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On a weak type (1,1) inequality
for a maximal conjugate function

by

NAKHLE H ASMAR and
STEPHEN J. MONTGOMERY-SMITH (Columbia, Mo.)

Abstract. In their celebrated paper [3], Burkholder, Gundy, and Silverstein used
Brownian motion to derive a maximal function characterization of H? spaces for 0 <p< co.
In the present paper, we show that the methods in [3] extend to higher dimensions
and yield a dimensjon-free weak type (1,1) estimate for a conjugate function on the
N-dimensional torus.

1. Introduction. In this section, we introduce our notation and state
our main result (Theorem 1.1 below). For the statement of this theorem, we
need to recall Doob’s weak type (1,1) inequality for maximal martingales,
and Kolmogorov’s weak type (1, 1) inequality for the conjugate function.

Throughout this paper, N denotes a fixed but arbitrary positive integer,
T denotes the circle group, and T denotes the product of N copies of T.
The normalized Lebesgue measure on TV will be symbolized by P. For a
measurable function f, we let |\ f||7 = sup,so yAs(y) where As(y) = P({z €
TV : |f(2)| > y}). The integers will be denoted by Z and the complex
numbers by C.

Let F,, = o(e®1, ..., eis) denote the g-algebra on TV generated by the
first n coordinate functions. For f € L'(TY), the conditional expectation
of f with respect to JF, will be denoted by E(f|Fy,). Let

do(f) = B(f|Fo)= | fdP,

TN
and for j = 1,..., N, let d;{f) = E(fIF;) — B(f|F;-1). We have the mar-
tingale difference decomposition

N
(1) f=2_d(f).
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Consider the maximal function corresponding to (1);

(2) = sup ‘Zd

‘= sup |B{f|Fn}|.
12n<N <n<N

A well-known weak type (1, 1) maximal inequality due to Doob states that
there is a constant ¢ independent of f and NV and such that

(3) IDFIE < all£1]2-

Now we recall the conjugate function operator f f", defined for all f €
L?(T) by the multiplier relation
f(n) = —isgn(n)f(n),
By Kolmogorov’s theorem [8, Chap. IV, Theorem (3.16)], the operator
-+ f is of weak type (1,1).

We can now define the operator that we will study in this paper. It
is a composition of a one-dimensional conjugate function applied to each
coordinate, followed by the maximal martingale operator (2). Denote an
element of TN by (61,...,0n). Let H; denote the one-dimensional conju-
gate function operator defined for functions on TV with respect to the 4;
variable. As an operator on L*(TV), H; is given by the multiplier rela-
tion H;(f)(21,...,2n) = -—isg;n(zj)f(zl, coy2n), for all (z1,...,2y5) € ZV.
Plainly, the operators H;, = 1,..., N, are of weak type (1,1) on L*{T¥)
with the same constant as in Kolmogorov’s theorem for L*(T). The conju-
gate function that we consider is defined for all f € L!(TV) by

foralln e Z.

N
(4) H(f) =) H;(d;(f)
Je=1
Since both H; and d; are multipliers, they commute. We have
N
(5) H(f) =" d;(H(f)
Jj=1
The maximal function that we are interested in is defined by

(6) M(f)= swp [ di(H;(7)| = D)),

where D is as in (2). Thus M is the composition of two operators of weak
type (1,1). (The fact that H is of weak type (1,1) is known, and will not
be needed in the proofs. See Remark 1.2(a) below. This fact will also follow
from our main theorem.) Our goal is to prove the following result.
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THEOREM 1.1. There is a constant A independent of N such that for
all € LYTY) we have

(7) M 5117 < Al £,
where M is the maximal operator given by (8).

The proof of this theorem is presented in the following section, and is
of independent interest. We will show that by changing the time in the
Brownian motion that Burkholder, Gundy, and Silverstein used in [3] from
a continuous range [0,00) to a semi-continuous range {1,2,...} x [0, c0),
the proofs in [3] can be carried out on TY, yielding mequalmes which are
independent of N {e.g., the “good A? inequahty)

We end this section with some remarks concerning the operator H that
will not be used in the sequel.

Remark 1.2. (a) The operator f — Hf that we defined in (5) is a
conjugate function operator of the kind that was introduced and studied
by Helson [6]. Helson’s definition is in terms of orders on the dual group
ZN . In our case, the operator I can be recast in terms of a lexicographic
order on ZV. As shown in [6], the operator H is bounded from L*(T¥) into
LP(TV), for any 0 < p < 1. Indeed, it is of weak type (1,1) (see [1, Theo-
rem 4.3]).

(b) We proved in [1, Theorem 5.4] that the square function Sf =
(E;N:I |H;(d;{f)*)*/? is of weak type (1,1). It is known that under cer-
tain conditions on the martingale, the weak type estimates for the square
function and the maximal function are equivalent (see, for example, As-
sumptions Al-A3). The martingales that we are studying do not satisfy
these conditions, and so (7) does not follow from the weak (1,1) esti-
mates for the square function, by using general facts from probability
theory.

2. Proof of Theorem 1.1. For clarity’s sake, we start with an out-
line of the proof, setting in the process our notation, and describing our
generalization of the methods in [3].

It is emough to prove (7) with f € S(TV), the space of trigonometric
polynomials on T¥. We may also assume that f is real-valued and that
do(f) = 0. Write

§ 3, .7N
f 017 a'Jl: ’JNe L

and extend f to a function on CN that is harmonic in each variable as
follows:

f('rlalz s 7TN0N) = Za’jlr--ﬂN “1'931 L%N!BJNN
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where 7, i8 a nonnegative real number, and |6,| € T = {z: 2| = 1}. In
this notation, the nth term in the martingale difference decomposition of f
becomes

dalf)= D s 0,080 B

g
Since by assumption do(f) = 0, it follows that
(8) dn{f)(rib1,. ., 70—10n-1,0) =0

foralln=20,1,...,N.

The approach that we take is to consider a martingale on a time struc-
ture that is part continuous and part discrete. Our notion of time is 7 =
{1,...,N} x [0,00[ with the order (m,s) < (n,t) if and only if m < n or
m = n and s < t. Construct N independent complex Brownian motions
Cnt = ptibp (1 <n <N, £2 0) each one starting at 0. Define stopping
times 1, = inf{?: |cay| = 1}

Define an increasing family of o-fields (A * (n,t) € T), where An,)
is the o-field generated by the functions cp, s for (m,s) < (n,%). Then we
define a process over our new time structure by

(9) F’f‘l-,t = f(cl,TJJ :

L) cn—-lﬂ'n_,”cn,ﬂ'n/\t: O: v }0)
n—1

= Z dk(f)(cl,‘rm s ack,ﬂe) + d'n(.f)(cl,ns ERRE cﬂ,tr’\'!’n)'
k=0

Since 7, < 00 a.8., it follows that a.s., for sufficiently large (n,t), we have
Frt = Foo, where

N
Fe = de(clﬂ'w' . ;ck,'rk) - f(cl,’r'la ey cN,TN)'
k=0

We will show that the family of functions (F, ;) is a martingale relative to
A(n,)- To be able to use results from the classical theory of martingales, it is
convenient to label the family (Fn:) by a continuous time parameter. This
can be done by forming an order preserving bijection between 7°U {oo} and
[0, N as follows:

¢(n,t)=n~1+t/t+1), and ¢(oo)=N.

Because ¢y ; is a.8. continuous in ¢, and also 7, < oo a.s., it follows that

Fy-14 is a continuous time martingale on [0, N]. Let ?ﬂ,t be constructed
from Hf as in (9). Define the Brownian maximal function

- F* = sup |Fp-1p5l,
oS | * {0l
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and let F* be defined similarly by using fn,t. The proof of the desired
inequality (7) will proceed in four steps:

Step 1t ||Fslls = || f]l3;

Step 2: [[F*|] 0 £ [ Foollt;
Step 3: [|[F*[|f 00 < cllF*|f oos
Step 4: |MFI 00 S IF*[I} o

We now proceed with the proofs. Suppose that ¢; = a; -+ib; is a complex
Brownian motion starting at 0. Let A; be the o-field generated by ¢, for
s <t Let 7 =inf{t: |e:} = 1}

Suppose that v is a real-valued trigonometric polynomial on T={|z|=1},
and extend v to be harmonic on C. It follows from [5, Theorem 4.1] that
v(e:) is a martingale, and v(e;) is A;-measurable. The following lemma is a
gimple consequence of this fact and Docb’s Optional Stopping Theorem.

LeMMA 2.1. With the above notation, if u is a stopping time such thai
w =<, then ‘

E(v(eu)lAs) = v(etnn)-

Using Lemma 2.1, we can establish a basic property of the functions
(Fn,t)-

LEMMA 2.2. In the above notation, we hove E(Fy|An:) = Fos, and
hence (Fn 1) is a martingale. Consegquently, {Fy-1()) is o continuous time
martingale for t € [0, N].

Proof First, it is clear that if k < », then
E(dk (Cl,’f'w ceey Ck:,rk)iAn,t) = dk(cl,‘l’u s Fqu‘rk)’

because di(C1,ryy-- s Chyry ) 18 An,: measurable. Also, if k > n, then
E(dk(cl,n: Ces ackz,m)i-Afn,t) = E(E(dk(c}.,ﬁ: e ka,Tk)lAk,O)!An,t) =0,
by Lemma 2.1 and (8). Similarly, by the same lemma, it also follows that if
k =n, then
E(dk (cl,n, Cas ;Ck,m)iv‘ln,t) = dk(cl,na .y Ck,mf,-k)

and hence E(Fy|An ¢) = Fn:. This proves that (Fy ;) is a martingale. The
rest of the lemma is obvious.

Proof of Steps 1, 2, 4. Because of Lemma 2.2, Step 2 follows from
Doob’s Maximal Inequality for continuous time martingales (see [4, Chapter
VII, Section 11]). Step 1 also follows from the uniform distribution of Brow-
nian motion over T (see [7, Corollary 3.6.2}). Step 4 is also a consequence

A
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of the same property of Brownian motion. We give details. We have
T
F* = sup | Fot| 2 sup |Frpr, | = sup‘ > Hpldm () erms - - Cm,'rm)|-
n,t n L —

But since {17y, Cm,n,) is equidistributed with (6y,..
side of the displayed inequalities is equidistributed with

S Honld(£) (01, -, 6m)],
=0

.10rs), the right

sup
n
and Step 4 follows.

Proof of Step 3. The proof may be done as in [3, Theorem 4]. We
provide the details to show the role of analyticity on TV, Here we call a
function ¢ € L*(T¥) analytic if its Fourier transform is supported in the
half-space

N

O:{U}U U{(ml,...,mN) ezZV tmy >0, mijp1=...=mn =0}.

j=1

The following basic properties of analytic functions on T are easy to
prove.

e A function ¢ € L}(TY) is analytic if and only if each term in its
martingale difference decomposition, d;(#) (j = 1,..., N), is analytic in the
jth variable 8, and has zero mean, i.e., d;(¢) € H}(T).

o If ¢ is analytic then so is ¢2. (This follows from O+ O = 0.}

o If ¢ is a trigonometric polynomial on T, then ¢ + iH(¢) is analytic.

Getting back to the proof of Step 3, let
g(r1By,...,TnON) = f(riby,...,rnBN) +IH(f)(r1b1, ..., TnON),

and let h = g% Both g and h are analytic on TV. Hence the functions
& (g)(01, .. ., Tmbm) and dp(R)(64, . .., rmbm) are analytic in the mth vari-
able. Form the functions G, s and Hy; as in (9). By Lemma 2.2, G, ; and
H, ; are martingales relative to A, ;. We claim that, because of analyticity,
we have

(10) Hn,t = Gi,t'
To see this, write

N

900 ,0x) = S dil0) (O, ., 6x),
k=1
N

By, 08) =D di(R)(By, ..., 0).

S
1l

1
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Then, since all the exponents of f,, are positive, we get

n—1
(3 del@)Brr- ., 08) + dn()(Or, - o))
k=1

n—1
= " dr(h)(B1, -, 0k) + dn(B) (61, -, Tnbn)
o1

and (10) easily follows. Consequently, since the functions H,; form a mar-
tingale relative to the o-algebra A, ¢, we deduce that G2 ; is a martingale
relative to this o-algebra. With this fact in hands, we can now proceed with
the proof of Step 3 in exactly the same way as in [3, pp. 148-149]. We need
a lemma.

LEMMA 2.3. Suppose that p and v are stopping times with p < v a.e,
Let f be a real-valued trigonometric polynomial on TV with {fdP = 0.
Then

| Fy — Eulla = [|[Fo — Fylla-
Proof. Using the fact that G2, is a martingale, we get
0=EG}; = EG;.

Similarly, E(G%) = 0. Hence, EF? = Eﬁﬁ and EF? = EF?, Next, we
show that E(F,F,} = EFZ, and E(F,F,) = EF?. We start with the first
equality. Using Doob’s Optional Sampling Theorem and basic properties of
the conditional expectation, we see that

E(F,|F) = Fy, FuE(Fv|Fu)=Fp2w
and so
E(F,F,|F,) = F..

Integrating both sides of the last equality, we get E(F F.) = EFE. The
second equality can be proved similarly. Thus

E(F, — F,)* = F2 + EF) - 2E(F,F,) .
= EF? + BF? - 2EF, = EF] - EF} =B(¥, - F))’,
which completes the proof.

The above lemma enables us to establish a fundamental inequality. This
is our version of the “good A” inequality for conjugate functions on TY.

LEMMA 2.4. With the notation of the previous lemma, let a > 1 and
B > 1. Then there is a constant c, depending only on « and 3, such that
whenever A > 0 sotisfies
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P(G" > )\) < aP(G* > 3)N),
then
P(G* > X\) € cP(cF™ > X).

Proof. Define stopping times

p=1inf{(n,t) € T: |Gnyl > A},  v=inf{{nt) €T :|Gnsl > BA}.
TF the set {(n,t) : |Gns| > A} is empty, then we set p = co. Otherwise
is such that |Gn| < X\ whenever (n,t) < p, and |G| = A. We define »
similarly. Also, we see that u < v, that |G| = A on the set {p # o0} =
{G*, > A}, and that |Gy| = B on the set {v # oo} = {G* > FA}. Thus if
X satisfies the hypothesis of the lemima, then

E(xg->a(Fo — F)?) = [Fy = Fullz = 3G — Gl
> L(BA — N2P(G™ > BA) = oA’ P(GL, > ).
Also,
E(xg>»(Fy — Fu)*) <1IG, — Gull§ £ eX*P(G > A).
Thus, by a lemma of Paley and Zygmund [8, Chapter V, (8.26)],
P(G* > X\) € cP(c|F, — F,| > A).

Since |F, — Fy| < 2F*, the lemma follows.

Now let us finish by proving Step 3. It is sufficient to show [|G™ [ o <
| F*||] - Suppose that

|G*||5 00 = sup AP(G* > A) = A.
A0

Pick Ay such that 2AgP(G* > 2X) = A/2. Then A P(G* > Ap) < A, and
thus Ap satisfies the hypothesis of the lemma with o = 4 and § = 2. Then
it follows that

IFHif2 oo = MP(cF* > ho) > cA/4,
as desired.
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