\phi,p}(X)$.

Lemma 3.7. Let \(\mu(X) = \infty \) and \(1 \leq p < \infty \). Suppose \(\phi \) satisfies (1.4)–(1.7). Let \(r_1 \geq 2 \) and
\[
(3.6) \quad f(x) = \max_{d(x_0, a) \leq 1} \left(\int_1^{\max(2, d(x_0, a))} \frac{\phi(x_0, t)}{t} \, dt \right).
\]
Then \(f \) is in \(\text{bmo}_{\phi,p}(X) \) and there are constants \(C_i > 0 \) (\(i = 1, 2, 3 \)), independent of \(B(a, r) \), such that:

(i) if \(r < 2K_1 d(x_0, a) \), then
\[
f(x) \geq C_1 \Phi^*(a, r) \quad \text{for} \quad x \in B(a, r/(2K_1)^2); \]
(ii) if \(2K_1 d(x_0, a) \leq r < 2r_1 \), then
\[
f(x) \geq C_2 \Phi^*(a, r) \quad \text{for} \quad x \in B(a, r); \]
(iii) if \(2K_1 d(x_0, a) \leq r \) and \(2^k r_1 \leq r < 2^{k+1} r_1 \) for some positive integer \(k \), then
\[
f(x) \geq C_3 \Phi^*(x_0, 2^{-j} r) \quad \text{for} \quad x \in E_j, \; j = 0, 1, \ldots, k - 1,
\]
where
\[
E_j = B(x_0, 2^{-j} r) \setminus B(x_0, 2^{-j-1} r), \quad j = 0, 1, \ldots, k - 1,
\]
(3.7)
\[
B(a, r/(2K_1)^2) \subset \left(\bigcup_{j=0}^{k-1} E_j \right) \cup B(x_0, 2^{-k} r).
\]

Proof. Since \(f(x) = \max(-f_{x_0}(x), \int_1^{\max(2, d(x_0, a))} \frac{\phi(x_0, t)}{t} \, dt) \), \(f \) is in \(\text{bmo}_{\phi,p}(X) \) by Lemma 3.1 and (3.5). Next we show (i)–(iii) by using (3.5).

(i) Since \(B(a, r/(2K_1)^2) \cap B(x_0, d(x_0, a)/(2K_1)) = \emptyset \),
\[
\Phi^*(a, r) \leq \max_{(2, d(x_0, a)/(2K_1)^2)} \int_1^{\max(2, d(x_0, a), r)} \frac{\phi(x_0, t)}{t} \, dt \leq C \int_1^{\max(2, d(x_0, a)/(2K_1)^2)} \frac{\phi(x_0, t)}{t} \, dt \leq C \int_1^{d(x_0, a)/(2K_1)} \frac{\phi(x_0, t)}{t} \, dt \leq Cf(x).
\]

(ii) Since \(d(x_0, a), r \leq 2r_1 \),
\[
\Phi^*(a, r) \leq \int_1^{2r_1} \frac{\phi(x_0, t)}{t} \, dt \leq C' \int_1^2 \frac{\phi(x_0, t)}{t} \, dt \leq C' f(x).
\]

(iii) For \(x \in E_j, \; j = 0, 1, \ldots, k - 1 \),
\[
\Phi^*(x_0, 2^{-j} r) \leq \int_1^{2^{-j} r} \phi(x_0, t) \, dt \leq C' \int_1^{2^{-j} r} \phi(x_0, t) \, dt \leq C' f(x).
\]

The next two lemmas have been proved in the proof of Lemma 3.3 of [15].

Lemma 3.8. Let \(\mu(X) < \infty \) and \(1 \leq p < \infty \), Suppose \(\phi \) satisfies (1.4)–(1.7). Let \(f \) be defined by (3.6). Then \(f \) is in \(\text{bmo}_{\phi,p}(X) \) and there is a constant \(C > 0 \) such that, for all \(B(a, r) \),
\[
f(x) \geq C \Phi^*(a, r) \quad \text{for} \quad x \in B(a, r/(2K_1)^2). \]

Lemma 3.9. Let \(1 \leq p < \infty \). Suppose \(\phi \) satisfies (1.4)–(1.7). For any ball \(B(a, r) \), let
\[
(3.9) \quad f(x) = \max \left(\frac{\max(1/K_1, d(x_0, a)/(2K_1))}{d(x_0, a)} \int_1^{\max(1/K_1, d(x_0, a)/(2K_1))} \frac{\phi(x_0, t)}{t} \, dt \right).
\]

Then \(f \) is in \(\text{bmo}_{\phi,p}(X) \) and there are constants \(C_1, C_2 > 0 \) such that
\[
\|f\|_{\text{bmo}_{\phi,p}} \leq C_1, \quad f(x) \geq C_2 \Phi^{**}(a, r) \quad \text{for} \quad x \in B(a, r/(2K_1)),
\]
where \(C_1, C_2 \) are independent of \(B(a, r) \) and \(f \) is in \(\text{bmo}_{\phi,p}(X) \).

Lemma 3.10. Let \(1 \leq p_1, p_2, p_3 < \infty \) and \(1/p_1 + 1/p_2 = 1/p_3 \). Suppose \(f \in \text{bmo}_{\phi_1, p_1}(X) \) and \(g \in L_{\phi_2, p_2}(X) \). Then \(f \in \text{bmo}_{\phi_3, p_3}(X) \) if and only if
\[
sup_B |f|_{B} |\text{MO}_{\phi_3, p_3}(g, B)| < \infty.
\]

In this case,
\[
(3.10) \quad \|fg\|_{\text{bmo}_{\phi_3, p_3}} = \sup_B |f|_{B} |\text{MO}_{\phi_3, p_3}(g, B)| \leq C \|\text{bmo}_{\phi_1, p_1}(g)\|_{L_{\phi_2, p_1} \cap L_{\phi_3, p_3}}.
\]

Proof. As in the proof of Lemma 3.4, for any ball \(B = B(a, r) \), we have
\[
\|fg\|_{L_{p_3}(B)} \leq \|fg\|_{L_{p_1}(B)} \|g\|_{L_{p_2}(B)} \leq 2 \left(\int_B |f(x) - f_B| \mu(x) \right)^{1/p_3} \mu(B)^{1/p_3} \|g\|_{L_{p_2}(B)} \mu(B)^{1/p_3}
\]
\[
\leq 2 \left(\int_B |f(x) - f_B|^p \mu(x) \right)^{1/p_3} \left(\int_B |g(x)|^p \mu(x) \right)^{1/p_3} \mu(B)^{1/p_3}
\]
\[
\leq 2 \mu(B)^{1/p_3} \phi_1(a, r) \|f\|_{\text{bmo}_{\phi_1, p_1}} \times \mu(B)^{1/p_3} \phi_2(a, r) \|g\|_{L_{\phi_2, p_2}} \mu(B)^{1/p_3}
\]
\[
\leq 2 \mu(B)^{1/p_3} \phi_3(a, r) \|f\|_{\text{bmo}_{\phi_1, p_1}} \|g\|_{L_{\phi_3, p_3}} \mu(B)^{1/p_3}
\]

Hence
\[|MO_{\phi_2,p_2}(f_B,B) - |f_B||MO_{\phi_2,p_2}(g,B)| \leq 2\|f\|_{bmo_{\phi_1,p_1}} \|g\|_{L^{p_2/\theta_1}\theta_1}, \]

which shows (3.10). \(\blacksquare \)

Lemma 3.11. Let \(1 \leq p_1, p_2 < \infty \). Suppose that \(\phi_1 \) satisfies (1.8) and \(\phi_1 \leq C\phi_2 \). Then
\[bmo_{\phi_1,p_1}(X) \cap L^{p_2,p_2}(X) = bmo_{\phi_1}(X) \cap L^{p_2}(X), \]
\[\|f\|_{bmo_{\phi_1}} + \|f\|_{L^{p_2}} \leq \|f\|_{bmo_{\phi_1,p_1}} + \|f\|_{L^{p_2,p_2}} \leq C_{p_1,p_2} (\|f\|_{bmo_{\phi_1}} + \|f\|_{L^{p_2}}). \]

Proof. By Hölder’s inequality, we have
\[\|f\|_{bmo_{\phi_1}} + \|f\|_{L^{p_2}} \leq \|f\|_{bmo_{\phi_1,p_1}} + \|f\|_{L^{p_2,p_2}}. \]

By John–Nirenberg’s inequality, we have
\[\|f\|_{bmo_{\phi_1,p_1}} \leq C_{p_1} \|f\|_{bmo_{\phi_1}} , \quad i = 1, 2. \]

For any ball \(B = B(a,r) \),
\[\left(\frac{1}{\mu(B(a,r))} \int_{B(a,r)} |f(x)|^p \, d\mu \right)^{1/p} \leq \left(\frac{1}{\mu(B)} \int_{B} |f(x) - f_B|^p \, d\mu \right)^{1/p} + \left(\frac{1}{\mu(B)} \int_{B} |f_B|^p \, d\mu \right)^{1/p} \]
\[\leq \mu(B)^{1/p_2} \|\phi_1(a,r)\| \|f\|_{bmo_{\phi_1,p_1}} + |f_B| \]
\[\leq \mu(B)^{1/p_2} (C_{p_1} \phi_1(a,r) \|f\|_{bmo_{\phi_1}} + \phi_2(a,r) ||f||_{L^{p_2}}) \]
\[\leq C_{p_2} \mu(B)^{1/p_2} \phi_2(a,r) (C_{p_2} \|f\|_{bmo_{\phi_1}} + ||f||_{L^{p_2}}). \]

Hence
\[\|f\|_{bmo_{\phi_1,p_1}} + \|f\|_{L^{p_2,p_2}} \leq C_{p_1,p_2} (\|f\|_{bmo_{\phi_1}} + ||f||_{L^{p_2}}). \] \(\blacksquare \)

Lemma 3.12. Let \(\mu(X) = \infty \) and \(1 \leq p < \infty \). Suppose that \(\phi_1 \) and \(\phi_2 \) satisfy (1.4) and (1.7)–(1.9). Let \(\phi_3 = \frac{\phi_2}{\phi_1^* + \phi_1^*} \). Then
\[bmo_{\phi_3}(X) \cap L^{p_2/p_3}(X) = bmo_{\phi_3}(X) \cap L^{p_2}(X), \]
\[\|f\|_{bmo_{\phi_3}} + \|f\|_{L^{p_2}} \leq \|f\|_{bmo_{\phi_3}} + \|f\|_{L^{p_2,p_3}} \leq C_p (\|f\|_{bmo_{\phi_3}} + ||f||_{L^{p_2}}). \]

Proof. We show that, for any ball \(B(a,r) \),
\[\left(\frac{1}{\mu(B(a,r))} \int_{B(a,r)} |f(x)|^p \, d\mu \right)^{1/p} \leq C_p \frac{\phi_2(a,r)}{\phi_1(a,r)} (\|f\|_{bmo_{\phi_3}} + \|f\|_{L^{p_2}}). \]

First we note that
\[\left(\frac{1}{\mu(B(a,r))} \int_{B(a,r)} |f(x)|^p \, d\mu \right)^{1/p} \leq MO_p(f, B(a,r)) + |f_{B(a,r)}|, \]

and
\[|f_{B(a,r)}| \leq C \frac{\phi_2(a,r)}{\phi_1(a,r)} ||f||_{L^{p_2/p_3}}. \]

Case 1: \(r \leq d(x_0, a)/(5K_1^2) \). If \(b \in B(a, r) \), then \(d(x_0, b) > d(x_0, a)/K_1 \)
\[r \geq 4K_1^2 (r \geq 4K_1^2). \]

If \(B(b, s) \subset B(a, r) \), then we may assume \(s \leq 2K_1^2 \). It follows from (1.4) and (1.7) that
\[\phi_1^{**}(b, s) \geq \frac{4K_1^2}{2K_1^2} \int_{2K_1^2} \phi_1(b, t) \, dt \geq A_1^{-1} \phi_1(b, 2K_1^2) \geq C \phi_1(a, r). \]

By John–Nirenberg’s inequality, we have
\[MO_p(f, B(a,r)) \leq C_p \sup_{B(b,s) \subset B(a,r)} MO(f, B(b,s)) \]
\[\leq C_p \left(\sup_{B(b,s) \subset B(a,r)} \frac{\phi_2(b, s)}{\phi_1(b, s)} \right) ||f||_{bmo_{\phi_3}} \]
\[\leq C_p \frac{\phi_2(a,r)}{\phi_1(a,r)} ||f||_{bmo_{\phi_3}}. \]

Case 2: \(a = x_0, r \geq r_0. \) Then
\[MO_p(f, B(x_0, r)) \leq C_p \sup_{B(b,s) \subset B(x_0, r)} MO(f, B(b,s)) \]
\[\leq C_p \left(\sup_{B(b,s) \subset B(x_0, r)} \frac{\phi_2(b, s)}{\phi_1(b, s)} \right) ||f||_{bmo_{\phi_3}} \]
\[\leq C_p \frac{\phi_2(x_0, r_0)}{\phi_1(x_0, r_0)} ||f||_{bmo_{\phi_3}}. \]

Case 3: \(a = x_0, r > r_0. \) Let \(2^{j-1} r_0 < r \leq 2^k r_0 \) and \(E_j = B(x_0, 2^j r_0) \cap B(x_0, 2^{j-1} r_0), j = 1, \ldots, k \). If \(E_j = \emptyset \), then \(\int_{E_j} |f(x)|^p \, d\mu = 0. \) If \(E_j \neq \emptyset \), then there are balls \(B_i, j = 1, \ldots, m_j \) such that
\[B_j = B(b_j, m_j, \epsilon), \quad b_j, m_j \in E_j, \quad \epsilon = 2^j - 2^{j-1} r_0/(20K_1^2), \]
\[E_j \subset \bigcup_{m_j} B(b_j, m_j, 4K_1^2 \epsilon), \quad B_j \cap B_j = \emptyset \quad (m_j \neq n). \]

(see [3], pp. 68–69). We note that \(\phi_i(b_j, m_j, 4K_1^2 \epsilon) \) \((i = 1, 2) \) are comparable.
4. Propositions. We now show some propositions.

Proposition 4.1. Let $1 \leq p_1, p_2 < \infty$. Suppose that ϕ_1 and p_1 satisfy (1.4)–(1.7), ϕ_2 satisfies (1.4) and (1.7), and $(\Phi_2 + \Phi_2^*)/\phi_2 \leq C(\Phi_2^* + \Phi_2^{**})/\phi_1$. If $\mu(X) = \infty$, then assume that there are constants $r_0 > 0$ and $A_8 > 0$ such that

$\int_0^{r} \left(\frac{\Phi_2(x_0, t)}{\Phi_1(x_0, t)} \right)^{p_2} \frac{\mu(B(x_0, t))}{t} \, dt \leq A_8 \left(\frac{\phi_2(x_0, r)}{\phi_1(x_0, r)} \right)^{p_3} \mu(B(x_0, r)), \quad r > r_0.

Then $PWM(\text{bmo}_{\phi_1, p_1}(X), \text{bmo}_{\phi_2, p_2}(X)) \subset L_{\phi_2/\phi_1, p_2}(X)$,

$\|g\|_{L_{\phi_2/\phi_1, p_2}} \leq C\|g\|_{OP}$,

where $\|g\|_{OP}$ is the operator norm of g in $PWM(\text{bmo}_{\phi_2, p_1}(X), \text{bmo}_{\phi_2, p_2}(X))$.

Corollary 4.2. Let $1 \leq p_1, p_2 < \infty$. Suppose that ϕ_1 and p_1 satisfy (1.4)–(1.7) and ϕ_2 satisfies (1.4). Let

$X_1 = \left\{ x \in X : \frac{\phi_2(x_0, r)}{t} \frac{dt}{\phi_1(x_0, t)} \to 0 \quad \text{as} \quad r \to 0 \right\}$.

If $g \in PWM(\text{bmo}_{\phi_1, p_1}(X), \text{bmo}_{\phi_2, p_2}(X))$, then $g(x) = 0$ a.e. $x \in X_1$.

Proposition 4.3. Let $1 < p_1, p_2 < \infty$ and $p_8 = p_1/p_2 + p_2 \geq 1$. Suppose that ϕ_1 and p_1 satisfy (1.4)–(1.7), ϕ_2 satisfies (1.4) and (1.7), and $(\Phi_2 + \Phi_2^*)/\phi_2 \leq C(\Phi_2^* + \Phi_2^{**})/\phi_1$. If $\mu(X) = \infty$, then assume that (4.1) holds. Let $\phi_3 = \phi_2/(\Phi_2^* + \Phi_2^{**})$. Then

$PWM(\text{bmo}_{\phi_1, p_1}(X), \text{bmo}_{\phi_2, p_2}(X)) \subset \text{bmo}_{\phi_3, p_8}(X) \cap L_{\phi_2/\phi_1, p_2}(X)$,

$\|g\|_{\text{bmo}_{\phi_3, p_8}} + \|g\|_{L_{\phi_2/\phi_1, p_2}} \leq C\|g\|_{OP}$,

where $\|g\|_{OP}$ is the operator norm of g in $PWM(\text{bmo}_{\phi_1, p_1}(X), \text{bmo}_{\phi_2, p_2}(X))$.

Proposition 4.4. Suppose that ϕ_1 and ϕ_2 satisfy (1.4). Let $\phi_3 = \phi_2/(\Phi_2^* + \Phi_2^{**})$. If $1 \leq p_2 < p_1 < \infty$ and $p_4 = p_1/p_2(p_1 - p_2)$, then

$PWM(\text{bmo}_{\phi_1, p_1}(X), \text{bmo}_{\phi_2, p_2}(X)) \subset \text{bmo}_{\phi_3, p_8}(X) \cap L_{\phi_2/\phi_1, p_4}(X)$,

$\|g\|_{OP} \leq C(\|g\|_{\text{bmo}_{\phi_3, p_8}} + \|g\|_{L_{\phi_2/\phi_1, p_4}})$,

where $\|g\|_{OP}$ is the operator norm of g in $PWM(\text{bmo}_{\phi_1, p_1}(X), \text{bmo}_{\phi_2, p_2}(X))$.

Proposition 4.5. Suppose that ϕ satisfies (1.4). Let $\psi = \phi/(\Phi_1^* + \Phi_1^{**})$. If $1 \leq p_2 \leq p_1 < \infty$, then

$PWM(\text{bmo}_{\phi_1, p_1}(X), \text{bmo}_{\phi_2, p_2}(X)) \subset \text{bmo}_{\phi_3, p_8}(X) \cap L_{\psi, p_2}(X)$,

$\|g\|_{OP} \leq C(\|g\|_{\text{bmo}_{\phi_3, p_8}} + \|g\|_{L^\infty})$,

where $\|g\|_{OP}$ is the operator norm of g in $PWM(\text{bmo}_{\phi_1, p_1}(X), \text{bmo}_{\phi_2, p_2}(X))$.

Proof of Prop. 4.1. Let \(g \in \text{PWM}(b\text{mo}_{\phi_1,p_1}(X), b\text{mo}_{\phi_2,p_2}(X)) \). Then \(g \) is a bounded operator. We show that, for any \(a \in X \) and for any \(r > 0 \),

\[
(4.6) \quad \frac{1}{\mu (B(a,r/(2K_1)^2))} \int_{B(a,r/(2K_1)^2)} |g(x)|^p \, d\mu \leq C \|g\|_{op} \phi_2^*(a,r/(2K_1)^2) \phi_1^*(a,r/(2K_1)^2).
\]

For any \(f \in \text{bmo}_{\phi_1,p_1}(X) \), \(fg \) is in \(\text{bmo}_{\phi_2,p_2}(X) \). From Lemma 3.5 it follows that, for any ball \(B(a,r) \),

\[
(4.7) \quad \frac{1}{\mu(B(a,r))} \int_{B(a,r)} |f(x)g(x)|^p \, d\mu \leq C \|fg\|_{b\text{mo}_{\phi_2,p_2}} (\phi_2^*(a,r) + \phi_2^{**}(a,r)) \leq C \|f\|_{b\text{mo}_{\phi_1,p_1}} \|g\|_{op} (\phi_2^*(a,r) + \phi_2^{**}(a,r)).
\]

Applying (4.7) with \(f \) defined by (3.9) and using Lemma 3.9, we have

\[
(4.8) \quad \phi_1^*(a,r) \left(\frac{1}{\mu(B(a,r))} \int_{B(a,r/(2K_1)^2)} |g(x)|^p \, d\mu \right)^{1/p} \leq C \|g\|_{op} (\phi_2^*(a,r) + \phi_2^{**}(a,r)).
\]

If \(\mu(X) < \infty \), then, applying (4.7) with \(f \) defined by (3.6) and using Lemma 3.8, we have

\[
(4.9) \quad \phi_1^*(a,r) \left(\frac{1}{\mu(B(a,r))} \int_{B(a,r/(2K_1)^2)} |g(x)|^p \, d\mu \right)^{1/p} \leq C \|g\|_{op} (\phi_2^*(a,r) + \phi_2^{**}(a,r)).
\]

By (4.8), (4.9) and the inequality \((\phi_2^* + \phi_2^{**})/\phi_2 \leq C (\phi_2^* + \phi_2^{**})/\phi_1 \), we have

\[
(4.10) \quad \left(\frac{1}{\mu(B(a,r))} \int_{B(a,r/(2K_1)^2)} |g(x)|^p \, d\mu \right)^{1/p} \leq C \|g\|_{op} \frac{\phi_2^*(a,r)}{\phi_1^*(a,r)}.
\]

Since \(\phi_i(a,r) (i = 1, 2) \) and \(\mu(B(a,r)) \) are comparable to \(\phi_i(a,r/(2K_1)^2) \) \((i = 1, 2)\) and \(\mu(B(a,r/(2K_1)^2)) \), respectively, we have (4.6).

If \(\mu(X) = \infty \), then, applying (4.7) with \(f \) defined by (3.6) and using Lemma 3.7(iii), we have \(\phi_1^*(a,r) \) and \(\mu(B(a,r/(2K_1)^2)) \) \((i = 1, 2)\) and \(\mu(B(a,r/(2K_1)^2)) \), respectively, we have (4.6).

Using Lemma 3.7(iii), we have, for \(j = 0, 1, \ldots, k - 1 \),

\[
(4.11) \quad \phi_1^*(a,s_j) \left(\frac{1}{\mu(B(a,s_j))} \int_{B(a,s_j)} |g(x)|^p \, d\mu \right)^{1/p} \leq C \|g\|_{op} \phi_2^*(a,s_j).
\]

Since \(s_k < 2 \max(2,r_0) \), \(B(x_0,s_k) \) is in case (ii) of Lemma 3.7. Thus

\[
(4.12) \quad \phi_1^*(a,s_k) \left(\frac{1}{\mu(B(a,s_k))} \int_{B(a,s_k)} |g(x)|^p \, d\mu \right)^{1/p} \leq C \|g\|_{op} \phi_2^*(a,s_k).
\]

By (3.8), (4.11) and (4.12), we have

\[
\frac{1}{\mu(B(a,r/(2K_1)^2))} \int_{B(a,r/(2K_1)^2)} |g(x)|^p \, d\mu \leq C \|g\|_{op} \phi_2^*(a,r/(2K_1)^2) \phi_1^*(a,r/(2K_1)^2).
\]

Since \(\phi_1(x_0,2r) (i = 1, 2) \) and \(\mu(B(x_0,2r)) \) are comparable to \(\phi_1(a,r/(2K_1)^2) \) \((i = 1, 2)\) and \(\mu(B(a,r/(2K_1)^2)) \), respectively, we have (4.6).

Proof of Corollary 4.2. Just as we proved (4.8) and (4.9), we get

\[
\left(\frac{1}{\mu(B(a,r/(2K_1)^2))} \int_{B(a,r/(2K_1)^2)} |g(x)|^p \, d\mu \right)^{1/p} \leq C \|g\|_{op} \frac{\phi_2^*(a,r) + \phi_2^{**}(a,r)}{\phi_1^*(a,r)}.
\]

for small \(r \). If \(a \in X_1 \) then \(\int_0^r \phi_1(a,t)^{-1} \, dt \to \infty \) as \(r \to 0 \). Therefore

\[
\lim_{r \to 0} \phi_1^*(a,r) + \phi_2^*(a,r) + \phi_2^{**}(a,r) = 0.
\]

Proof of Prop. 4.3. Let \(g \in \text{PWM}(b\text{mo}_{\phi_1,p_1}(X), b\text{mo}_{\phi_2,p_2}(X)) \). By Proposition 4.1, \(g \) is in \(L_{\phi_2/\phi_1,p_1}(X) \) and \(\|g\|_{L_{\phi_2/\phi_1,p_1}} \leq C \|g\|_{op} \). By
Lemma 3.3, for any \(B(a, r) \), we have a function \(f \) such that

\[
\|f\|_{\text{bmo}_{\phi_1, p_1}} \leq C_1,
\]
\[
\left|f B(a, r) \right| \geq C_2 (\Phi_1^*(a, r) + \Phi_1^*(a, r)).
\]

Since \(1/p_1 + 1/p_2 = 1/p_3 \), it follows from Lemma 3.10 that

\[
\|f B(a, r) \|_{\text{MO}_{\phi_3, p_3}(g, B(a, r))} \leq 2\|f\|_{\text{bmo}_{\phi_1, p_1}} \|g\|_{L^{p_2}/p_{2, 1}, p_2} + 2\|f\|_{\text{bmo}_{\phi_2, p_2}} \|g\|_{L^{p_2}/p_{2, 1}, p_2} \leq C\|f\|_{\text{bmo}_{\phi_1, p_1}} \|g\|_{\text{bmo}_{\phi_3, p_3}} \leq C\|g\|_{\text{bmo}_{\phi_3, p_3}}.
\]

5. Proofs of the theorems and the corollaries

Proof of Theorem 1.1. First we note that \(\Phi_1 \) satisfies (1.6) for any \(p_1 (1 \leq p_1 < \infty) \) (see Lemma 5.3 of [15]). If \(\Phi_1 \) is finite, then we may assume \(r_0 \geq 1 \) in (1.9). For \(t \geq 1, \Phi_1^*(x_0, t) + \Phi_1^*(x_0, t) \leq 2\Phi_1^*(x_0, t) \). By (1.9) with \(p = 1 + \varepsilon \) and by the inequality (\(\Phi_1^* + \Phi_1^* \))/\(\Phi_1^* \leq C(\Phi_1^* + \Phi_1^*)/\Phi_1 \), we have (4.1) with \(p_2 = 1 + \varepsilon \). From Proposition 4.3 it follows that

\[
\text{PVM}(\operatorname{bmo}\phi_1, (1 + \varepsilon)/(\varepsilon), \text{bmo}_{\phi_2, 1 + \varepsilon}(X)) \subset \operatorname{bmo}\phi_1(X) \cap L_{\phi_2/\phi_1, 1 + \varepsilon}(X),
\]
\[
\|g\|_{\text{bmo}_{\phi_3}} + \|g\|_{L_{\phi_2/\phi_1, 1 + \varepsilon}} \leq C\|g\|_{\text{bmo}_{\phi_2}}.
\]

where \(\|g\|_{\text{bmo}_{\phi_3}} \) is the operator norm of \(g \in \text{PVM}(\operatorname{bmo}\phi_1, (1 + \varepsilon)/(\varepsilon), \text{bmo}_{\phi_2, 1 + \varepsilon}(X)) \). From Proposition 4.4 it follows that

\[
\text{PVM}(\operatorname{bmo}\phi_1, (1 + \varepsilon)/(\varepsilon), \text{bmo}_{\phi_2, 1 + \varepsilon}(X)) \subset \operatorname{bmo}\phi_1(X) \cap L_{\phi_2/\phi_1, 1 + \varepsilon}(X),
\]
\[
\|g\|_{\text{bmo}_{\phi_3}} + \|g\|_{L_{\phi_2/\phi_1, 1 + \varepsilon}} \leq C\|g\|_{\text{bmo}_{\phi_2}}.
\]

where \(\|g\|_{\text{bmo}_{\phi_3}} \) is the operator norm of \(g \in \text{PVM}(\operatorname{bmo}\phi_1, (1 + \varepsilon)/(\varepsilon), \text{bmo}_{\phi_2, 1 + \varepsilon}(X)) \). By John–Nirenberg’s inequality and Hölder’s inequality, we have

\[
\text{bmo}_{\phi_1, (1 + \varepsilon)/(\varepsilon)}(X) = \text{bmo}_{\phi_1}(X), \quad \text{bmo}_{\phi_2, 1 + \varepsilon}(X) = \text{bmo}_{\phi_2}(X).
\]

Moreover, the operator norms of \(g \) from \(\text{bmo}_{\phi_1, (1 + \varepsilon)/(\varepsilon)}(X) \) to \(\text{bmo}_{\phi_2, 1 + \varepsilon}(X) \), from \(\text{bmo}_{\phi_1, 1 + \varepsilon}(X) \) to \(\text{bmo}_{\phi_2}(X) \), and from \(\text{bmo}_{\phi_1}(X) \) to \(\text{bmo}_{\phi_2}(X) \) are comparable. From Lemma 3.12 it follows that

\[
\text{bmo}_{\phi_2}(X) \cap L_{\phi_2/\phi_1, 1 + \varepsilon}(X) = \text{bmo}_{\phi_2}(X) \cap L_{\phi_2/\phi_1, 1 + \varepsilon}(X),
\]
\[
\|g\|_{\text{bmo}_{\phi_3}} + \|g\|_{L_{\phi_2/\phi_1, 1 + \varepsilon}} \leq \|g\|_{\text{bmo}_{\phi_3}} + \|g\|_{L_{\phi_2/\phi_1, 1 + \varepsilon}} \leq C\|g\|_{\text{bmo}_{\phi_2}} + \|g\|_{L_{\phi_2/\phi_1, 1 + \varepsilon}}.
\]

Therefore we have Theorem 1.1.

Proof of Theorem 1.3. Since \(\int_0^2 \phi_1(a, t) \frac{dt}{t} \) (\(i = 1, 2 \)) are comparable to \(\phi_1(a, s) \) (i = 1, 2), respectively,

\[
\int_0^2 \frac{\phi_2(a, t)}{t} \frac{dt}{t} \leq \int_0^2 \frac{\phi_1(a, t)}{t} \frac{dt}{t} \leq C \frac{\phi_2(a, s)}{\phi_1(a, s)} \leq C \frac{\phi_2(a, r)}{\phi_1(a, r)}.
\]

Thus, for \(R_0 \leq 2^{k}r \leq 2R_0 \),

\[
\left(\sum_{j=0}^{k-1} \frac{\phi_2(a, t)}{t} \frac{dt}{t} \right) \left(\sum_{j=0}^{k-1} \frac{\phi_1(a, t)}{t} \frac{dt}{t} \right) \leq C \frac{\phi_2(a, r)}{\phi_1(a, r)}.
\]
We also note that \(\phi_3 \) satisfies (1.8) and \(\phi_3 \leq C \phi_2 / \phi_1 \). Therefore, using Propositions 4.3, 4.4 and Lemma 3.11, we have Theorem 1.3.

Proof of Theorem 1.6. By Propositions 4.3 and 4.4, we have
\[
\text{bmo}_{\phi_3, \phi_2}(X) \cap L_{\phi_1 / \phi_2}(X, \mu_{\phi_3, \phi_2}(X)) \\
\subseteq \text{PWM}(\text{bmo}_{\phi_3, \phi_2}(X), \text{bmo}_{\phi_3, \phi_2}(X)) \\
\subseteq \text{bmo}_{\phi_3, \phi_2}(X) \cap L_{\phi_1 / \phi_2}(X, \mu_{\phi_3, \phi_2}(X)),
\]
\[
C_1(\|g\|_{\text{bmo}_{\phi_3, \phi_2}(X)} + \|g\|_{L^{p}(X)}) \\
\leq C_2(\|g\|_{\text{bmo}_{\phi_3, \phi_2}(X)} + \|g\|_{L^{p}(X)}).
\]

We note that \(\phi_3 \leq C \phi_2 / \phi_1 \). By Lemma 3.11, we have Theorem 1.6.

Proof of Theorem 1.8. Let \(g \in \text{PWM}(\text{bmo}_{\phi_3}(X), \text{bmo}_{\phi_3}(X)) \).

By Proposition 4.1, \(g \in L_{\phi_1}^{\omega}(X) = L^{\infty}(X) \) and \(\|g\|_{L^{\infty}} \leq C \|g\|_{\text{op}} \). From Lemma 3.3 it follows that, for any ball \(B(a, r) \), there is a function \(f \in \text{bmo}_{\phi_3, \phi_2}(X) \) such that
\[
\|f\|_{\text{bmo}_{\phi_3, \phi_2}(X)} \leq C_1 \phi_2(a, r) / \phi_1(a, r),
\]
\[
f_{B(a, r)} \geq C_2 (\phi_1^*(a, r) + \phi_2^*(a, r)).
\]

Since \(f \) is in \(\text{bmo}_{\phi_3, \phi_2}(X) \), from Lemma 3.4 it follows that
\[
\|f\|_{\text{bmo}_{\phi_3, \phi_2}(X)} \leq C_3 \|f\|_{L^{\infty}(X)} + \|f\|_{\text{bmo}_{\phi_3, \phi_2}(X)}
\]
\[
\leq C_4(\|f\|_{\text{bmo}_{\phi_3, \phi_2}(X)} + \|g\|_{\text{op}}).
\]

By (5.2)-(5.4), \(g \) is in \(\text{bmo}_{\phi_3, \phi_2}(X) \) and \(\|g\|_{\text{bmo}_{\phi_3, \phi_2}(X)} \leq C \|g\|_{\text{op}} \). Conversely, by Proposition 4.5, we have
\[
\text{PWM}(\text{bmo}_{\phi_3, \phi_2}(X), \text{bmo}_{\phi_3, \phi_2}(X)) \supseteq \text{bmo}_{\phi_3, \phi_2}(X) \cap L_{\phi_1}^{\omega}(X),
\]
\[
\|g\|_{\text{op}} \leq C(\|g\|_{\text{bmo}_{\phi_3, \phi_2}(X)} + \|g\|_{L^{\infty}}).
\]

Proof of Theorem 1.10. Let \(g \in \text{PWM}(\text{bmo}_{\phi_3, \phi_2}(X), \text{bmo}_{\phi_3, \phi_2}(X)) \) and \(a \in X^* \cap X_0 \). We show
\[
\lim_{r \to 0} \frac{1}{\mu(B(a, r))} \int_{B(a, r)} |g(x)| \, d\mu = 0.
\]

If \(\int_{0}^{1} \phi_1(a, t) t^{-1} \, dt \to \infty \) as \(r \to 0 \), then
\[
\lim_{r \to 0} \int_{r}^{1} \phi_2(a, t) t^{-1} \, dt = \lim_{r \to 0} \int_{r}^{1} \phi_2(a, t) t^{-1} \, dt = 0.
\]

By Corollary 4.2, we have (5.5).

If \(\int_{0}^{1} \phi_1(a, t) t^{-1} \, dt < \infty \), then \(\int_{0}^{1} \phi_0(a, t) t^{-1} \, dt < \infty \). Let
\[
f(x) = \int_{0}^{1} \phi_1(a, t) t^{-1} \, dt.
\]

Then \(f \) is in \(\text{bmo}_{\phi_1, \phi_3}(X) \). From (3.4) it follows that, for \(0 < s < r \),
\[
\|f\|_{\text{bmo}_{\phi_1, \phi_3}(X)} \leq C \|f\|_{\text{bmo}_{\phi_1, \phi_3}(X)} + \|f\|_{\text{bmo}_{\phi_1, \phi_3}(X)} \\
\leq C \phi_1(a, t) \int_{s}^{r} \phi_1(a, t) t^{-1} \, dt.
\]

Letting \(s \to 0 \), we have \(\int_{B(a, r)} |f(x)\, g(x)| = 0 \) and
\[
\int_{B(a, r)} |f(x)| \, dx \leq C(\int_{0}^{r} \phi_1(a, t) t^{-1} \, dt).
\]

Since
\[
f(x) = \int_{0}^{r} \frac{\phi_1(a, t)}{t} \, dt \geq \int_{0}^{1} \frac{\phi_1(a, t)}{t} \, dt \quad \text{for } x \in B(a, r) \setminus B(a, r/2),
\]
we have
\[
\int_{B(a, r)} |g(x)| \, dx \leq C^\prime \mu(B(a, r)) \int_{0}^{r} \phi_1(a, t) t^{-1} \, dt.
\]

And
\[
\int_{B(a, r)} \mu(B(a, 2r)) \int_{0}^{r} \phi_1(a, t) t^{-1} \, dt \leq C^\prime \mu(B(a, 2r)) \int_{0}^{r} \phi_1(a, t) t^{-1} \, dt.
\]

We note that \(a \in X^* \) if and only if there is a constant \(C_a > 0 \) such that
\[
\int_{0}^{r} \mu(B(a, 2r)) \mu(B(a, r)) \int_{0}^{r} \phi_1(a, t) t^{-1} \, dt \leq C_a \mu(B(a, r)) \quad 0 < r < r_a
\]
(see Lemma 5.3 of [15]). By the equality
\[
\int_{0}^{r} \frac{\phi_2(a, t)}{t} \, dt = \lim_{r \to 0} \int_{0}^{\phi_2(a, r)} \frac{\phi_2(a, r)}{t} \, dt = \lim_{r \to 0} \frac{\phi_2(a, r)}{r} = 0,
\]
we have (5.5).

Proofs of Corollaries. If \(\phi_3^* + \phi_3^* \leq C \phi_2 / \phi_1 \) or if \(\phi_3 \leq C \phi_2 / \phi_1 \),
then, by Lemma 3.5 or Corollary 3.6, it follows that \(\text{bmo}_{\phi_3}(X) \subseteq L_{\phi_1 / \phi_2}(X) \)
and \(\|g\|_{L_{\phi_1}^{\omega}(X)} \leq C \|g\|_{\text{bmo}_{\phi_3}(X)} \). Therefore we have Corollaries 1.2, 1.4 and 1.7.

Under the assumptions of Theorem 1.3, if \(\phi_3 \leq C \), then \(\phi_3 \) is comparable to \(\phi_2 \). By (5.1), we have \(\phi_3 \leq C \phi_2 / \phi_1 \). Therefore, Corollary 1.5 follows from Corollary 1.4.

Finally, Corollary 1.9 follows from Theorem 1.8.
Spreading sequences in JT

by

HELGA FETTER and BERTA GAMBOA de BUEN (Guanajuato)

Abstract. We prove that a normalized non-weakly null basic sequence in the James tree space JT admits a subsequence which is equivalent to the summing basis for the James space J. Consequently, every normalized basic sequence admits a spreading subsequence which is either equivalent to the unit vector basis of l_2 or to the summing basis for J.

1. Introduction. We study subsequences of normalized basic sequences $(x_i)_{i=1}^\infty$ in the James tree space JT. Amemiya and Ito [1] proved that if $(x_i)_{i=1}^\infty \subset JT$ is weakly null then it has a subsequence which is equivalent to the unit vector basis of l_2.

We prove, following an idea of Hagler [7], that if $(x_i)_{i=1}^\infty$ is not weakly null then there is a subsequence equivalent to the summing basis for the James space J. In particular, this yields a classification of all the spreading models of JT, extending the work of Andrew [2] for the space J.

We thank the referee for his detailed revision and his valuable suggestions.

We first introduce some necessary notation and recall the definitions of J and JT constructed by James in [8] and [9] respectively. Most of the material referring to these spaces used here can be found in [5].

DEFINITION 1. The James space J is the Banach space of real sequences $b = (b_i)_{i=1}^\infty$ with the norm

$$||b|| = \sup \left(\sum_{i=1}^M \left(\sum_{j=1}^{n(i)} b_j \right)^2 \right)^{1/2},$$

where the sup is taken over all finite collections S_1, \ldots, S_M of disjoint intervals of natural numbers with $S_i = \{n(\nu), n(\nu) + 1, \ldots, n(\nu) + \kappa(\nu)\}$.

1991 Mathematics Subject Classification: Primary 46B20.

Both authors supported partially by Conacyt Grant 0326-P-E.