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Sufficient conditions of optimality
for multiobjective optimization problems
with v-paraconvex data

by

T. AMAHROQ and A, TAA (Marrakech)

A.Lbstract. We study multiobjective optimization preblems with y-paraconvex multi-
function data. Sufficient optimality conditions for unconstrained and constrained problems
are given in terms of contingent derivatives.

1. Introduction. Many authors have studied multicbjective optimiza-
tion problems in terms of some tangent derivative notions. Corley [4] has
given optimality conditions for convex and nonconvex multiobjective prob-
lems in terms of the Clarke derivative. Luc [6] also gives optimality con-
ditions when the data are upper semidifferentiable. Luc and Malivert {7]
extend the concept of invex functions to invex multifunctions and study
optimality conditions for multiobjective optimization with invex data in
terms of contingent derivatives. Taa [12] gives optimality conditions with
no assumption on the data but with the Shi derivative which is an enlarged
version of contingent derivative.

In this paper we establish sufficient optimality conditions in terms of
the contingent derivative for unconstrained and constrained multiobjective
optimization problems when the data are vy-paraconvex or compactly -
paraconvex with + > 1. It is shown that the y-paraconvexity data consid-
erably simplify the sssumptions in the optimality conditions. The notion
of y-paraconvex multifunctions has been introduced by Rolewicz [10] and
opennesy and metric regularity of such multifunctions are studied in Jourani
5] (see also Allali and Amahroq [1] for another proof).

2. Preliminaries. Let X and ¥ be two Banach spaces and let F be a
multifunction from X into Y. In the sequel we denote the effective domain
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and the graph of F' respectively by
dom(F) = {z € X : F(z) #0}, egr(F)={(z,y)e X xY y€ F(z)}.
If V is a nonempty subset of X, then we set

FV)= | F(=).
eV
Let v > 0. The multifunction F is said to be v-paraconves (see [12] ) if there
is » constant ¢ > 0 such that for all z, 2’ € X and all & € ]0, 1] the following
inclusion holds:

(2.1) aF(z) + (1 - a)F(z') C Flaz + (1 —a)z") + cllz — &' By,

where By is the closed unit ball of Y. Rolewicz [10] proved that when v > 1,
the relation (2.1) is equivalent to

(2.2) aF(z)+(1—a)F(z') C Flaz+(l-a)z')+emin(a, 1-a)|z—2'||" By.

Following this definition we shall say that the multifunction F is compactly
~-paraconver with v > 1 if there exists a convex compact subset § of ¥
containing (0 such that

(23) aF(z)+(1—a)F(z') C Flaz-+(1~a)z)+min(a, 1—a)l|z—2'||78.

Tt is obvious that any convex multifunction (i.e. whose graph is a convex
subset of the product space X x Y) is compactly y-paraconvex and then -y-
paraconvex but the converse may be false. For counterexamples see Rolewicz
[10] and Jourani [5].

A multifunction F from X into Y is said to be B-tangentially compact
at (F,7) € gr(F) in the sense of Penot [8] if for any sequences () — 0,
(2} converging in X and any bounded sequence (y,) C Y with T+ tnyn €
F(Z +tazy) for all n € N, the set of cluster points of (y,) is nonempty.

It is obvious that if Y is finite-dimensional then any multifunction defined
from X into Y is B-tangentially compact at each point of its graph.

Let f be a single-valued map from X into ¥ and let 7 = f(¥). If the
Hadamard directional derivative df (%,-) of f exists at %, that is, for each
7 & X the limit

df (7,7) = tTHF(E A+ ) ~ 7]

1
(¢u)}—(0t,7)
exists, then f is B-tangentially compact at {Z,%).

If F is upper semidifferentiable at (Z,7) € gr(F) in the sense of Luc [6],
that is, for each sequence ((z»,¥n)) C gr(F) not coinciding with (Z,7) and
converging to it, there is an infinite subset I C N and a sequence (3 }ner of
positive numbers such that the sequence

(Bn(®n — T, Yn —T))ner
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converges to some nonzero vector of the product space X x Y, then F is
B-tangentially compact at (Z,7). Indeed, let {t,) — 0, (2,) > z€ X and a
bounded sequence (y,) C Y such that

T+ toyn € F(T +tpz,) for all n.

By upper semidifferentiability of F' at (Z,%), there exist an infinite subset
I ¢ Nand a sequence (8,)ner of positive numbers such that the sequence
(Brtn(@n, Yn))nel

converges to some nonzero vector of X x V. For all n € I put

Wy == Pptekn  and 2z, = Bptayn.

Since (wn) and (z,) do not both converge to 0, it is clear that the sequence
(Bntn)~' is bounded. Hence () has a converging subsequence.

In order to recall the definition of the contingent derivative, let us first
recall the definition of the contingent cone to a subset A of X at a point T
in the closure CL(A) of A.

DEFINITION 2.1. The contingent cone K(A; %) of A at & € CL(A) is the
set of all v € X such that there exist (¢,) — 0 and (vy,) — v with

T+ tou, € A

It is known that when A is a convex subset, then K (A; Z) is also a convex
subset of X'. The contingent derivative of F is defined by considering the
contingent cone to the graph of F (see [3] and [2]).

DeriNiTION 2.2 [3]. Let (%,7) € gr(F). The contingent derivative
DF(z,%) of F at (Z,7) is the multifunction whose graph is the contingent
cone K(gr(F); (Z,7)) to the graph of F at (%,7).

DF(Z,7) is a positively homogeneous multifunction with closed graph.
Due to Definition 2.1, y € DF(Z,7)(z) if and only if there exist sequences
(tn) ~ 0, (4) — y and (z,) — z such that

T-Ftnyn € F(T+tnz,) forallnelN

Recall that for a family (Aa)aso of subsets of Y, lim sup,, o, A is defined
by

for all n.

Imsup A, = {a € Y : I(an,an) — (0,a), an € Ao, Vn}.
o0+

The following results will be crucial in the sequel.
PROPOSITION 2.1. Let -y > 1 and (Z,7) € gt(F). Then:
(i) If F is compactly v-paraconvez then for all z € X,
F(z) -7 C DFE,7)(e - &) + |z - 3",
where § is given by (2.3).
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(i) If F is y-paraconver and B-tangentially compact at (Z,7) then for
allz e X,

F(z) -9 < DF(z,5)(z — %) +¢llz — 5" By,
where ¢ is given by (2.2).

Proof. (i) Let o € ]0,1[. By compact ~y-paraconvexity we have
aF(a)+(1- )7 C aF(s) + (1~ )F (@) C Flaz+ (1 - o)) +olls ~ 7S,
thus ‘
F(z) -5 C o [F(@+ oz — 7)) -] + o — 2|75,
and hence :

F(z) —7 C limsup o} [F(Z + a(z — F)) — T + Iz -~ Z||7S.
Now let v € imsup o~} [F(Z + a(z — E)) — 7] + ||z — Z||7S. Then there exist
sequences (@, vn) — (01, v) and (b,) C S such that

| T+ an(vn — || = Z|"bn) € F(Z + an(z — 7))-
By compactness of S, there exist an infinite subset I C N and b € S such
that

(vn — ||z — B ba)ner — v — iz — Z|"b.
This tmplies that
v € DF(z,3)(z — Z) + |z — TS,

which completes the proof of (i). The proof of (ii) is similar.

The following corollary is a direct consequence of the above proposition.

COROLLARY 2.1. Let (%,%) € gr(F). If Y is finite-dimensional and if F
is y-paraconvex with ¥ > 1, then for all x € X,

F(z) -y C DF(Z,y)(z — T) + ||z — || By.
Consider now the multifunction G from X into a Banach space Z. In

the sequel the couple (F,G) will be the multifunction from X into ¥ x Z
defined by

(F,@)(z) = (F(z),G(z)) = F(z) x G(z) for z € dom(F) N dom(G).
As a direct consequence of (2.2), (2.3) and Proposition 2.1 we have the
following lemma.

LemMa 2.1, Let § € F(T) and zZ € G(Z). Then:

(i) If F and G are y-paraconvex then (F, Q) is y-paraconves.
(il) If F and G are compactly y-paraconvez then (F,G) is compactly
Y-paraconves. :
(iil) Let vy > 1 be a real number.
(a) If F' and G are compactly v-paraconves, then for all z € X,
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(F,G){z) C (7, %) + (DF(z,5), DG(Z,7))(z — Z) + ||z - F|[7(S1 x Sg),
where Sy and Sy are compact subsets of Y and Z respectively.
(b) IJi {i and G are y-paraconvezr and B-tangentially compact at
(Z,9) € gr(F) and (3,%) gr(Gl) respectively, then there ex-
wsts ¢ > 0 such that for all z € X,
(F, G){(z) C (7, 2) + (DF(%,7), DG(T, 7)) (z ~ Z) + cllz — T} (By x Bz).

Now let us recall some basic definitions in multiobjective optimization
problems. Let ¥ be a pointed (Y+ N (~Y+) = {0}) closed convex cone of
Y with nonempty interior Int(Y't). Let A be a nonempty subset of ¥ and
7 € A. Then ¥ is said to be a Pareto minimal point (respectively a wenk
Pareto minimal point) of A with respect to Yt if

(A=) N (-YT)={0} (resp. (A-~F)N(~Int(¥*)) = ).

We denote by Min(A) the set of all Pareto minimal points of 4 and by
W.Min(A) the set of all weak Pareto minimal points of A. Let ¢ be a
nonempty subset of X and consider the multiobjective optimization problem

(P} Minimize F(z) subject to z ¢ C.

A point (Z,7) € gr(F) is said to be a local (respectively a weak local) Pareto
minimal point of (P) with respect to ¥'* if there exists a neighborhood V'
of 7 such that § € Min F(V N C) (respectively T € W.MinF(V N C)). This
means that for allz € VN C,

Fla) Cg+ Y\ (=Y T))U{0} (resp. F(z) CT+ Y\ (~Int(¥Y+))).
In the following section we study the constrained problem
(P1) Minimize F(z) subject to z € G~ (—2F)

where G is a multifunction from X into a Banach space Z, Zt is a pointed
closed convex cone of Z with nonempty interior and G~ (—Z*) is the subset
of X defined by

G (-2 ={seX:G(=)n(~2ZT) £0}.
Also we shall derive the optimality conditions for the unconstrained problem

(P1) Minimize F(z).

3. Optimality conditions. In this section we consider a pointed closed
convex cone Y+ of ¥ with nonempty interior and we study optimality con-
ditions for the constrained problem (P;) with respect to Y. This problem
is defined in the preliminaries by

(P) Minimize F(z) subject to G(z) N (—ZT) #£ 0.
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Let us start by some recalls. The following definition has been introduced
in [13].

DEFINITION 3.1. A base Q of Yt is a nonempty subset of Y+ with
0 ¢ CL(Q) such that every ¢ € Y+ {0} has a unique representation

c=rq withr>0andgeCL(Q).

Remark 3.1. (i) If @ is compact one says that Yt has a compact base.
(ii) If Y is finite-dimensional then ¥+ has a compact bade (see {13]).

In the sequel we shall us the following lemma which has been proved
in [11]. |

LevMMa 3.1 [11). The cone Y+ has a compact base if and only if YtNE
is compact, where E:={y €Y : [yl = 1}.

Now we are able to state sufficient optimality conditions for (£y). The
proof of the following theorem uses some ideas of Luc [6) and Taa [12].

TurorEM 3.1 (Sufficient optimality conditions). Let (Z,7) € gr{F),
(7,%) € gr(@) and Z € —Z%, Suppose that F and G are compactly -
paraconvex (or F' and G are y-paraconves and B-tangenfiolly compact at
(2,5) and (T, Z) respectively) withy > 1, X s finite-dimensional and YT x
Z% has o compact base. Moreover, let the following conditions be satisfied:

(@) (DF(z,5), DG, 2))(0) N —(Y*, K(2%;-2)) = {(0,0)},

(ii) (DF(Z.3), DG(Z,2))(z) N ~(Yt,K(Z* -%)) = 0 for every z. €
dom(DF(Z,7)) N dom(DG(Z, %)) \ {0}

Then (E,7) is a local Pareto minimal point of (Py) with respect to ¥T.

Proof. We prove only the case where F and G are compactly y-para-
convex. In an analogous way one can prove the other case. Suppose that
(Z,7) is not a local Pareto minimal point of (Py). Then there exist sequences
(zn) = T, (yn) C Y and (z,) C Z such that for all n € N one has

(3.3.1) T —yn Z—2n) € (YT x (27 +2))\ {(0,0)},
(3.3.2) Zn € Glzy) and y, € Flzg).

For all n € N put

(3'3'3) Qn (bn: Qn) = @7 — Yn» "”zn,)»

where

Op = H(@" Yn,—2n)l, bn=o0n' (@-ys) and g = apt(~2n)-
Since Z+ is convex and since ~Z € 21, we have
Zt Cc -Z+K(Zt; %),
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and by (3.3.1) and (3.3.3) we get

(3.3.4) Z+ong, € K(Z¥;-%) forallne N

By Lemma 2.1(iii)(a), (3.3.2) and (3.3.3) there a
e that et ) ) re sequences (a,) C S and

(335) "‘anbn - HCGn - EH’YCLn € DF(E, —)(.’En - ff)
and
(3.3.6) =Z = tngn = ||&n - T||"e,, € DG(T, 7) (2, - T).

: +
Slll';ce Y+ ox Z:; has a compact base, Lemma 3.1 implies that by extracting
subsequences if necessary we can assume that there are b v+

! and +
with ||(b,¢)|| = 1 such that €7

(3.3.7) (bp) = b and

There are two cases to consider.

(gn) —q.

First case: () has no convergent subse i
N quence. Then (ap,) — oo, Di-
viding (3.3.5) and (3.3.6) by o, for all n and taking the limit Z)s 7 — 00, it

follows from (3.3.7) that

(3.3.8) —(b,¢) € (DF(z7,7), DG(Z,2))(0).
By (3.3.1), (8.3.3), (3.3.4) and (3.3.7) we get

(3.3.9) —(b.q) € (YT, —K(2%;-2))\ {(0,0)}.
Hence, (3.3.8) and (3.3.9) contradict (i).

Second case: The sequence (o) has a convergent subsequence, which we

denote also by (an), with limit & € [0, co[. Here, we have two cases: o = 0
or o 7 Q.

(a) oz.yé 0. By dividing (3.3.5) and (3.3.6) by a, and taking the limit as
n — o0, it follows from (3.3.7) that
(3.3.10) (~b,—a™*Z — ¢) € (DF(Z,7), DG(%, 2))(0).
From (3.3.4) and (3.3.7) we get
(~b,—a™ 7 —g) € (YT, -K(Z";-2))\ {(0,0)},
which, together with (3.3.10), contradicts (i).

(b) & = 0. In this case we have Z = 0 or Z #£ 0,
(bé.) Suppose 7 # 0. By taking the limit as n — oo in (3.3.4) and (3.3.6)
we ge
~z € DG(%,2)(0) N ~K(Z*, —%),
which contradicts (i).
(b2) Suppose Z = 0. Also we have two cases.
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First case: (a~'(z, — Z)) has a convergent subsequence, denoted again
by (o7} (s —T)), to some point zo € X. Dividing (3.3. 5) and (3.3.6) by ay,,
it follows that

by = Jan ~ TVt 2 ~ Fllan € DF(E,T) (05 (20 — 7))
and
o |2 — 31" 0 2n — Flal, € DG(@, 2)(05 (5 — B)).
By taking the limit as n — oo we get
(3.3.11) _(b,q) € (DF(&,5), DG(z,
Moreover, by (3.3.4) and (3.3.7) we have
~(b,q) € —Y+ x (~K(2*;~7)),

which together with (3.3.11) contradicts (i) if zp = 0 or (ii) if zo 5 0.
Second case: (o~ (zy ~ T)) has no convergent subsequence, that is,

By s 0.

7)) (%0)-

GRS
Since X is finite-dimensional, by extracting a subsequence if necessary we
can assurne that
(@ = B)|en —F™) — v,
where v € X and ||v|| = 1. Then by dividing (3.3.5) by ||zr, — Z|| and taking
the limit as n — oo, we get 0 € DF(Z,7)(v); this contradicts (ii). The proof
is complete.

COROLLARY 3.2. Let (%,7) € gr(F) and F be o compdctly Y-paraconves
multifunction with ¥ > 1. Assume that X 1is finite-dimensional, Y has a
compact base and

(i) DF(z,7)(0)n (-Y*) = {0},
(i) DF(E,7)(z) N (=Y ) = ¢ for each z € dom(DF(ZE,7)) \ {0}.
Then (Z,7) is o local Pareto minimal point of (P1) with respect to Y+,

Proof. The result is a direct consequence of the above theorem by con-
sidering the multifunction G whose graph is X x {0}.

We also have the next result.

COROLLARY 3.3. Let (%,7) € gr(F) and F be y-paraconver with v > 1.
Assume that F is B- tangentmlly compact at (£,7), X is finite-dimensional,
Y has a compact base and the conditions (i) and (i} of Theorem 3.2 hold.
Then (%, 7) is a local Pareto minimal point of (Py)" with respect to Y.

Acknowledgements. The authors would like to thank Professor
L. Thibault and the referee for their suggestions and corrections.

icm

Multiobjective optimization problems 247
References

(1] K. Allali and T. Amahreq, On openness and regularity of y-paraconver multi-
functions, Control Cybernet., to appear,
2] T.AmahroqandL. Thibault, On proto-differentiability and strict proto-differen-
tiability of multifunclions of feasible points in perturbed optimization problems, Nu-
mer. Funct. Anal. Optim. 16 (1995), 1293--1307.
81 J. P. Aubin, Contingent derivatives of set-valued maps and emistence of solutions
to nonlinear inclusions and differentiol inclusions, Adv. in Math. Suppl. Stud. 7a,
L. Nachbin (ed.), Academic Press, New York, 1981, 159-229.
[4] H.W. Corley, Optimality condilions for mazimizations of set volued-functions, J.
Oplim. Theory Appl. 58 (1988}, 1-10,
[5] A.Jourani, Open mapping theorem and inversion thearem for v-paraconuer mul-
tivolued mappings and applications, Studia Math. 117 (1996), 123-136.
[6] D.T. Luc, Contingent derivatives of sei-ualued maps and applications to vector
optimization, Math, Programming 50 (1991), 99-111.
[7] D.T. Luc and C. Malivert, Invez optimisation problems, Bull. Austral. Math.
Soc. 46 (1992), 47-66.
8] J. P. Penot, Differentiability of relations and differential stability of perturbed o-p-
timization problems, SIAM J. Control Optim. 22 (1984), 528-551.
9] S. Rolewics, On poraconver multifunctions, Oper. Res. Verfahren 31 {1979), 539~
546.
[10] -, On vy-paraconves mullifunctions, Math. Japon. 24 (1979), 293-300.
[11] D.8. Shi, Contingent derivative of the perturbation map in multiobjective optimiza-
tion, J. Optim. Theory Appl. 70 (1991), 385-396.
[12] A. Taa, Necessary and sufficient conditions for multiobjective optimization prob-
lems, Optimization 36 (1996), 97-104.
[18] T.Tanino, Sensitivity analysts in multicbjective optimization, J. Optim. Theory
Appl. 56 (1988), 479-499.

Faculté des Sciences et Technigues
Département de Mathématiques
B.P. 618, Marrakech, Maroc

Received June 18, 1996
Reviged version August 20, 1996

{3577)



