

On duals of Calderón-Lozanovskii intermediate spaces

by

YVES RAYNAUD (Paris)

Abstract. We give a description of the dual of a Calderón–Lozanovskii intermediate space $\varphi(X,Y)$ of a couple of Banach Köthe function spaces as an intermediate space $\psi(X^*,Y^*)$ of the duals, associated with a "variable" function ψ .

Introduction. Given two Köthe function spaces over the same measure space, X_0 and X_1 , the interpolation spaces $X_0^{\hat{1}-\theta}X_1^{\theta}$, $0<\theta<1$, were defined by Calderón ([C]) as the order ideal generated by the functions $x_0^{1-\theta}x_1^{\theta}$ with $x_0 \in X_0$, $x_0 \ge 0$ and $x_1 \in X_1$, $x_1 \ge 0$. When X_0 or X_1 is reflexive, these spaces coincide (in the complex case) with the spaces $[X_0, X_1]_{\theta}$ obtained by the complex interpolation method. In this case the dual spaces can also be described by complex interpolation; more precisely, if $X_0 \cap X_1$ is dense in X_0 and X_1 , then X_0^* and X_1^* embed naturally in $(X_0 \cap X_1)^*$, and $[X_0, X_1]_{\theta}^* = [X_0^*, X_1^*]_{\theta}$. The description of the dual of $X_0^{1-\theta}X_1^{\theta}$ without any restriction on the Banach lattices X_0 and X_1 (except their order completeness) was achieved by Lozanovskii ([L1], [L2]). When $X_0 \cap X_1$ is dense in X_0 and X_1 , then $(X_0^{1-\theta}X_1^{\theta})^* = X_0^{*1-\theta}X_1^{*\theta}$, the definition of this last space being unambiguous since X_0^* and X_1^* are order ideals of $(X_0 \cap X_1)^*$; in the general case Lozanovskii shows how to realize X_0^* and X_1^* as order ideals of a common space of measurable functions and then identifies (isometrically and order isomorphically) $(X_0^{1-\theta}X_1^{\theta})^*$ with $X_0^{*1-\theta}X_1^{*\theta}$. A consequence of this fact is that the equality $(X_0^{1-\theta}X_1^{\theta})' = X_0'^{1-\theta}X_1'^{\theta}$ holds for the Köthe duals of the spaces X_0, X_1 .

These results were (partially) extended to a more general class of interpolation spaces of Köthe function spaces, the so-called Calderón-Lozanovskiĭ spaces. Let us recall their definition. Consider a function $\varphi : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ which is concave, positively homogeneous of degree one, continuous and not identically zero (we denote by \mathcal{C} the set of such functions, which we call Calder'on-Lozanovskiĭ functions). By rescaling if necessary, we may suppose that $\varphi(1,1)=1$ (we denote by \mathcal{C}_1 the subset of such normalized functions).

¹⁹⁹¹ Mathematics Subject Classification: Primary 46E30.

Then the space $\varphi(X_0, X_1)$ is the order ideal generated by the functions $\varphi(x_0, x_1)$ with $x_i \in X_i$, $x_i \geq 0$, i = 0, 1. This space is normed by the formula $||z|| = \inf\{||x_0|| \lor ||x_1|| : |z| \leq \varphi(x_0, x_1); x_i \in X_i, x_i \geq 0\}$.

The Calderón–Lozanovskiĭ function φ_* conjugate to φ is defined by $\varphi_*(s,t) = \inf\{(\alpha u + \beta v)/\varphi(\alpha,\beta) : \alpha,\beta > 0\}$. It is generally not normalized but $1 \leq \varphi_*(1,1) \leq 2$ if φ is normalized. Suppose that $X_0 \cap X_1$ is dense in X_0 and X_1 ; let Z_0 be the closure of $X_0 \cap X_1$ in $\varphi(X_0,X_1)$. Then Lozanovskiĭ proves ([L3]) that $Z_0^* = \varphi_*(X_0^*,X_1^*)$; this is an equality between subspaces of $(X_0 \cap X_1)^*$, but the norms are only equivalent up to a constant 2. However, following [R], one can obtain isometry by putting on $\varphi_*(X_0^*,X_1^*)$ the modified norm $\|z^*\| = \inf\{\|x_0^*\|_0 + \|x_1^*\|_1 : |z| \leq \varphi_*(x_0^*,x_1^*); \ x_i^* \in X_i^*, \ x_i^* \geq 0\}$. As a consequence one can deduce the equality $\varphi(X_0,X_1)' = \varphi_*(X_0',X_1')$ for the Köthe duals (without any density assumption). This last fact is reproved in [R], without considering the whole duals. When φ satisfies the two-sided "reverse Δ_2 -condition"

$$\exists c > 0, \ \forall s, t > 0, \quad \varphi(s, ct) \leq \frac{1}{2}\varphi(s, t) \quad \text{and} \quad \varphi(cs, t) \leq \frac{1}{2}\varphi(s, t)$$

(this is in particular the case for $\varphi(s,t) = s^{1-\theta}t^{\theta}$) then $X_0 \cap X_1$ is dense in $\varphi(X_0, X_1)$ and the preceding result gives a description of the whole dual $(\varphi(X_0, X_1))^*$ (under the density assumption).

A particular, well known class of Calderón–Lozanovskiĭ spaces is that of Orlicz spaces: if we set $M^{-1}(t) = \varphi(t,1)$, then M is an Orlicz function, and the corresponding Orlicz space L_M is simply $\varphi(L_1, L_\infty)$ (with equality of norms if L_M is equipped with the so-called Luxemburg norm). Let M_* be the Young conjugate of M; one has $M_*^{-1}(s) = \varphi_*(1, s)$. If M satisfies the usual Δ_2 condition, then $L_M^* = L_{M_*} = \varphi_*(L_\infty, L_1)$; if not, $L_M^* = L_{M_*} \oplus L$, where L is an abstract (nonseparable) L_1 -space (Andô's theorem [A]; see also [Z], [F]).

The purpose of this paper is to give a unified description of the dual of the space $\varphi(X_0, X_1)$ in the most general case. Let a generalized Calderón-Lozanovskii function, for short g.C.-L. function, defined on the measure space (S, Σ, m) , be a measurable map $\psi: S \times \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ such that for a.e. $s \in S$, the partial function $\psi_s := \psi(s, \cdot, \cdot)$ either belongs to \mathcal{C} or is identically 0. If Y_0, Y_1 are Köthe function spaces over (S, Σ, m) , then the generalized Calderón-Lozanovskii space $\psi(Y_0, Y_1)$ is the order ideal generated by the functions $\psi(y_0, y_1) = \psi(\cdot, y_0(\cdot), y_1(\cdot))$, where $y_i \in Y_i, y_i \geq 0$, i = 0, 1. Then the dual of the space $\varphi(X_0, X_1)$ can be described as a g.C.-L. space $\psi(X_0^*, X_1^*)$ (see Theorem 4.1), for a suitable realization of X_0^* and X_1^* as order ideals of a space $L_0(S, \Sigma, m)$, and a g.C.-L. function ψ over (S, Σ, m) . Moreover, for a.e. $s \in S$, the conjugate function ψ_{s*} is a limit of "dilations of φ ", i.e. functions $\varphi_{a,b}: (u,v) \mapsto \varphi(au,bv)/\varphi(a,b)$ (with the convention that $\psi_{s*} \equiv 0$ when $\psi_s \equiv 0$).

1. Preliminaries

(a) Köthe function spaces and their duals. A Köthe function space over the measure space $(\Omega, \mathcal{A}, \mu)$ is an order dense order ideal (= solid subspace) of the space $L_0(\Omega, \mathcal{A}, \mu)$ of all measurable functions over $(\Omega, \mathcal{A}, \mu)$, equipped with a norm for which it is a Banach lattice for the natural order. By extension, we shall also consider function spaces whose elements have supports in a fixed subset $A \in \mathcal{A}$, and are Köthe function spaces over $(A, \mathcal{A}|_A, \mu|_A)$ (generalized Köthe function spaces). We call A the support of X.

In the case where μ is not σ -finite, we shall suppose that the measure space is decomposable (or $strictly\ localizable$), i.e. there exists a measurable partition $(A_{\alpha})_{\alpha}$ of Ω into μ -integrable sets such that a subset E of Ω is \mathcal{A} -measurable (resp. μ -negligible) iff all the intersections $E \cap A_{\alpha}$ are \mathcal{A} -measurable (resp. μ -negligible). In this case $L_0(\Omega, \mathcal{A}, \mu)$ is Dedekind complete ([Fr]).

If X is an abstract Banach lattice, its Nakano dual X' is the subspace of X^* whose elements are order continuous, i.e. $x^* \in X'$ iff for all decreasing nets $(x_i)_{i \in I}$ with $\bigwedge_i x_i = 0$, one has $\lim_i \langle x^*, x_i \rangle = 0$. The space X' is a band in X^* . When X is a generalized Köthe space over $(\Omega, \mathcal{A}, \mu)$, then X' can be realized as a generalized Köthe space over $(\Omega, \mathcal{A}, \mu)$ with the same support, the Köthe dual of X, consisting of the elements $f \in L_0(\Omega, \mathcal{A}, \mu)$ such that $fx \in L_1$ for every $x \in X$, and living on the support of X; then $\langle f, x \rangle = \int fx \, d\mu$. The natural embedding $i: X \to X^{**}$ takes values in $X^{*'}$ and is an isometric lattice isomorphism (onto a sublattice of $X^{*'}$). Let r be the restriction projection from $X^{*'}$ onto X''. Then $j = r \circ i$ is a lattice

12

homomorphism from X into X'', which is injective in the case of Köthe function spaces. The equality X = X'', with equality of norms, is equivalent to the Fatou property of X, i.e. that every norm bounded increasing net of nonnegative elements has a supremum whose norm is the supremum of the norms of the elements. In particular, duals have the Fatou property, hence $X^{*''} = X^*$.

Let Y be an order complete Banach lattice. We can find in Y a complete system of local units, i.e. a maximal system $(y_{\alpha})_{\alpha}$ of disjoint nonzero, nonnegative elements. Then the order ideal \mathcal{I} generated by the y_{α} 's is order dense in Y. On the other hand, let $\mathcal{Z}(Y)$ be the center of Y, i.e. the closure in $\mathcal{L}(Y)$, for the operator norm topology, of the space of operators of the type $\sum_{i=1}^{n} a_i p_i$, where the a_i are scalars and the p_i are disjoint band projections. Then every y in \mathcal{I} can be formally written $y = \sum_{\alpha} \varphi_{\alpha} y_{\alpha}$, with $\varphi_{\alpha} \in \mathcal{Z}(Y)$; if $y \geq 0$, so are the φ_{α} , and \sum_{α} means simply the supremum.

Let us briefly recall now the realization of X^* as a Köthe function space given in [VL] (for X a Köthe function space over $(\Omega, \mathcal{A}, \mu)$). If $x \in X$, we have an order continuous lattice homomorphism $\pi_x: X^* \to L_\infty(\Omega)^*$ defined by $\langle \pi_x x^*, h \rangle = \langle x^*, hx \rangle$. These homomorphisms π_x induce a bijection $\tilde{\pi}$ between the bands of X^* and the subbands of a band R_X of $L_{\infty}(\Omega)^*$ (by $\widetilde{\pi}(V) = \text{band}\{\pi_x(x^*): x^* \in V, x \in X\}$). By identifying the bands with the associated band projections, $\tilde{\pi}$ is an isomorphism from the complete Boolean algebra $\mathcal{B}(X^*)$ of projections of X^* to that of R_X . This isomorphism induces naturally an isometric order isomorphism from $\mathcal{Z}(X^*)$ onto $\mathcal{Z}(R_X)$ (also denoted by $\widetilde{\pi}$).

Conversely, we can define a homomorphism ρ from the complete Boolean algebra $\mathcal{B}(L_{\infty}(\Omega)^*)$ onto $\mathcal{B}(X^*)$ by setting $\langle \varrho(p)x^*, x \rangle = \langle p\pi_x x^*, \mathbf{1}_{\Omega} \rangle$ for all $x^* \in X^*, x \in X \text{ and } p \in \mathcal{B}(L_{\infty}(\Omega)^*).$ Then $\varrho \widetilde{\pi} = \mathrm{id}_{\mathcal{B}(X^*)}$, while $\widetilde{\pi} \varrho$ is the natural restriction from $\mathcal{B}(L_{\infty}(\Omega)^*)$ to $\mathcal{B}(R_X)$. Note that ϱ induces a continuous homomorphism from $\mathcal{Z}(L_{\infty}(\Omega)^*)$ onto $\mathcal{Z}(X^*)$.

Note that $L_{\infty}(\Omega, \mathcal{A}, \mu)^*$ is an abstract L_1 space, and thus identifies (isometrically and order isomorphically) with a space $L_1(S, \Sigma, m)$ (see [LT]), Then R_X is the band generated by a set $S_X \in \Sigma$ in $L_1(S)$, $\mathcal{Z}(L_{\infty}(\Omega)^*)$ identifies with $L_{\infty}(S, \Sigma, m)$, and $\mathcal{Z}(R_X)$ with $L_{\infty}(S_X)$. Then X* appears as an $L_{\infty}(S)$ -module for the action defined by $h.x^* = \varrho(h)(x^*)$ $(x^* \in X^*, h \in X^*)$ $L_{\infty}(S)$). If $x^* \in X^*$, and p_{x^*} is the projection onto the band generated by x^* , we call the set $S_{x^*} \in \Sigma$ whose indicator function is identified with $\widetilde{\pi}(p_{x^*})$ the support of x^* .

We can choose then a complete system $(x_{\alpha}^*)_{\alpha}$ of local units in X^* and another one $(\nu_{\alpha})_{\alpha}$ in R_X , such that $\tilde{\pi}(\text{band }y_{\alpha}^*) = \text{band }\nu_{\alpha}$ for every α . We can suppose that ν_{α} is an indicator function $\mathbf{1}_{S_{\alpha}}$, with $S_{\alpha} \in \Sigma$, and $m(S_{\alpha}) < \infty$. Then with every element $x^* = \sum_{\alpha} \varphi_{\alpha} x_{\alpha}^*$ in the order ideal generated by the x_{α}^* 's we associate $\widetilde{\pi}(x^*) = \sum_{\alpha} \widetilde{\pi}(\varphi_{\alpha}) \mathbf{1}_{S_{\alpha}}$ and we extend $\widetilde{\pi}$ by order density to an order isomorphism from X^* onto an ideal of $L_0(S, \Sigma, m)$ (supported by S_X): then $\widetilde{\pi}(X^*)$ is the desired realization of X^* as a Köthe function space over (S, Σ, m) .

We call such a realization of X^* in $L_0(S, \Sigma, m)$ a standard realization (associated with the complete systems (x_{α}^*) and (ν_{α}) of local units). If $w \in$ $L_0(S)_+$ with w>0 a.e., then $\widetilde{\pi}^{(1)}$ defined by $\widetilde{\pi}^{(1)}(x^*)=w.\widetilde{\pi}(x^*)$ gives another standard realization of X^* : for, we may assume that w is bounded from above and below on the support S_{α} of each $\widetilde{\pi}(x_{\alpha}^*)$, and set $x_{\alpha}^{*(1)} =$ $(\mathbf{1}_{S_{\alpha}}w^{-1}).x_{\alpha}^{*}$, thus obtaining a new complete system of local units of X^{*} for which $\widetilde{\pi}^{(1)}(x_{\alpha}^{*(1)}) = \widetilde{\pi}(x_{\alpha}^{*}) = 1_{S_{\alpha}}$. We say that the new standard realization of X^* is obtained from the old one by a change of density.

A standard realization of X^* induces in turn a realization of $X^{*'}$ in $L_0(S, \Sigma, m)$. The embedding i_X of X into $X^{*\prime}$ is then characterized by the relations $i_X(x).\tilde{\pi}(x^*) = \pi_x(x^*)$ for every $x^* \in X^*$ (or equivalently $\mathbf{1}_{S_*}i_X(x) =$ $\pi_x(x_\alpha^*)$ for every α). The order ideal \mathcal{I}_X generated by X in X^* consists of the elements $h.i_X(x), x \in X, h \in L_{\infty}(S)$, and one has $X^{*\prime} = \mathcal{I}_X''$ (since clearly $X^* = \mathcal{I}_X'$). Hence nonnegative elements of $X^{*'}$ are suprema of norm-bounded directed families of nonnegative elements of \mathcal{I}_X (see [Z]).

We can find a maximal system $(S_{\alpha})_{\alpha}$ of disjoint subsets of S_X whose indicator functions $1_{S_{\alpha}}$ are simultaneously in (the realization of) X^* and (that of) X^{*} . By a change of density, we can obtain a standard realization of X^* for which $1_{S_{\alpha}} = 1_{S_{\alpha}} i_X(x_{\alpha})$ for a certain complete system $(x_{\alpha})_{\alpha}$ of local units of X.

(b) The set of Calderón-Lozanovskii functions. Now let us say a few words about the set C_1 of normalized Calderón-Lozanovskiĭ functions. We equip C_1 with the topology of simple convergence on the open quadrant $\mathcal{P} = \{(u,v): u > 0, v > 0\}$. Using Ascoli's theorem, it is easy to see that this topology coincides with the topology of uniform convergence on compact subsets of \mathcal{P} (or of the open segment $\Lambda = \mathcal{P} \cap \{(u,v) : u+v=1\}$). Thus this topology is metrizable; in fact, one obtains a compatible metric setting $d(\varphi, \psi) = \sum_{i=1}^{\infty} 2^{-i} |\varphi(u_i, v_i) - \psi(u_i, v_i)|, \text{ where } (u_i, v_i)_{i=1}^{\infty} \text{ is, say, the set of }$ rational couples in Λ . Note that the balls relative to this metric are convex. Moreover, C_1 is compact for this topology. The same is true of course for the set $C_{a,b} = \{ \varphi \in \mathcal{C} : a \leq \varphi(1,1) \leq b \}$ for all positive numbers a, b. Given a $\varphi \in \mathcal{C}_1$, we shall denote by Γ^f_{φ} the subset of \mathcal{C}_1 consisting of all φ -dilations $\varphi_{a,b}$ (defined by $\varphi_{a,b}(u,v) = \varphi(au,bv)/\varphi(a,b)$) where a,b>0; and by Γ_{φ} the closure of Γ_{φ}^f in C_1 . Denote also by $\Gamma_{\varphi}^{l,M}$ the closure of $\{\varphi_{a,b}: a>Mb > 0\}$ and by $\Gamma_{\varphi}^{r,M}$ that of $\{\varphi_{a,b}: b>Ma>0\}$, and finally let $\Gamma_{\varphi}^{l,\infty}=\bigcap_{M}\Gamma_{\varphi}^{l,M}$, resp. $\Gamma_{\varphi}^{r,\infty} = \bigcap_{M} \Gamma_{\varphi}^{r,M}$.

Let us show that the conjugates of the elements of Γ_{φ} appear after normalization as elements of the set Γ_{φ_*} associated with the conjugate of φ .

LEMMA 1.1. The conjugation map $\varphi \mapsto \varphi_*$ is continuous from \mathcal{C}_1 into \mathcal{C} .

Proof. We have to prove that if $\varphi_n \to \varphi$ uniformly on compact sets then $\varphi_{n*} \to \varphi_*$ pointwise.

From the inequalities

$$\forall n, \ \forall u, v, s, t > 0, \quad \varphi_n(s, t)\varphi_{n*}(u, v) \leq us + vt$$

we deduce

$$\forall u, v, s, t > 0, \quad \varphi(s, t)\psi(u, v) \leq us + vt$$

where $\psi(u,v) = \limsup_{n\to\infty} \varphi_{n*}(u,v)$, which means that $\psi \leq \varphi_*$.

Conversely, fix u, v > 0, and let 0 < a < 1. Set

$$\varphi_n^{(a)}(u,v) = \varphi_n(u,v) \vee (v\varphi_n(a,1)) \vee (u\varphi_n(1,a))$$

and define $\varphi_n^{(a)}$ similarly. From $\varphi_n^{(a)} \geq \varphi_n$, we deduce $\varphi_{n*}^{(a)} \leq \varphi_{n*}$. Now compute $\varphi_{n*}^{(a)}$. We have

$$\begin{split} \varphi_{n*}^{(a)}(u,v) &= \inf_{s,t>0} \frac{us+vt}{\varphi_n^{(a)}(s,t)} \\ &= \inf_{s\leq at} \frac{us+vt}{t\varphi_n(a,1)} \wedge \inf_{at\leq s\leq a^{-1}t} \frac{us+vt}{\varphi_n(s,t)} \wedge \inf_{s\geq a^{-1}t} \frac{us+vt}{s\varphi_n(1,a)} \\ &= \frac{v}{\varphi_n(a,1)} \wedge \inf_{at\leq s\leq a^{-1}t} \frac{us+vt}{\varphi_n(s,t)} \wedge \frac{u}{\varphi_n(1,a)}. \end{split}$$

Since

$$\frac{\varphi_n(s,t)}{s+t} \xrightarrow[n \to \infty]{} \frac{\varphi(s,t)}{s+t}$$

uniformly on the set $\{s, t > 0 : at \le s \le a^{-1}t\}$, we have

$$\inf_{at \le s \le a^{-1}t} \frac{us + vt}{\varphi_n(s,t)} \xrightarrow[n \to \infty]{} \inf_{at \le s \le a^{-1}t} \frac{us + vt}{\varphi(s,t)},$$

whence $\varphi_{n*}^{(a)}(u,v) \to \varphi_*^{(a)}(u,v)$, hence $\liminf_{n\to\infty} \varphi_{n*} \geq \varphi_*^{(a)}$, for every 0 < a < 1. But we have

$$\frac{v}{\varphi(a,1)} \ge \frac{v}{ua+v} \varphi_*(u,v)$$
 and $\frac{u}{\varphi(1,a)} \ge \frac{u}{u+av} \varphi_*(u,v)$,

hence

$$\varphi_*^{(a)}(u,v) \ge \left(\frac{v}{ua+v} \wedge \frac{u}{u+av}\right) \varphi_*(u,v) \xrightarrow[a \to 0]{} \varphi_*(u,v). \blacksquare$$

COROLLARY 1.2. The conjugates of the elements of Γ_{φ} (resp. $\Gamma_{\varphi}^{l,\infty}$, $\Gamma_{\varphi}^{r,\infty}$) are proportional to elements of Γ_{φ_*} (resp. $\Gamma_{\varphi_*}^{r,\infty}$, $\Gamma_{\varphi_*}^{l,\infty}$).

Proof. If $\psi \in \Gamma_{\varphi}^f$, i.e. $\psi(u,v) = \varphi(au,bv)/\varphi(a,b)$ for u,v>0, we have

$$\psi_*(u,v) = \inf_{s,t>0} \frac{us + vt}{\varphi(as,bt)} \varphi(a,b)$$

$$= \inf_{s,t>0} \frac{ua^{-1}s + vb^{-1}t}{\varphi(s,t)} \varphi(a,b)$$
$$= \varphi_* \left(\frac{u}{a}, \frac{v}{b}\right) \varphi(a,b).$$

In particular, $\psi_*(1,1) = \varphi_*(1/a,1/b)\varphi(a,b)$, hence

$$\psi_*(u,v) = \frac{\varphi_*(u/a,v/b)}{\varphi_*(1/a,1/b)}\psi_*(1,1).$$

Now if $\psi \in \Gamma_{\varphi}$, $\psi(u, v) = \lim_{n \to \infty} \varphi(a_n u, b_n v) / \varphi(a_n, b_n)$, then by Lemma 1.1 we have

$$\psi_*(u,v) = \lim_{n \to \infty} \frac{\varphi_*(u/a_n, v/b_n)}{\varphi_*(1/a_n, 1/b_n)} \psi_*(1,1). \blacksquare$$

2. The Ψ -functional and the norm on $\varphi(X,Y)^*$. Let X and Y be two Köthe function spaces over the same measure space $(\Omega, \mathcal{A}, \mu)$, and φ a normalized Calderón-Lozanovskiĭ function. We set once for all $Z = \varphi(X,Y)$. We identify $L_{\infty}(\Omega)^*$ with $L_1(S, \Sigma, m)$.

DEFINITION 2.1. For every $x^* \in X_+^*$, $y^* \in Y_+^*$ and $z \in Z_+$, set

$$\Psi(x^*, y^*)(z) = \inf \{ \langle x^*, x \rangle + \langle y^*, y \rangle : x \in X_+, \ y \in Y_+, \ z \le \varphi(x, y) \}.$$

PROPOSITION 2.2. The map $\Psi(x^*, y^*)$ extends to a bounded positive linear form over Z.

Proof. We have to prove that $\Psi(x^*, y^*)$ is positively linear over Z_+ . Let $z = z_1 + z_2$, with $z_i \in Z_+$.

Let $\varepsilon > 0$, and let $x_i \in X_+$ and $y_i \in Y_+$ be such that $z_i \leq \varphi(x_i, y_i)$ and $\Psi(x^*, y^*)(z_i) \geq \langle x^*, x_i \rangle + \langle y^*, y_i \rangle - \varepsilon$. Then (by concavity and homogeneity of φ)

$$z_1 + z_2 \le \varphi(x_1, y_1) + \varphi(x_2, y_2) \le \varphi(x_1 + x_2, y_1 + y_2),$$

whence

$$\Psi(x^*, y^*)(z_1 + z_2) \le \langle x^*, x_1 + x_2 \rangle + \langle y^*, y_1 + y_2 \rangle \le \Psi(x^*, y^*)(z_1) + \Psi(x^*, y^*)(z_2) + 2\varepsilon.$$

Conversely, let $x \in X_+$ and $y \in Y_+$ be such that $z \leq \varphi(x,y)$ and $\Psi(x^*, y^*)(z) \geq \langle x^*, x \rangle + \langle y^*, y \rangle - \varepsilon$. We may write $z_i = h_i z$ with $h_i \in L_{\infty}(\Omega)$ and $h_1 + h_2 = \mathbf{1}_{\Omega}$. Set $x_i = h_i x$ and $y_i = h_i y$. We have

$$z_i < h_i \varphi(x, y) = \varphi(h_i x, h_i y) = \varphi(x_i, y_i),$$

thus

$$\Psi(x^*, y^*)(z_i) \le \langle x^*, x_i \rangle + \langle y^*, y_i \rangle$$

and

$$\Psi(x^*, y^*)(z_1) + \Psi(x^*, y^*)(z_2) \le \langle x^*, x_1 + x_2 \rangle + \langle y^*, y_1 + y_2 \rangle = \langle x^*, x \rangle + \langle y^*, y \rangle \le \Psi(x^*, y^*)(z) + \varepsilon.$$

To prove the boundedness of $\Psi(x^*, y^*)$, choose for any $z \in Z_+$ two elements $x \in X_+$ and $y \in Y_+$ with $z \leq \varphi(x, y)$ and $||x|| \vee ||y|| \leq (1 + \varepsilon)||z||$. Then

$$\Psi(x^*, y^*)(z) \le \langle x^*, x \rangle + \langle y^*, y \rangle \le (1 + \varepsilon) \|z\| (\|x^*\| + \|y^*\|).$$

Thus $\Psi(x^*, y^*) \in Z_+^*$ and $\|\Psi(x^*, y^*)\| \le \|x^*\| + \|y^*\|$.

PROPOSITION 2.3. For every $x_0 \in X_+$, $y_0 \in Y_+$ and $z^* \in Z_+^*$, we have

$$\inf\{\langle \cancel{x}^*, x_0 \rangle + \langle y^*, y_0 \rangle : \varPsi(x^*, y^*) \ge z^*\} = \limsup_{\substack{x \to x_0 \\ y \to y_0 \\ x \ge 0, y \ge 0}} \langle z^*, \varphi(x, y) \rangle.$$

(Note that we set $\inf \emptyset = +\infty$.)

Proof. For all $x \in X_+$, $y \in Y_+$ and $z^* \in Z_+^*$, we have for all $x^* \in X^*$ and $y^* \in Y^*$ such that $\Psi(x^*, y^*) \geq z^*$,

$$\langle z^*, \varphi(x, y) \rangle \le \langle \Psi(x^*, y^*), \varphi(x, y) \rangle \le \langle x^*, x \rangle + \langle y^*, y \rangle$$

by the very definition of $\Psi(x^*, y^*)$. Hence

$$\limsup_{\substack{x \to x_0 \\ y \to y_0}} \langle z^*, \varphi(x, y) \rangle \leq \limsup_{\substack{x \to x_0 \\ y \to y_0}} (\langle x^*, x \rangle + \langle y^*, y \rangle) = \langle x^*, x_0 \rangle + \langle y^*, y_0 \rangle.$$

For the proof of the converse inequality, set

$$h(x_0, y_0) := \limsup_{\substack{x \to x_0 \\ y \to y_0 \\ x \ge 0, y \ge 0}} \langle z^*, \varphi(x, y) \rangle.$$

Note that we allow $x=x_0$ or $y=y_0$ in this limsup, thus $h(x_0,y_0) \ge \langle z^*, \varphi(x_0,y_0) \rangle$. The function h is clearly upper semicontinuous (it is the u.s.c. envelope of the function $(x,y) \mapsto \langle z^*, \varphi(x,y) \rangle$). It is also straightforward to verify that h is positively homogeneous and concave over $X_+ \times Y_+$. As a consequence of the Hahn-Banach Theorem, for all $(x_0,y_0) \in X_+ \times Y_+$ and $\varepsilon > 0$, there exists a $F \in (X \times Y)_+^*$ such that

$$\begin{cases} F(x,y) \ge h(x,y), & \forall x \in X_+, \ \forall y \in Y_+, \\ F(x_0,y_0) \le h(x_0,y_0) + \varepsilon. \end{cases}$$

We may write $F(x,y) = \langle x^*, x \rangle + \langle y^*, y \rangle$ for certain $x^* \in X_+^*$ and $y^* \in Y_+^*$. We then have, for every $x \in X_+$ and $y \in Y_+$,

$$\langle z^*, \varphi(x,y) \rangle \le h(x,y) \le F(x,y),$$

hence for every $z \in Z_{\perp}$.

$$\langle z^*, z \rangle \le \inf\{F(x, y) : z \le \varphi(x, y)\} = \langle \Psi(x^*, y^*), z \rangle,$$

which means that $z^* \leq \Psi(x^*, y^*)$. On the other hand,

$$\langle x^*, x_0 \rangle + \langle y^*, y_0 \rangle = F(x_0, y_0) \le h(x_0, y_0) + \varepsilon.$$

Remark. If φ satisfies a two-sided reverse Δ_2 -condition (see the introduction), then in fact

$$\inf\{\langle x^*, x_0 \rangle + \langle y^*, y_0 \rangle : \Psi(x^*, y^*) \ge z^*\} = \langle z^*, \varphi(x_0, y_0) \rangle.$$

For, in this case, the map $X_+ \times Y_+ \to Z_+$, $(x, y) \mapsto \varphi(x, y)$, is continuous.

COROLLARY 2.4. For every $z^* \in Z_+^*$, there exist $x^* \in X_+^*$ and $y^* \in Y_+^*$ such that $z^* \leq \Psi(x^*, y^*)$.

Proof. We have

$$\limsup_{\substack{x \to x_0 \\ y \to y_0 \\ x \ge 0, y \ge 0}} \langle z^*, \varphi(x, y) \rangle \le \limsup_{\substack{x \to x_0 \\ y \to y_0 \\ x \ge 0, y \ge 0}} \|z^*\| (\|x\| \vee \|y\|)$$

$$= \|z^*\| (\|x_0\| \vee \|y_0\|) < \infty.$$

THEOREM 2.5. The norm of any element z^* in Z^* is given by

$$||z^*|| = \inf\{||x^*|| + ||y^*|| : |z^*| \le \Psi(x^*, y^*)\}.$$

Proof. Let $||z^*||$ be the right hand side in this relation. The inequality $||z^*|| \le ||z^*||$ results from the fact that if $0 \le |z| \le \varphi(x,y)$ with $||x|| \lor ||y|| \le (1+\varepsilon)||z||$, and if $|z^*| \le \varPsi(x^*,y^*)$, then

$$\begin{aligned} |\langle z^*, z \rangle| &\leq \langle \Psi(x^*, y^*), \varphi(x, y) \rangle \leq \langle x^*, x \rangle + \langle y^*, y \rangle \\ &\leq (||x^*|| + ||y^*||) (||x|| \vee ||y||) \leq (1 + \varepsilon) ||z|| (||x^*|| + ||y^*||). \end{aligned}$$

Conversely, let $a < |||z^*|||$. Set $H_{z^*} = \{(x^*, y^*) \in X_+^* \times Y_+^* : \Psi(x^*, y^*) \ge z^*\}$. This set is nonempty (by Corollary 2.4), convex and w^* -closed: for we have $H_{z^*} = \bigcap_{x \in X_+, y \in Y_+} H_{z^*,x,y}$, where $H_{z^*,x,y}$ is the w^* -closed hyperplane $\{(x^*, y^*) \in X_+^* \times Y_+^* : \langle x^*, x \rangle + \langle y^*, y \rangle \ge \langle z^*, \varphi(x, y) \rangle \}$.

Set $B_a = \{(x^*, y^*) \in X_+^* \times Y_+^* : ||x^*|| + ||y^*|| \le a\}$. By the Hahn-Banach Theorem, we can separate H_{z^*} from the nonempty w^* -compact set B_a by a w^* -closed hyperplane, i.e. there exists a nonzero couple $(x_0, y_0) \in X \times Y$ such that

$$\inf\{\langle x^*, x_0 \rangle + \langle y^*, y_0 \rangle : \Psi(x^*, y^*) \ge z^*\} \\ \ge \sup\{\langle x^*, x_0 \rangle + \langle y^*, y_0 \rangle : ||x^*|| + ||y^*|| \le a\} = a||x_0|| \lor ||y_0||.$$

We may suppose that $x_0, y_0 \ge 0$ (replacing these elements by their absolute values). By Proposition 2.3, we deduce that

$$\limsup_{\substack{x \to x_0 \\ y \to y_0}} \langle z^*, \varphi(x,y) \rangle \ge a \|x_0\| \vee \|y_0\|.$$

But the left hand side is less than

$$||z^*|| \limsup_{\substack{x \to x_0 \\ y \to y_0}} ||x|| \lor ||y|| = ||z^*||(||x_0|| \lor ||y_0||).$$

Hence $||z^*|| \geq a$.

In the following proposition we list some important properties of the Ψ -functional.

PROPOSITION 2.6. (a) The function Ψ is concave, positively homogeneous on $X_+^* \times Y_+^*$ and (w^*, w^*) -upper semicontinuous.

- (b) The function Ψ is nondecreasing, i.e. $x^* \geq x_1^*$, $y^* \geq y_1^*$ implies $\Psi(x^*, y^*) \geq \Psi(x_1^*, y_1^*)$.
- (c) The function Ψ is $(L_{\infty}(S))_+$ -homogeneous, i.e. for every $h \in (L_{\infty}(S))_+$, we have $\Psi(h.x^*, h.y^*) = h.\Psi(x^*, y^*)$.
- (d) The function Ψ is order continuous, in the sense that for all increasing nets $x_{\alpha}^* \uparrow x^*$ and $y_{\alpha}^* \uparrow y^*$, we have $\Psi(x_{\alpha}^*, y_{\alpha}^*) \uparrow \Psi(x^*, y^*)$, and similarly for decreasing nets.

(By (w^*, w^*) -upper semicontinuity of Ψ we mean that for every $z \in \mathbb{Z}_+$, the map $(x^*, y^*) \mapsto \langle \Psi(x^*, y^*), z \rangle$ is w^* -upper semicontinuous.)

Proof. (a) For every $z \in Z_+$, the map $(x^*, y^*) \mapsto \langle \Psi(x^*, y^*), z \rangle$ is defined as a g.l.b. of w^* -continuous linear forms. The positive homogeneity of Ψ is straightforward.

- (b) is straightforward.
- (c) Consider first the case where h is an element of $L_{\infty}(\Omega, \mathcal{A}, \mu)$. Let $z \in \mathbb{Z}_+$ and let $x \in X_+$ and $y \in Y_+$ satisfy $z \leq \varphi(x, y)$. Then clearly $hz \leq \varphi(hx, hy)$, thus

$$\langle h\Psi(x^*, y^*), z \rangle = \langle \Psi(x^*, y^*), hz \rangle \le \langle x^*, hx \rangle + \langle y^*, hy \rangle$$
$$= \langle hx^*, x \rangle + \langle hy^*, y \rangle.$$

Passing to the infimum with respect to x, y in the last expression, we obtain

$$h\Psi(x^*, y^*) \le \Psi(hx^*, hy^*).$$

Suppose now that $h \leq \mathbf{1}_{\Omega}$, and set $g = \mathbf{1} - h$. We also have

$$g\Psi(x^*, y^*) \le \Psi(gx^*, gy^*).$$

Adding these two inequalities, we obtain

$$\Psi(x^*, y^*) \le \Psi(hx^*, hy^*) + \Psi(gx^*, gy^*) \le \Psi(x^*, y^*)$$

where the last inequality is a consequence of the concavity and the positive homogeneity of Ψ (and the fact that g+h=1). Hence in this relation, the inequality in the middle is an equality, and the same is true for the two preceding relations we added.

If now $h \in L_{\infty}(S, \Sigma, m)_+$, then there exists, by the lattice version of Helly's theorem (see [K], Theorem 2), a net (h_{α}) in $(L_{\infty}(\Omega))_+$ which converges to h for the w^* -topology of $L_{\infty}(\Omega)^{**}$. Then $h_{\alpha}.x^* \to h.x^*$, $h_{\alpha}.y^* \to h.y^*$ and $h_{\alpha}.\Psi(x^*,y^*) \to h.\Psi(x^*,y^*)$ for the appropriate w^* -topology. Using the upper semicontinuity of Ψ , we obtain the inequality

$$h\Psi(x^*, y^*) \le \Psi(hx^*, hy^*)$$

and we derive equality as before.

(d) The case of decreasing nets is a consequence of the w^* -upper semi-continuity of Ψ (see (a)). Consider increasing nets $x_{\alpha}^* \uparrow x^*$ and $y_{\alpha}^* \uparrow y^*$. We have $x_{\alpha}^* = h_{\alpha}x^*$ and $y_{\alpha} = k_{\alpha}y^*$, with $h_{\alpha}, k_{\alpha} \in L_{\infty}(S)$ and $0 \leq h_{\alpha} \uparrow 1$, $0 \leq k_{\alpha} \uparrow 1$. Then

$$\Psi(h_{\alpha}x^*, k_{\alpha}y_{\alpha}^*) \ge \Psi(h_{\alpha} \wedge k_{\alpha}x^*, h_{\alpha} \wedge k_{\alpha}y^*) = h_{\alpha} \wedge k_{\alpha}\Psi(x^*, y^*) \uparrow \Psi(x^*, y^*). \blacksquare$$

Remark 2.7. Suppose that the two Köthe spaces are identical: $X = Y =: \Delta$. Then the Ψ -functional is simply given by

$$\forall t_1^*, t_2^* \in \Delta_+, \quad \Psi(t_1^*, t_2^*) = \varphi_*(t_1^*, t_2^*).$$

Proof. Set $z^*=t_1^*+t_2^*$; using Proposition 2.6, we can reduce to the case where $t_i^*=a_iz^*$ for some nonnegative reals a_1,a_2 . Then $\varphi_*(x^*,y^*)=\varphi_*(a_1,a_2)z^*$. For every $t,t_1,t_2\in \Delta_+$ such that $t=\varphi(t_1,t_2)$, we have

$$\langle t_1^*, t_1 \rangle + \langle t_2^*, t_2 \rangle = \langle z^*, a_1 t_1 + a_2 t_2 \rangle \ge \langle z^*, \varphi_*(a_1, a_2) \varphi(t_1, t_2) \rangle$$
$$= \langle \varphi_*(a_1, a_2) z^*, t \rangle,$$

and conversely: if $\varepsilon > 0$ choose positive reals u_1, u_2 such that $\varphi(u_1, u_2) = 1$ and $u_1 a_1 + u_2 a_2 \le \varphi_*(a_1, a_2) + \varepsilon$. Set $t_1 = u_1 t$ and $t_2 = u_2 t$. Then $\varphi(t_1, t_2) = t$, and

$$\langle z^*, a_1 t_1 + a_2 t_2 \rangle \le \langle z^*, (\varphi_*(a_1, a_2) + \varepsilon) t \rangle$$

= $\langle \varphi_*(a_1, a_2) z^*, t \rangle + \varepsilon \langle z^*, t \rangle$

Then let $\varepsilon \to 0$.

Remark 2.8. The Ψ -functional is also characterized by the following formula:

$$\langle \Psi(x^*, y^*), z \rangle = \limsup_{\substack{x' \to x^* \ (w^*) \\ y' \to y^* \ (w^*) \\ x' \in X'_{-}, y' \in Y'_{-}}} \langle \varphi_*(x', y'), z \rangle$$

for every $x^* \in X_+^*$, $y^* \in Y_+^*$ and $z \in Z$.

This formula is analogous to the formula given in Proposition 2.3 (whose left hand side is related to the dual functional $\Psi_*: X_+^{*\prime} \times Y_+^{*\prime} \to Z_+^{*\prime}$, see §3), except that here the w^* -convergence on X^* and Y^* is involved, not the norm convergence. The better properties of the norm convergence justify that we prefer to consider Ψ_* rather than Ψ in the subsequent sections.

Proof. Consider the map $h: X_+^* \times Y_+^* \to \mathbb{R}_+$ defined by

$$h(x^*, y^*) = \limsup_{\substack{x' \to x^* \ (w^*) \\ y' \to y^* \ (w^*) \\ x' \in X'_+, y' \in Y'_+}} \langle \varphi_*(x', y'), z \rangle.$$

The map h is w^* -u.s.c. and concave. The inequality $h(x^*, y^*) \leq \langle \Psi(x^*, y^*), z \rangle$ is easy. Conversely, using the Hahn–Banach theorem, for every couple (x_0^*, y_0^*) in $X_+^* \times Y_+^*$ and $\varepsilon > 0$, we can find a couple (x, y) in $X_+ \times Y_+$ with

$$\begin{cases} \langle x^*, x \rangle + \langle y^*, y \rangle \ge h(x^*, y^*) & \text{for every } (x^*, y^*) \in X_+^* \times Y_+^*, \\ \langle x_0^*, x \rangle + \langle y_0^*, y \rangle \le h(x_0^*, y_0^*) + \varepsilon. \end{cases}$$

We apply the first inequality to a couple $(x', y') \in X'_+ \times Y'_+$; we obtain

$$\langle x', x \rangle + \langle y', y \rangle \ge h(x', y') \ge \langle \varphi_*(x', y'), z \rangle.$$

Let $z' \in Z'_+$. We see that

$$\inf\{\langle x',x\rangle+\langle y',y\rangle:x'\in X'_+,\ y'\in Y'_+,\ \varphi_*(x',y')\geq z'\}\geq \langle z',z\rangle.$$

From Lozanovskii's paper [L3] (Lemma 17), or from Proposition 3.5 below, we know that the left hand side in this last inequality is nothing but $\langle z', \varphi(x,y) \rangle$. Hence $\langle z', \varphi(x,y) - z \rangle \geq 0$ for every $z' \in Z'_+$, which suffices to show that $\varphi(x,y) \geq z$. Thus, by the definition of Ψ ,

$$\langle \Psi(x_0^*, y_0^*), z \rangle \le \langle x_0^*, x \rangle + \langle y_0^*, y \rangle \le h(x_0^*, y_0^*) + \varepsilon.$$

Then let $\varepsilon \to 0$.

3. Köthe duality of generalized Calderón–Lozanovskiĭ spaces. Let E, F and G be three (generalized) Köthe function spaces over the measure space (S, Σ, m) , and let $\Psi: E_+ \times F_+ \to G_+$ be a map which is concave, nondecreasing, $L_{\infty}(S)_+$ -homogeneous, order continuous and onto, and suppose that the norm of G is given by the relation

$$\forall g \in G, \quad \|g\| = \inf\{\|e\| + \|f\| : e \in E_+, \ f \in F_+, \ |g| \le \Psi(e, f)\}.$$

Let us call G an abstract Calderón-Lozanovskii space. Our main candidates for G and Ψ will be of course $\varphi(X,Y)^*$ and the Ψ -functional of Section 2.

LEMMA 3.1. For every
$$(e^*, f^*) \in E_+^* \times F_+^*$$
 and $g \in G$, set

$$\Psi_*(e^*, f^*)(g) = \inf \{ \langle e^*, e \rangle + \langle f^*, f \rangle : \Psi(e, f) \ge g \}.$$

Then Ψ_* extends to an element of G_+^* . The functional Ψ_* : $E_+^* \times F_+^* \to G_+^*$ is concave, (w^*, w^*) -upper semicontinuous, nondecreasing, $L_{\infty}(S)_+$ -homogeneous, and order continuous. Moreover, the restriction of Ψ_* to $E_+' \times F_+'$ takes values in G_+' .

Proof. It is clear that $\Psi_*(e^*, f^*)$ extends to an element of G_+^* (same proof as for Proposition 2.2). The properties of Ψ_* are proved like those of

$$\Psi_*(e',f')(g_\alpha) \leq \langle e',e_\alpha \rangle + \langle f',f_\alpha \rangle \to 0,$$

hence $\Psi_*(e',f')$ is order continuous.

Let us denote by π the natural band projection $E^* \to E'$ (resp. $F^* \to F'$, $G^* \to G'$) associating with a linear form its absolutely continuous part.

Lemma 3.2. For every $(e^*, f^*) \in E_+^* \times F_+^*$, we have $\pi \Psi_*(e^*, f^*) = \Psi_*(\pi e^*, \pi f^*)$.

Proof. Represent $L_{\infty}(S)^*$ as a space $L_1(T, T, \tau)$. Since $L_1(S)$ is a band in $L_1(T)$, S can be considered as a subset of T. It is easy to see that the natural band projection π coincides with the action of the indicator function 1_S on all duals of Köthe function spaces over (S, Σ, m) . The assertion is then a consequence of the $L_{\infty}(T)_+$ -homogeneity of Ψ_* , whose proof is analogous to that of Proposition 2.6(c).

PROPOSITION 3.3. The map $\Psi_*: E'_+ \times F'_+ \to G'_+$ is onto, and the norm of every $g' \in G'$ is given by

$$||g'|| = \inf\{||e'|| \lor ||f'|| : e' \in E'_+, f' \in F'_+, g' \le \Psi_*(e', f')\}.$$

Proof. By the reasoning of Corollary 2.4, the map $\Psi_*: E_+^* \times F_+^* \to G_+^*$ is onto; so is the map $\pi \Psi_*: E_+^* \times F_+^* \to G_+'$. Upon using Lemma 3.2, it becomes clear that the map $\Psi_*: E_+' \times F_+' \to G_+'$ is onto. Similarly the reasoning of Theorem 2.5 gives the formula

$$||g'|| = \inf\{||e^*|| \lor ||f^*|| : e^* \in E_+^*, \ f^* \in F_+^*, \ g' \le \Psi_*(e^*, f^*)\},$$

and an appeal to Lemma 3.2 allows us to replace e^* , f^* by $e'=\pi e^*$, $f'=\pi f^*$ in this formula. \blacksquare

LEMMA 3.4 (Reciprocity formula). For every $(e_0, f_0) \in E_+ \times F_+$ and every $g' \in G'_+$, the following relation holds:

$$\langle g', \Psi(e_0, f_0) \rangle = \inf \{ \langle e', e_0 \rangle + \langle f', f_0 \rangle : e' \in E'_+, f' \in F'_+, \Psi_*(e', f') \ge g' \}.$$

Proof. By the proof of Proposition 2.3, we have

$$(**) \quad \inf \left\{ \langle e^*, e_0 \rangle + \langle f^*, f_0 \rangle : e^* \in E'_+, \ f^* \in F'_+, \ \Psi_*(e^*, f^*) \ge g' \right\} \\ = \lim \sup_{\substack{e \to e_0 \\ f \to f_0 \\ e > 0, \ f > 0}} \langle g', \Psi(e, f) \rangle$$

But by Lemma 3.2, $\Psi_*(e^*, f^*) \geq g'$ implies $\Psi_*(\pi e^*, \pi f^*) \geq g'$, hence in (**) the left hand side equals inf $\{\langle e', e_0 \rangle + \langle f', f_0 \rangle : e' \in E'_+, f' \in F'_+, \Psi_*(e', f') \geq g'\}$. Let (e_n) and (f_n) be such that the right hand side in (**) equals

 $\lim_{n\to\infty}\langle g', \Psi(e_n, f_n)\rangle$. We may suppose that $e_n \geq e_0$, $f_n \geq f_0$ and that these sequences are nonincreasing (by assuming that $\|e_n - e_0\| \leq 2^{-n}$, $\|f_n - f_0\| \leq 2^{-n}$ and replacing (e_n) , (f_n) by $\overline{e}_n = \bigvee_{p\geq n} e_p$, $\overline{f}_n = \bigvee_{p\geq n} f_p$). Then $\Psi(e_n, f_n) \downarrow \Psi(e_0, f_0)$ (order convergence), and since g' is order continuous, $\langle g', \Psi(e_n, f_n) \rangle \to \langle g', \Psi(e_0, f_0) \rangle$.

Let us now give a description of the Ψ_* - and Ψ -functionals in terms of g.C.-L. functions.

PROPOSITION 3.5. Let $S_G \in \Sigma$ be the support of G. There exist g.C.-L. functions ψ and φ over $(S_G, \Sigma|_{S_G}, m|_{S_G})$ such that:

- (i) for every $(e, f) \in E_+ \times F_+$ and $(e', f') \in E'_+ \times F'_+$, we have $\Psi(e, f)(s) = \psi(s, e(s), f(s))$ and $\Psi_*(e', f')(s) = \varphi(s, e'(s), f'(s))$ for m-a.e. $s \in S_G$;
- (ii) the partial functions ψ_s and φ_s are conjugate C.-L. functions for a.e. $s \in S_G$.

Proof. Let $A \subset S_G$ be such that the indicator function $\mathbf{1}_A$ belongs to $E \cap F$. Then the support of $\Psi(\mathbf{1}_A, \mathbf{1}_A)$ is A (since every $\mathbf{1}_A \Psi(e, f) = \Psi(\mathbf{1}_A e, \mathbf{1}_A f)$ belongs, by order continuity of Ψ , to the band generated by $\Psi(\mathbf{1}_A, \mathbf{1}_A)$. For every a, b > 0, we have $(a \wedge b)\Psi(\mathbf{1}_A, \mathbf{1}_A) \leq \Psi(a\mathbf{1}_A, b\mathbf{1}_A) \leq (a \vee b)\Psi(\mathbf{1}_A, \mathbf{1}_A)$; hence there exists a unique $h_{a,b} \in L_{\infty}(S_G)$ with support A such that $\Psi(a\mathbf{1}_A, b\mathbf{1}_A) = h_{a,b}\Psi(\mathbf{1}_A, \mathbf{1}_A)$. The G'_+ -valued map $(a, b) \mapsto \Psi(a\mathbf{1}_A, b\mathbf{1}_A)$ is concave, positively homogeneous and order continuous. For every couple (r, t) of positive rationals we can choose a measurable representative $s \mapsto h(s, r, t)$ of $h_{r,t}$ such that for all $s \in A$ the map $\mathbb{Q}_+^2 \to \mathbb{R}_+$, $(r, t) \mapsto h(s, r, t)$, is concave, positively homogeneous (for coefficients in \mathbb{Q}_+), and continuous at the points of the boundary $(\mathbb{Q}_+ \times \{0\}) \cup (\{0\} \times \mathbb{Q}_+)$. This function $h(s, \cdot, \cdot)$ is nondecreasing, locally lipschitzian in each variable on the rational open quadrant, and so can be extended by continuity to \mathbb{R}_+^2 (set e.g.

$$h(s, a, b) = \lim_{\substack{r \to a, t \to b \\ r < a, t < b}} h(s, r, t)$$

if a, b > 0; h(s, a, 0) = ah(s, 1, 0); h(s, 0, b) = bh(s, 0, 1); then for all non-negative reals $a, b, h(\cdot, a, b)$ is a measurable representative of $h_{a,b}$, and for every $s \in A$ the partial function $h(s, \cdot, \cdot)$ belongs to C_1 .

If now $A \subset S_G$ is such that the indicator function $\mathbf{1}_A$ belongs to E and is disjoint from F, then the support of $\Psi(\mathbf{1}_A,0)$ is A (since for every $e \in E_+$ and $f \in F_+$, $\mathbf{1}_A \Psi(e,f) = \Psi(\mathbf{1}_A e,0)$, which belongs to the band generated by $\Psi(\mathbf{1}_A,0)$). We have $\Psi(a\mathbf{1}_A,0) = a\Psi(\mathbf{1}_A,0)$.

We have a partition $S_G = S_0 \cup S_1 \cup S_2$, where S_0 is the intersection of S_G with the support of $E \cap F$, while S_1 (resp. S_2) is the part of S_G disjoint from F (resp. E). Finally, let $(A_{\alpha})_{\alpha \in J_i}$ be a Σ -measurable partition of S_i (i = 0, 1, 2) with the corresponding indicator functions in $E \cap F$, resp. E,

F. Find a family $(h_{\alpha})_{\alpha \in J_0}$ of normalized g.C.-L. functions by the preceding construction applied to the sets $(A_{\alpha})_{\alpha \in J_0}$; set

$$\psi = \sum_{\alpha \in J_0} \Psi(\mathbf{1}_{A_\alpha}, \mathbf{1}_{A_\alpha}) h_\alpha + \sum_{\alpha \in J_1} \Psi(\mathbf{1}_{A_\alpha}, 0) p_1 + \sum_{\alpha \in J_2} \Psi(0, \mathbf{1}_{A_\alpha}) p_2$$

where p_1 , p_2 are the (constant) C.-L. functions $p_1(u, v) = u$ and $p_2(u, v) = v$. The equality $\Psi(e, f)(s) = \psi(s, e(s), f(s))$ is then verified first for step functions; then for arbitrary e, f, by using the order continuity of Ψ .

Define now φ by $\varphi(s,a,b)=(\psi_s)_*(a,b)$, for every $s\in S_G$. It is in fact measurable, because in the definition of the conjugate functions $(\psi_s)_*$ one can restrict the infimum to the positive rationals (or by Lemma 1.1). For $e'\in E'_+$ and $f'\in F'_+$, define $\Phi(e',f')$ by $\Phi(e',f')(s)=\varphi(s,e'(s),f'(s))$ if $s\in S_G$, and =0 if $s\notin S_G$. Since for all $e\in E_+$ and $f\in F_+$, we have $\varphi(s,e'(s),f'(s))\psi(s,e(s),f(s))\leq e'(s)e(s)+f'(s)f(s)$ for a.e. s, it is clear that $\Phi(e',f')\leq \Psi_*(e',f')$. Conversely, using a suitable version of the von Neumann measurable selection theorem (as in [Au]), we can find, for every $\varepsilon>0$, two measurable maps $h,k:S_G\to\mathbb{R}_+$ such that

$$h(s)e'(s) + k(s)f'(s) \le (1+\varepsilon)\varphi(s, e'(s), f'(s)), \quad \psi(s, h(s), k(s)) = 1,$$

for a.e. $s \in S_G$. For all $A \in \Sigma$, $A \subset S_G$, with m(A) > 0, there exists $B \in \Sigma$, $B \subset A$, with m(B) > 0, such that $\mathbf{1}_B h \in E$ and $\mathbf{1}_B k \in F$. Then $\Psi(\mathbf{1}_B h, \mathbf{1}_B k) = \mathbf{1}_B$, and

$$\int\limits_{B} \varPsi_{*}(e',f') \, dm \leq \int\limits_{B} he' \, dm + \int\limits_{B} kf' \, dm \leq (1+\varepsilon) \int\limits_{B} \varPhi(e',f') \, dm.$$

This shows $\Psi_*(e', f') \leq \Phi(e', f')$ (since $\Psi_*(e', f')$ is supported by S_G).

Note that by the reciprocity formula of Lemma 3.4, we would obtain the same result by constructing first φ from Ψ_* , and then setting $\psi_s = (\varphi_s)_*$.

4. The representation theorem. In this section, we prove the following representation theorem:

Theorem 4.1. Let X and Y be two Köthe function spaces over the same measure space $(\Omega, \mathcal{A}, \mu)$, φ a normalized Calderón–Lozanovskiĭ function and $\varphi(X,Y)$ the corresponding Calderón–Lozanovskiĭ space. Given two standard realizations of the duals X^*,Y^* as (generalized) Köthe function spaces over the measure space (S,Σ,m) , there is a standard realization of $\varphi(X,Y)^*$ and a generalized Calderón–Lozanovskiĭ function ψ over (S,Σ,m) such that malmost all nonzero partial functions ψ_s have their conjugate functions in the set Γ_{φ} and $\varphi(X,Y)^* = \psi(X^*,Y^*)$.

Note. By Corollary 1.2, the normalized functions $\psi_s/\psi_s(1,1)$ belong in fact to Γ_{ω_s} .

We postpone the proof of Theorem 4.1 after that of the following Proposition 4.2. Let $\Phi = \Psi_*$ be the conjugate functional $X_+^{*\prime} \times Y_+^{*\prime} \to Z_+^{*\prime}$ (as defined in Section 3) of the Ψ -functional $X_+^* \times Y_+^* \to Z_+^*$ defined in Section 2.

PROPOSITION 4.2. Let $\xi \in X_+^{*'}$ and $\eta \in Y_+^{*'}$ be such that $\Phi(\xi, \eta) \neq 0$. There exists a normalized g.C.-L. function $\widetilde{\varphi} = \widetilde{\varphi}_{\xi,\eta}$, defined over the support $S_{\xi,\eta}$ of $\Phi(\xi,\eta)$, with partial functions $\widetilde{\varphi}_s$ belonging to Γ_{φ} for a.e. $s \in S_{\xi,\eta}$, such that for every $a,b \in \mathbb{R}_+$, we have $\Phi(a\xi,b\eta) = \widetilde{\varphi}(\cdot,a,b)\Phi(\xi,\eta)$. For two such functions $\widetilde{\varphi}$, $\widetilde{\varphi}'$, one has $\widetilde{\varphi}_s = \widetilde{\varphi}'_s$ for a.e. $s \in S_{\xi,\eta}$.

Proof. The existence and unicity of $\widetilde{\varphi}_{\xi,\eta}$ are clear (see the proof of Proposition 3.5), the point is to prove $\widetilde{\varphi}_{\xi,\eta} \in \Gamma_{\varphi}$.

We first reduce to the case where $\xi \in i_X(X_+)$ and $\eta \in i_Y(Y_+)$ (where i_X , i_Y are the natural injections $X \to X^{*'}$, $Y \to Y^{*'}$). For, if the lemma is true in this case, it is then trivially true when $\xi = \sum_i \mathbf{1}_{A_i} i_X(x_i)$ and $\eta = \sum_i \mathbf{1}_{A_i} i_Y(y_i)$, where $(A_i) \subset \Sigma$ is a system of disjoint sets. In the general case, we can find directed nets $\xi_{\alpha} \uparrow \xi$ and $\eta_{\alpha} \uparrow \eta$, where $\xi_{\alpha} \in X^{*'}$ and $\eta_{\alpha} \in Y^{*'}$ have the preceding form. Then $\Phi(a\xi_{\alpha}, b\eta_{\alpha}) \uparrow \Phi(a\xi, b\eta)$ for every $a, b \geq 0$, whence $\widetilde{\varphi}_{\xi_{\alpha},\eta_{\alpha}}(\cdot, a, b) \to \widetilde{\varphi}_{\xi,\eta}(\cdot, a, b)$ for every $a, b \geq 0$. Hence for a.e. $s \in S_{\xi,\eta}$ we have $\widetilde{\varphi}_{\xi_{\alpha},\eta_{\alpha}}(s, a, b) \to \widetilde{\varphi}_{\xi,\eta}(s, a, b)$, a priori for all rationals, but in fact for all nonnegative reals a, b by a continuity argument. Hence $\widetilde{\varphi}_s \in \Gamma_{\varphi}$ for a.e. s.

Fix $x_0 \in X_+$ and $y_0 \in Y_+$ (we shall identify x_0, y_0 with their images $i_X(x_0), i_Y(y_0)$). We shall prove the following claim:

CLAIM. For every $z^* \in Z_+^*$ such that $\langle \Phi(x_0, y_0), z^* \rangle > 0$, and every $\varepsilon > 0$, there exists $A \in \mathcal{A}$ such that $\langle \Phi(x_0, y_0), \mathbf{1}_A z^* \rangle > 0$ and that the map

$$H_{z^*}^A:(u,v)\mapsto \frac{\langle \varPhi(ux_0,vy_0),\mathbf{1}_Az^*
angle}{\langle \varPhi(x_0,y_0),\mathbf{1}_Az^*
angle}$$

lies in C_1 at a distance from Γ_{φ} less than ε .

Suppose that the claim is proved. Assume that the function $\widetilde{\varphi}:=\widetilde{\varphi}_{x_0,y_0}$ has partial functions $\widetilde{\varphi}_s$ not belonging to Γ_{φ} for s in a nonnegligible set. Since the function $S_{x_0,y_0} \to \mathbb{R}_+$, $s \mapsto d(\widetilde{\varphi}_s, \Gamma_{\varphi})$, is measurable (see §1(b) for the definition of the distance d), there exist $\varepsilon > 0$ and a subset $S_1 \in \Sigma$ such that $d(\widetilde{\varphi}_s, \Gamma_{\varphi}) > \varepsilon$ for every $s \in S_1$. Since C_1 can be covered by a finite number of d-balls of diameter less than $\varepsilon/3$, we can find $\theta \in C_1$ with $d(\theta, \Gamma_{\varphi}) > 2\varepsilon/3$ and a subset $S_2 \subset S_1$ such that $d(\widetilde{\varphi}_s, \theta) < \varepsilon/3$ for every $s \in S_2$. For every $z^* \in Z_+^*$ with support in S_2 , the map $H_{z^*}: (u, v) \mapsto \langle \Phi(ux_0, vy_0), z^* \rangle / \langle \Phi(x_0, y_0), z^* \rangle$ satisfies $d(H_{z^*}, \theta) \leq \varepsilon/3$, since

$$H_{z^*}(u,v) = \frac{\int \widetilde{\varphi}(s,u,v) z^*(s) \, dm(s)}{\int z^*(s) \, dm(s)}$$

and the d-balls are convex. Fixing such a z^* , and considering a set $A \in \mathcal{A}$ given by the Claim (with $\varepsilon/3$ in place of ε), we obtain a contradiction for $z_1^* = \mathbf{1}_A z^*$.

Now we prove the claim. It suffices to prove that for every $\varepsilon > 0$, $u_1, \ldots, u_m > 0$, and $v_1, \ldots, v_m > 0$ there exist $\theta \in \Gamma_{\varphi}$ such that for all $i, j = 1, \ldots, m, |H(u_i, v_j) - \theta(u_i, v_j)| < \varepsilon$.

By Proposition 2.3, for every u, v > 0, we can find sequences $(x_n)_n \subset X_+$ and $(y_n)_n \subset Y_+$ such that $x_n \to x_0, y_n \to y_0$ and

$$(*) \qquad \langle z^*, \varphi(ux_n, vy_n) \rangle \xrightarrow[n \to \infty]{} \langle \Phi(ux_0, vy_0), z^* \rangle.$$

In fact, we may assume that $x_n \ge x_0$ and $y_n \ge y_0$ for all n (since this limit is a lim sup). We can find sequences $(x_n)_n$ and (y_n) which give rise to this limit (*) simultaneously for the $(m+1)^2$ couples (u_i, v_j) , $i, j = 0, \ldots, m$, (where we set $u_0 = 1, v_0 = 1$) in place of (u, v): for, we choose for each (u, v) sequences $(x_n^{(u,v)})_n$, $(y_n^{(u,v)})_n$ greater than x_0 , resp. y_0 , converging to x_0 , resp. y_0 and satisfying (*), and then set

$$x_n = \bigvee_{i,j=0}^m x_n^{(u_i,v_j)}$$
 and $y_n = \bigvee_{i,j=0}^m y_n^{(u_i,v_j)}$.

The point now is that in fact we have

$$\langle t^*, \varphi(u_i x_n, v_j y_n) \rangle \underset{n \to \infty}{\longrightarrow} \langle \Phi(u_i x_0, v_j y_0), t^* \rangle$$

uniformly for all $t^* \in \mathbb{Z}_+^*$ with $t^* \leq z^*$. For, we have

$$\begin{split} \langle \varPhi(u_{i}x_{0}, v_{j}y_{0}), t^{*} \rangle &- \langle t^{*}, \varphi(u_{i}x_{n}, v_{j}y_{n}) \rangle \\ &= \limsup_{\substack{x \to x_{0} \\ y \to y_{0}}} \langle t^{*}, \varphi(u_{i}x, v_{j}y) - \varphi(u_{i}x_{n}, v_{j}y_{n}) \rangle \\ &\leq \limsup_{\substack{x \to x_{0} \\ y \to y_{0}}} \langle t^{*}, \varphi(u_{i}(x \lor x_{n}), v_{j}(y \lor y_{n})) - \varphi(u_{i}x_{n}, v_{j}y_{n}) \rangle \\ &\leq \limsup_{\substack{x \to x_{0} \\ y \to y_{0}}} \langle z^{*}, \varphi(u_{i}(x \lor x_{n}), v_{j}(y \lor y_{n})) - \varphi(u_{i}x_{n}, v_{j}y_{n}) \rangle \underset{n \to \infty}{\longrightarrow} 0 \end{split}$$

since

$$\lim \sup_{n \to \infty} \lim \sup_{\substack{x \to x_0 \\ y \to y_0}} \langle z^*, \varphi(u_i x \lor x_n, v_j y \lor y_n) \rangle = \langle \Phi(u_i x_0, v_j y_0), z^* \rangle$$
$$= \lim_{n \to \infty} \langle z^*, \varphi(u_i x_n, v_j y_n) \rangle.$$

Hence

$$\langle \Phi(u_i x_0, v_j y_0), t^* \rangle - \langle t^*, \varphi(u_i x_n, v_j y_n) \rangle \le \varepsilon_n$$

where the sequence $(\varepsilon_n)_n$, converging to zero, can be chosen independent of $t^* \leq z^*$. By applying this also to $z^* - t^*$ in place of z^* , we obtain the desired uniform convergence.

Define a pseudometric on C_1 by

$$\forall \theta_1, \theta_2 \in \mathcal{C}_1, \quad \delta(\theta_1, \theta_2) = \sup_{i,j=0,...,m} |\theta_1(u_i, v_j) - \theta_2(u_i, v_j)|.$$

Consider now a finite covering $(\Gamma_1, \ldots, \Gamma_N)$ of Γ_{φ} by Borel subsets of δ -diameter less than $\varepsilon/2$. For every $(x,y) \in X_+ \times Y_+$, define $\varphi_{x,y} : \Omega \to \Gamma_{\varphi}$ by

 $\varphi_{x,y}(\omega)(u,v) = \frac{\varphi(ux(\omega),vy(\omega))}{\varphi(x(\omega),y(\omega))}$

when $\varphi(x(\omega), y(\omega)) \neq 0$ and $= \varphi(u, v)$ if not. Set $A_p^n = \{\omega \in \Omega : \varphi_{x_n, y_n}(\omega) \in \Gamma_p\}$ for $p = 1, \ldots, N$. Note that $\bigcup_{p=1}^N A_p^N = \Omega$. Then we have

$$\forall p = 1, \dots, N, \ \forall i, j = 0, \dots, m,$$

$$\lim_{n \to \infty} \langle z^*, \mathbf{1}_{A_p^n} \varphi(u_i x_n, v_j y_n) \rangle = \lim_{n \to \infty} \langle \Phi(u_i x_0, v_j y_0), \mathbf{1}_{A_p^n} z^* \rangle$$

by the uniform convergence result proved above (up to taking a subsequence we may suppose that all these limits do exist). There is a p_0 such that $\lim_{n\to\infty} \langle \Phi(x_0, y_0), \mathbf{1}_{A_{p_0}^n} z^* \rangle > 0$. We have

$$\forall i, j = 1, \dots, m,$$

$$\lim_{n \to \infty} \frac{\langle z^*, \mathbf{1}_{A_{p_0}^n} \varphi(u_i x_n, v_j y_n) \rangle}{\langle z^*, \mathbf{1}_{A_{p_0}^n} \varphi(x_n, y_n) \rangle} = \lim_{n \to \infty} \frac{\langle \Phi(u_i x_0, v_j y_0), \mathbf{1}_{A_{p_0}^n} z^* \rangle}{\langle \Phi(x_0, y_0), \mathbf{1}_{A_{p_0}^n} z^* \rangle}.$$

In other words, for sufficiently large n, the map $H=H_{z^*}^{(A^n_{p_0})}$ has the property that $\delta(\theta-H)\leq \varepsilon/2$ for some θ in the closed convex hull (in \mathcal{C}_1) of Γ_{p_0} (set $\theta(u,v):=\langle z^*, \mathbf{1}_{A^n_{p_0}}\varphi(ux_n,vy_n)\rangle/\langle z^*, \mathbf{1}_{A^n_{p_0}}\varphi(x_n,y_n)\rangle$). By convexity of δ , the function θ lies at a δ -distance of Γ_{φ} less than or equal to $\varepsilon/2$. Hence there is a $\theta_0\in\Gamma_{\varphi}$ with $\delta(H,\theta_0)\leq\varepsilon$, which finishes the proof of the Claim, and of Proposition 4.2.

Remark. When φ satisfies a two-sided reverse Δ_2 -condition, we have $\Phi(x_0, y_0) = \varphi(x_0, y_0)$ (see the Remark following Proposition 2.3). In this case the ratio $\Phi(ux_0, vy_0)/\Phi(x_0, y_0)$ defines an element $h_{u,v}$ of $L_{\infty}(\Omega) \subset L_{\infty}(S)$ (the embedding here comes from the embedding $L_{\infty}(\Omega) \subset L_{\infty}(\Omega)^{**}$, which is not the conjugate of the band projection $L_{\infty}(\Omega)^* \to L_1(\Omega)$). Viewed in $L_{\infty}(\Omega)$, these $h_{u,v}$ define an element of $L_0(\Omega; \Gamma_{\varphi}^f)$; but viewed in $L_{\infty}(S)$, they define an element of $L_0(S; \Gamma_{\varphi})$ (not $L_0(S; \Gamma_{\varphi}^f)$ in general).

Proof of Theorem 4.1. An appeal to Proposition 3.5 shows that Z^* and $Z^{*\prime}$ are identified with generalized Calderón-Lozanovskiĭ spaces $\psi(X^*,Y^*)$ and $\psi_*(X^{*\prime},Y^{*\prime})$ for some conjugate g.C.-L. functions ψ and ψ_* ; the functionals Ψ and Φ are then related to ψ and ψ_* by the formulas $\Psi(x^*,y^*)(s)=\psi(s,x^*(s),y^*(s))$ and $\Phi(\xi,\eta)(s)=\psi_*(s,\xi(s),\eta(s))$ (for a.e. $s\in S$). It remains to show that $\psi_*(s)\in \Gamma_{\omega}$ (when nonzero).

Given a standard realization of X^* and Y^* as (generalized) Köthe function spaces over (S, \mathcal{L}, m) , we can realize Z^* in such a way that for all indicator functions $\mathbf{1}_A \in X^{*\prime}$ and $\mathbf{1}_B \in Y^{*\prime}$, the element $\Phi(\mathbf{1}_A, \mathbf{1}_B)$ of $Z^{*\prime}$ is an indicator function. For, let S_{X^*} and S_{Y^*} be the supports of X^* and Y^* . It suffices to show that $\Phi(\mathbf{1}_A, \mathbf{1}_A)$, $\Phi(\mathbf{1}_B, 0)$ and $\Phi(\mathbf{0}, \mathbf{1}_C)$ are realized as indicator functions, for every $A \subset S_{X^*} \cap S_{Y^*}$, $B \subset S_{X^*} \setminus S_{Y^*}$ and $C \subset S_{Y^*} \setminus S_{X^*}$; and this can be obtained by a simple change of density.

We now perform the construction of the proof of Proposition 3.5, but starting from the Φ -functional (and considering Ψ as the conjugate Φ_* , by Lemma 3.4). Proposition 4.2 shows that the resulting g.C.-L. function has partial functions a.e. in Γ_{φ} (when nonzero).

5. Refinement of the representation theorem. In this section we make more precise the set of partial functions ψ_s of the g.C.-L. function ψ which describes $\varphi(X,Y)^*$, according to the position of s in S_{Z^*} (Theorem 5.12 at the end of the section).

We can already treat the case where $s \in S_{X^*} \setminus S_{Y^*}$, resp. $s \in S_{Y^*} \setminus S_{X^*}$: in this case it follows from the proof of Proposition 3.5 that necessarily ψ_s is linear, and depends only on the first, resp. second variable; that is, $\psi_s(u,v) = u$, resp. $\psi_s(u,v) = v$. Hence the band generated in Z^* by $S_{Z^*} \cap S_{X^*} \setminus S_{Y^*}$, resp. $S_{Z^*} \cap S_{Y^*} \setminus S_{X^*}$ coincides with that generated by the same set in X^* , resp. Y^* .

Denote by Δ the intersection $X \cap Y$ (equipped with its natural norm). Let X_{Δ}^* be the band in X^* whose elements are normal extensions of their restrictions to Δ , in the sense that

$$\forall x \in X_+, \quad \langle |x^*|, x \rangle = \sup \{ \langle |x^*|, t \rangle : t \in \Delta, \ 0 \le t \le x \},$$

and let $(X_{\Delta}^*)^{\perp}$ be the complementary band in X^* . The latter band is simply the band of elements $x^* \in X^*$ having zero restriction to Δ . Let X_0 be the closure of Δ in X; then there is a canonical isometric order isomorphism $x^* \mapsto \operatorname{ext}(x^*)$ from X_0^* onto X_{Δ}^* , defined for nonnegative $x^* \in X_0^*$ by

$$\forall x \in X_+, \quad \langle \operatorname{ext}(x^*), x \rangle = \sup\{\langle x^*, t \rangle : t \in \Delta, \ 0 \le t \le x\}.$$

If r is the restriction map $X^* \to X_0^*$, then ext or is the band projection from X^* onto X_{Δ}^* (see [VL]).

The relation between the respective restrictions of X^* , Y^* and Z^* to Δ (which we denote indifferently by π_{Δ}) is given by the following proposition.

PROPOSITION 5.1. For every $x^* \in X_+^*$ and $y^* \in Y_+^*$, we have

$$\pi_{\Delta}\Psi(x^*, y^*) = \Psi(\pi_{\Delta}x^*, \pi_{\Delta}y^*) = \varphi_*(\pi_{\Delta}x^*, \pi_{\Delta}y^*).$$

Note that the last member of these equalities is well defined, since $\pi_{\Delta}x^*$ and $\pi_{\Delta}y^*$ belong to the same Köthe space Δ^* .

Proof. Let $x^* \in X_+^*$, $y^* \in Y_+^*$ and $t \in \Delta_+^*$. We have

$$\langle \pi_{\Delta} \Psi(x^*, y^*), t \rangle = \inf \{ \langle x^*, x \rangle + \langle y^*, y \rangle : x \in X_+, \ y \in Y_+, \ t \leq \varphi(x, y) \}$$

$$\leq \inf \{ \langle x^*, t_1 \rangle + \langle y^*, t_2 \rangle : t_1, t_2 \in \Delta_+, \ t \leq \varphi(t_1, t_2) \}$$

$$= \langle \Psi(\pi_{\Delta} x^*, \pi_{\Delta} y^*), t \rangle.$$

So it remains to prove the reverse inequality. Let $\varepsilon > 0$, $x \in X_+$ and $y \in Y_+$ be such that $t \leq \varphi(x,y)$ and

$$\langle \pi_{\Delta} \Psi(x^*, y^*), t \rangle \ge \langle x^*, x \rangle + \langle y^*, y \rangle - \varepsilon.$$

Suppose first that $\lim_{M\to\infty} \varphi(M,1) = \infty = \lim_{M\to\infty} \varphi(1,M)$. Then for every $\delta > 0$, we can find M such that $\varphi(M,\delta) \geq 1$ and $\varphi(\delta,M) \geq 1$. Then we have

$$t \leq \varphi((x \wedge Mt) \vee \delta t, (y \wedge Mt) \vee \delta t).$$

Then $t_1 = (x \wedge Mt) \vee \delta t$ and $t_2 = (y \wedge Mt) \vee \delta t$ belong to Δ_+ and satisfy $t_1 \leq x + \delta t$ and $t_2 \leq y + \delta t$, whence

$$\langle x^*, t_1 \rangle + \langle y^*, t_2 \rangle \le \langle x^*, x \rangle + \langle y^*, y \rangle + \delta(\|x^*\| \cdot \|t\|_X + \|y^*\| \cdot \|t\|_Y)$$
$$\le \langle \pi_\Delta \Psi(x^*, y^*), t \rangle + 2\varepsilon$$

for sufficiently small δ . Since $t \leq \varphi(t_1, t_2)$, we obtain the desired inequality. Suppose now that $\lim_{M\to\infty} \varphi(M,1) = \infty > \lim_{M\to\infty} \varphi(1,M)$. By the same trick as before, we find $t_0 \in \Delta_+$ and $y_1 \in Y_+^*$ with $t \leq \varphi(t_0, y_1)$ and

$$\langle x^*, t_0 \rangle + \langle y^*, y_1 \rangle < \langle \pi_\Delta \Psi(x^*, y^*), t \rangle + 2\varepsilon.$$

For all $\varepsilon > 0$, there exist M_0 such that $\sup_M \varphi(1, M) \leq (1 + \varepsilon)\varphi(1, M_0)$. Then

$$\varphi(t_0, y_1) \leq (1 + \varepsilon) \, \varphi(t_0, y_1 \wedge M_0 t_0).$$

Set $t_1 = (1 + \varepsilon) t_0$ and $t_2 = (1 + \varepsilon) y_1 \wedge M_0 t_0$. We obtain $t \leq \varphi(t_1, t_2)$ and $\langle x^*, t_1 \rangle + \langle y^*, t_2 \rangle \leq (1 + \varepsilon) (\langle \pi_{\triangle} \Psi(x^*, y^*), t \rangle + 2\varepsilon)$.

Finally, if $\lim_{M\to\infty} \varphi(M,1) < \infty$ and $\lim_{M\to\infty} \varphi(1,M) < \infty$ we apply the second trick above simultaneously to x and y.

For the second equality in Proposition 5.1, see Remark 2.7.

COROLLARY 5.2. (a) The spaces $Z_0 = \varphi(X,Y)_0$ and $\varphi(X_0,Y_0)_0$ are identical, with the same norm.

(b) For every $x^* \in X_+^*$ and $y^* \in Y_+^*$, we have

$$r\Psi(x^*, y^*) = r\Psi(rx^*, ry^*).$$

Proof. (a) The assertion means that the spaces $Z = \varphi(X,Y)$ and $\varphi(X_0,Y_0)$ induce the same norm on Δ . It is clear from the definitions that $\varphi(X_0,Y_0) \subset Z$, with a norm one inclusion map. However, this inclusion map is perhaps not an isometry, nor is Δ necessarily dense in $\varphi(X_0,Y_0)$.

One can directly show the identity of these two norms on Δ , or deduce it from Proposition 5.1 as follows:

Let $t \in \Delta_+$ and let $z_0^* \in \varphi(X_0, Y_0)^*$ of norm one be such that $||t||_{\varphi(X_0, Y_0)} = \langle z_0^*, t \rangle$. We have, by Theorem 2.5, $z_0^* = \Psi(x_0^*, y_0^*)$ with $x_0^* \in (X_0^*)_+$, $y_0^* \in (Y_0^*)_+$, $||x_0^*|| + ||y_0^*|| \le 1 + \varepsilon$. Let x^* , y^* be the normal extensions of x_0^* , resp. y_0^* to X, resp. Y, and $z^* = \Psi(x^*, y^*)$. We have $||z^*|| \le ||x^*|| + ||y^*|| = ||x_0^*|| + ||y_0^*|| \le 1 + \varepsilon$. By Proposition 5.1, z^* and z_0^* have the same restriction to Δ . Hence $||t||_{\varphi(X_0, Y_0)} = \langle z^*, t \rangle \le (1 + \varepsilon)||t||_Z$.

(b) Note that the asserted equality makes sense, since by the above, $r\Psi(x^*, y^*)$ and $r\Psi(rx^*, ry^*)$ are members of the dual of the same space. To check their equality, it suffices to check the equality of their restrictions to Δ , and this is a trivial consequence of Proposition 5.1, and the fact that $\pi_{\Delta}rx^* = \pi_{\Delta}x^*$ and $\pi_{\Delta}ry^* = \pi_{\Delta}y^*$.

LEMMA 5.3. (a) If $x \in X_{\Delta+}^*$, then for every $x \in X_+$, we have $\pi_x x^* = \sup\{\pi_t x^* : t \in \Delta_+, t \leq x\}$.

(b) For every $x^* \in X_{\Delta+}^*$, we have $\operatorname{Supp} x^* = \operatorname{Supp} \pi_{\Delta} x^*$. Consequently, $\operatorname{Supp} X_{\Delta}^* = \operatorname{Supp} \pi_{\Delta} X^*$.

Proof. (a) Let $\nu = \sup \{\pi_t x^* : t \in \Delta_+, \ t \leq x\}$. It is clear that $\pi_x x^* \geq \pi_t x^*$ for every $t \leq x$, hence $\pi_x x^* \geq \nu$. Conversely, let $h \in L^\infty(\Omega)$ be a step function. For every $\varepsilon > 0$, we have $\langle \pi_x x^*, h \rangle = \langle x^*, hx \rangle \leq \langle x^*, t_0 \rangle + \varepsilon$ for some $t_0 \in \Delta_+$ with $t_0 \leq hx$. Setting $t = h^{-1}t_0$ (t = 0 where h = 0), we have $t \in \Delta_+$, $t \leq x$ and $\langle \pi_x x^*, h \rangle \leq \langle \pi_t x^*, h \rangle + \varepsilon$. Thus $\langle \pi_x x^*, h \rangle \leq \sup \{\langle \pi_t x^*, h \rangle : t \in \Delta_+, \ t \leq x\} = \langle \nu, h \rangle$ (the last equality because $(\pi_t x^*)_{t \in \Delta_+, t \leq x}$ is an upwards directed set). This remains true for every $h \in L_\infty(\Omega)$, by approximation, hence $\pi_x x^* \leq \nu$.

(b) For every $\nu \in L_{\infty}(\Omega)^*$, we have $\nu \perp x^*$ iff $\nu \perp \pi_x x^*$ for all $x \in X_+$; by the above, this is equivalent to saying that $\nu \perp \pi_t x^*$ for all $t \in \Delta_+$, i.e. that $\nu \perp \pi_{\Delta} x^*$.

COROLLARY 5.4. (a) If $\lim_{M\to\infty} \varphi(M,1) = \infty = \lim_{M\to\infty} \varphi(1,M)$, then $\operatorname{Supp} Z_A^* = \operatorname{Supp} X_A^* \cap \operatorname{Supp} Y_A^*$.

- (b) If $\lim_{M\to\infty} \varphi(M,1) = \infty > \lim_{M\to\infty} \varphi(1,M)$, then Supp $Z_{\Delta}^* = \operatorname{Supp} X_{\Delta}^*$.
- (c) If $\lim_{M\to\infty} \varphi(M,1) < \infty$ and $\lim_{M\to\infty} \varphi(1,M) < \infty$, then Supp Z_{Δ}^* = Supp $X_{\Delta}^* \cup$ Supp Y_{Δ}^* .

Proof. We use the elementary equivalence $\varphi_*(\lambda,1) \sim (\varphi(\lambda^{-1},1))^{-1}$.

(a) In the first case, we obtain $\varphi_*(0,v) = 0 = \varphi_*(u,0)$ (for every u,v>0). By Proposition 5.1, we have $\pi_{\Delta}Z^* = \varphi_*(\pi_{\Delta}X^*,\pi_{\Delta}Y^*)$, which clearly implies $\operatorname{Supp} \pi_{\Delta}Z^* = \operatorname{Supp} \pi_{\Delta}X^* \cap \operatorname{Supp} \pi_{\Delta}Y^*$, and we conclude by Lemma 5.3.

- (b) In the second case, we have $\varphi_*(0,v) = 0 < \varphi_*(u,0)$ for all u,v > 0, whence $\operatorname{Supp} \pi_{\Delta} Z^* = \operatorname{Supp} \pi_{\Delta} X^*$.
- (c) In this case, $\varphi_*(0,v) > 0$ and $\varphi_*(u,0) > 0$ for all u,v > 0; hence $\operatorname{Supp} \pi_{\Delta} Z^* = \operatorname{Supp} \pi_{\Delta} X^* \cup \operatorname{Supp} \pi_{\Delta} Y^*$.

PROPOSITION 5.5. There are standard realizations of X^* , Y^* , Z^* for which $Z^* = \psi(X^*, Y^*)$, and the g.C.-L. function ψ satisfies $\psi_s = \varphi_*$ a.e. on the support of Z_{Λ}^* .

Proof. Consider the restriction maps $\pi_{X,\Delta}: X^* \to \Delta^*$ and $\pi_{Y,\Delta}: Y^* \to \Delta^*$; these order continuous order homomorphisms have injective restrictions to X_A^* , resp. Y_A^* .

Suppose first that we are in the case (a) of Corollary 5.4. Consider a complete system $(t_{\alpha}^*)_{\alpha}$ of local units of the band V of Δ^* generated by $\pi_{\Delta}X^* \cap \pi_{\Delta}Y^*$. We may assume that for all $\alpha, t_{\alpha}^* \in \pi_{\Delta}X^* \cap \pi_{\Delta}Y^*$; then $t_{\alpha}^* = \pi_{X,\Delta}(x_{\alpha}^*) = \pi_{Y,\Delta}(y_{\alpha}^*)$ for uniquely determined elements $x_{\alpha}^* \in X_{\Delta}^*$, $y_{\alpha}^* \in Y_{\Delta}^*$, which have same supports as the t_{α} (Lemma 5.3); then $(x_{\alpha}^*)_{\alpha}$ and $(y_{\alpha}^*)_{\alpha}$ are complete systems of local units of the bands of X^* , Y^* whose supports are both Supp Z_{Δ}^* . Finally, set $z_{\alpha}^* = \Psi(x_{\alpha}^*, y_{\alpha}^*)$. Then $z_{\alpha}^* \in Z_{\Delta}^*$ (since its support is included in the common support of x_{α}^* , y_{α}^*). By Proposition 5.1, we have $\pi_{\Delta}z_{\alpha}^* = t_{\alpha}^*$. For the same reason, we obtain $\pi_{\Delta}\Psi(hx_{\alpha}^*, ky_{\alpha}^*) = \varphi_*(h, k)t_{\alpha}^* = \pi_{\Delta}[\varphi_*(h, k)z_{\alpha}^*]$ (for every h, k in $L_{\infty}(S)_+$). But $\Psi(hx_{\alpha}^*, ky_{\alpha}^*) \leq (\|h\|_{\infty} \vee \|k\|_{\infty})z_{\alpha}^*$ also belongs to Z_{Δ}^* . Hence $\Psi(hx_{\alpha}^*, ky_{\alpha}^*) = \varphi_*(h, k)z_{\alpha}^*$ (by the injectivity of π_{Δ} over Z_{Δ}^*).

Using the order continuity of Ψ , we conclude that $\Psi(x^*, y^*)$ is realized as $\varphi_*(x^*, y^*)$ for every x^* , y^* with support included in Supp Z_{Δ}^* .

In the case (b) of Corollary 5.4, we complete the system (t_{α}^*) by some system $(t_{\beta}^{\prime*})$, to obtain a complete system of local units in $\pi_{\Delta}X^*$; then consider $x_{\beta}^{\prime*} \in X_{\Delta}^*$, with $\pi_{\Delta}x_{\beta}^{\prime*} = t_{\beta}^{\prime*}$, and set $z_{\beta}^{\prime*} = \Psi(x_{\beta}^{\prime*}, 0)$. We proceed analogously in the case (c) of Corollary 5.4.

Remark 5.6. (a) The preceding realization of X^* , Y^* , Z^* induces a realization of $X^{*\prime}$, $Y^{*\prime}$, $Z^{*\prime}$ for which $Z^{*\prime} = \widetilde{\varphi}(X^{*\prime},Y^{*\prime})$ and $\widetilde{\varphi}_s = \varphi$ for a.e. $s \in \operatorname{Supp} Z_{\Delta}^s$.

- (b) If we start from arbitrary standard realizations of X^* , Y^* , and apply the procedure of the proof of Theorem 4.5, we only find that $\widetilde{\varphi}_s \in \varGamma_{\varphi}^f$ (see §2 for the definition of this set) for a.e. $s \in \operatorname{Supp} Z_{\Delta}^*$.
- For (b), note that by different changes of density on X^* , Y^* , the space $\psi(X^*,Y^*)$ becomes $\widehat{\psi}(X^*,Y^*)$ with $\widehat{\psi}_s\in \varGamma^f_{\psi_s}$ for a.e. s.

The following corollary is a slight improvement of Theorem 1 of [L3].

COROLLARY 5.7. Suppose that Δ is dense in X and Y. Then the dual Z^* of $Z = \varphi(X,Y)$ can be identified with $V \oplus \varphi_*(X^*,Y^*) \oplus W$, where V, resp. W, is a band in X^* , resp. Y^* .

We now investigate the range of values of the g.C.-L. function ψ of Theorem 4.1 outside Supp Z_{Λ}^* .

LEMMA 5.8. The bands $X_{\Delta}^{*\perp}$ and $Y_{\Delta}^{*\perp}$ have disjoint supports.

Proof. This means that for every $x^* \in X_{\Delta}^{*\perp}$, $y^* \in Y_{\Delta}^{*\perp}$, $x \in X_+$ and $y \in Y_+$, we have $\pi_x x^* \perp \pi_y y^*$. But this is evident, since, setting $t = x \wedge y$, we have $\pi_t x^* = 0 = \pi_t y^*$, hence $\pi_x x^* = \pi_{x-t} x^*$, $\pi_y y^* = \pi_{y-t} y^*$, and $(x-t) \perp (y-t)$.

PROPOSITION 5.9. The partial functions of the conjugate g.C.-L. function to the g.C.-L. function ψ of Theorem 4.1 belong to the set $\Gamma_{\varphi}^{l,\infty}$ for a.e. $s \in \operatorname{Supp} Z^* \cap \operatorname{Supp} X_{\Delta}^{\perp}$, and to the set $\Gamma_{\varphi}^{r,\infty}$ for a.e. $s \in \operatorname{Supp} Z^* \cap \operatorname{Supp} Y_{\Delta}^{r\perp}$.

In view of the proof of Theorem 4.1 (and of Lemma 5.8), this assertion is a consequence of the following proposition.

PROPOSITION 5.10. If $\xi \in X_{\Delta+}^{*\perp}$ and if $\eta \in Y_{\Delta+}^{*\prime}$ has the same support, or $\eta = 0$, then the g.C.-L. function $\widetilde{\varphi}_{\xi,\eta}$ (defined by $\widetilde{\varphi}(\cdot,u,v) = \Phi(u\xi,v\eta)/\Phi(\xi,\eta)$) has a.e. partial functions in the set $\Gamma_{\varphi}^{l,\infty}$.

We first prove a lemma.

LEMMA 5.11. Let $t_0 \in \Delta_+$, $x_0 \in X_+$ and $z^* \in Z_+^*$ with $z^* \perp X_{\Delta}^*$. Then for every $M \geq 0$, we have

$$\langle \varPhi(x_0, t_0), z^* \rangle = \limsup_{\substack{x \to x_0 + Mt_0 \ y \to t_0 \ x \ge My}} \langle z^*, \varphi(x, y) \rangle.$$

Proof. We remark that, for every $M \geq 0$,

$$\langle \Phi(x_0, t_0), z^* \rangle = \langle \Phi(x_0 + Mt_0, t_0), z^* \rangle.$$

For, we have

$$\langle \Phi(x_0, t_0), z^* \rangle = \inf \left\{ \langle x^*, x_0 \rangle + \langle y^*, t_0 \rangle : \Psi(x^*, y^*) \ge z^* \right\}.$$

We may assume that the support of the element x^* appearing in this infimum is included in that of z^* , hence $x^* \in X_{\Delta}^{*\perp}$; thus $\langle x^*, t_0 \rangle = 0$, and

$$\langle \Phi(x_0, t_0), z^* \rangle = \inf \{ \langle x^*, x_0 + Mt_0 \rangle + \langle y^*, t_0 \rangle : \Psi(x^*, y^*) \ge z^* \}$$

= $\langle \Phi(x_0 + Mt_0, t_0), z^* \rangle$.

In the formula asserted in Lemma 5.11, the right hand side is certainly less than

$$\limsup_{\substack{x \to x_0 + My_0 \\ y \to t_0}} \langle z^*, \varphi(x, y) \rangle = \langle \Phi(x_0 + Mt_0, t_0), z^* \rangle = \langle \Phi(x_0, t_0), z^* \rangle.$$

Conversely, let $x_n \to x_0$ and $y_n \to t_0$ be such that

$$\langle z^*, \varphi(x_n, y_n) \rangle \xrightarrow[n \to \infty]{} \langle \Phi(x_0, t_0), z^* \rangle.$$

We may assume that $y_n \geq t_0$. Set

$$y'_n = (y_n - t_0) \wedge \frac{1}{M} x_n + t_0$$
 and $x'_n = x_n + M t_0$.

We have clearly $x'_n \to x_0 + Mt_0$, $x'_n \geq My'_n$ and $t_0 \leq y'_n \leq y_n$, hence $y'_n \to t_0$. We now check that replacing (x_n, y_n) by (x'_n, y'_n) can only increase (hence does not change) the preceding limit. We have (by right subadditivity of φ)

$$0 \le \varphi(x_n, y_n) - \varphi(x_n, y'_n) \le \mathbf{1}_{\{y'_n < y_n\}} \varphi(x_n, y_n - y'_n) \le \mathbf{1}_{\{x_n \le M(y_n - t_0)\}} \varphi(x_n, y_n - t_0) \le \varphi(x_n \land M(y_n - t_0), y_n - t_0).$$

Observe that $t_n := x_n \wedge M(y_n - t_0) \in \Delta$; hence writing $z^* \leq \Psi(x^*, y^*)$ with $x^* \in X_A^{*\perp}$, we obtain

$$\langle z^*, \varphi(t_n, y_n - t_0) \rangle \leq \langle y^*, y_n - t_0 \rangle \xrightarrow[n \to \infty]{} 0,$$

hence

$$\langle z^*, \varphi(x_n, y_n') \rangle \underset{n \to \infty}{\longrightarrow} \langle \Phi(x_0, t_0), z^* \rangle.$$

Then we have a fortiori

$$\liminf_{n\to\infty}\langle z^*, \varphi(x_n', y_n')\rangle \geq \langle \Phi(x_0, t_0), z^*\rangle. \blacksquare$$

Proof of Proposition 5.10. It is sufficient to prove the assertion when $\xi = \mathbf{1}_A x_0$ and $\eta = \mathbf{1}_A y_0$, where $x_0 \in X_+$, $y_0 \in Y_+$, and $A \subset \operatorname{Supp} X_{\Delta}^{*\perp}$ is such that $\mathbf{1}_A \eta \in Y_{\Delta}^{*\prime}$. In fact, we may assume that $y \in Y_0$ (since $Y_0^{*\prime} = (Y_{\Delta}^{*\prime})'$), and even that $y_0 \in \Delta$ by density: more precisely, there exists a nondecreasing sequence (t_n) in Δ , with $t_n \to y_0$ in Y-norm; then $(\mathbf{1}_A t_n)$ is nondecreasing, and $\mathbf{1}_A t_n \to \mathbf{1}_A y_0$ in $Y^{*\prime}$ -norm; then $\mathbf{1}_A y_0 = \bigvee_n \mathbf{1}_A t_n$, whence $\Phi(u\mathbf{1}_A x_0, v\mathbf{1}_A t_n) \uparrow \Phi(u\mathbf{1}_A x_0, v\mathbf{1}_A y_0)$.

By Lemma 5.11, from $y_0 \in \Delta$ we deduce that for every $z^* \in Z_+^*$, and u, v > 0, we have

$$\langle \varPhi(u\mathbf{1}_Ax_0, v\mathbf{1}_Ay_0), z^* \rangle = \limsup_{\substack{x \to x_0 + My_0 \\ y \to y_0 \\ x \ge My}} \langle \mathbf{1}_Az^*, \varphi(ux, vy) \rangle.$$

Now the reasoning of the proof of Proposition 4.2 shows that for a.e. $s \in A$, the partial function $\widetilde{\varphi}_s$ belongs to $\Gamma_{\varphi}^{l,M}$. Since this is true for all $M \geq 0$, we conclude that $\widetilde{\varphi}_s \in \Gamma_{\varphi}^{l,\infty}$ for a.e. $s \in A$.

Applying Corollary 1.2, we can sum up the main results of this section in the following theorem:

THEOREM 5.12. The partial functions of the normalization $\psi/\psi(\cdot,1,1)$ of the g.C.-L. function ψ of Theorem 4.1 belong to the set $\Gamma^f_{\varphi_*}$ for a.e. $s \in \operatorname{Supp} Z^*_{\Delta}$, to $\Gamma^{r,\infty}_{\varphi_*}$ for a.e. $s \in \operatorname{Supp} Z^*_{\Delta} \cap \operatorname{Supp} Y^*_{\Delta} \cap \operatorname{Supp} X^*_{\Delta}$, and to $\Gamma^{l,\infty}_{\varphi_*}$ for a.e. $s \in \operatorname{Supp} Z^* \cap \operatorname{Supp} X^*_{\Delta} \cap \operatorname{Supp} Y^*_{\Delta}$. Finally, $\psi_s(u,v) = u$ for a.e. $s \in \operatorname{Supp} Z^* \setminus \operatorname{Supp} X^*$. Moreover, on $\operatorname{Supp} Z^*_{\Delta}$, we can obtain $\psi \equiv \varphi_*$ by choosing appropriate realizations of X^* and Y^* .

Let us remark that when the linear functions $(u,v)\mapsto u$ and $(u,v)\mapsto v$ do effectively appear as possible values of $(\psi_s)_*$, they belong in fact to $\Gamma_\varphi^{r,\infty}$ or $\Gamma_\varphi^{l,\infty}$. For instance, when $s\in \operatorname{Supp} Z^*\cap\operatorname{Supp} X_\Delta^{*\perp}\setminus\operatorname{Supp} Y^*$, we have $(\psi_s)_*\in \Gamma_\varphi^{l,\infty}$, by Proposition 5.10. When $s\in\operatorname{Supp} Z^*\cap\operatorname{Supp} X_\Delta^*\setminus\operatorname{Supp} Y^*$, we have, on the contrary, $(\psi_s)_*\in \Gamma_\varphi^{r,\infty}$. To see that, it is sufficient to note that if $t_0\in\Delta_+$, and $\operatorname{Supp} z^*\subset\operatorname{Supp} X_\Delta^*\setminus\operatorname{Supp} Y^*$, then for every $M\geq 0$, we have

$$\langle \varPhi(t_0,0), z^* \rangle = \langle \varPhi(t_0, Mt_0), z^* \rangle = \limsup_{\substack{y \to t_0 \\ y \ge t_0}} \langle z^*, \varphi(t_0, My) \rangle,$$

the first equality because if $z^* \leq \Psi(x^*, y^*)$ then in fact $z^* \leq \Psi(x^*, 0)$, hence

$$\langle \Phi(t_0, Mt_0), z^* \rangle = \inf \left\{ \langle x^*, t_0 \rangle : z^* \le \Psi(x^*, 0) \right\} = \langle \Phi(t_0, 0), z^* \rangle,$$

and the second one because if $x_n \to t_0$ and $y_n \to Mt_0$ with $x_n \ge t_0$, $y_n \ge Mt_0$, and $\langle z^*, \varphi(x_n, y_n) \rangle \to \langle \varPhi(t_0, Mt_0), z^* \rangle$, then, writing again $z^* \le \varPsi(x^*, 0)$,

$$\langle z^*, \varphi(x_n, y_n) - \varphi(t_0, y_n) \rangle \le \langle z^*, \varphi(x_n - t_0, y_n) \rangle \le \langle x^*, x_n - t_0 \rangle \underset{n \to \infty}{\longrightarrow} 0.$$

6. Examples

(a) Spaces E_M where E is order continuous. Denote by M the Orlicz function associated with the C.-L. function φ by $M^{-1}(t) = \varphi(t,1)$. If E is a Köthe function space over $(\Omega, \mathcal{A}, \mu)$, we denote by E_M the space $\varphi(E, L_\infty)$. We have $E_M = \{f \in L_0(\Omega, \mathcal{A}, \mu) : \exists \lambda > 0, \ M(|f|/\lambda) \in E\}$ and $||f||_{E_M} = \inf\{\lambda > 0 : ||f/\lambda||_E \le 1\}$.

If E is order continuous, we have $E'=E^*=E^*_{\Delta}$ (the second equality because Δ is dense in E), hence Supp $E^*=\Omega$ (considering Ω as embedded in $S=\operatorname{Supp} L^*_{\infty}$) is contained in the support of the dual of every Köthe space, in particular in that of $L^*_{\infty\Delta}=L^*_{\infty,0}$ (where $L_{\infty,0}$ is the closure of $\Delta=E\cap L_{\infty}$ in L_{∞}). We then obtain, by Theorem 5.12,

$$E_M^* = \varphi_*(E', L_1) \oplus L$$

where L is (isometrically order isomorphic to) a band in L_{∞}^* , i.e. an abstract L_1 space. In particular, if $E = L_1$, we have $E_M = L_M$, and we recover the case of Orlicz spaces. If E is the Lorentz space $L_{w,1}$ associated with the

weight w, then E_M is a Lorentz-Orlicz space $L_{w,M}$. The description of the dual $L_{w,M}^*$ reduces thus to that of the Köthe dual.

(b) Regularly varying C.-L. functions. We say that the Calderón–Lozan-ovskiĭ function φ is regularly varying if the limits

$$\lim_{a \to \infty} \frac{\varphi(au, v)}{\varphi(a, 1)} =: \varphi_l(u, v) \quad \text{and} \quad \lim_{a \to 0} \frac{\varphi(au, v)}{\varphi(a, 1)} =: \varphi_r(u, v)$$

exist (for every u,v>0). Then φ_l and φ_r are necessarily Calderón interpolation functions: $\varphi_l(u,v)=u^{1-\theta_l}v^{\theta_l}, \ \varphi_r(u,v)=u^{1-\theta_r}v^{\theta_r}$ (for some $0\leq \theta_l,\theta_r\leq 1$). The conjugate functions $\varphi_{l,*},\varphi_{r,*}$ are respectively identical (up to a constant factor) to φ_l,φ_r . Hence we have

$$\varphi(X,Y)^* = \varphi_*(X_0^*, Y_0^*) \oplus U_l^{1-\theta_l} V_l^{\theta_l} \oplus U_r^{1-\theta_r} V_r^{\theta_r}$$

where X_0 , Y_0 are the closures of $\Delta = X \cap Y$ in X, resp. Y; U_l, V_l are the bands of X^* , resp. Y^* with common support $S_l = \operatorname{Supp} \varphi(X,Y)^* \cap \operatorname{Supp} X_{\Delta}^{*, l} \cap \operatorname{Supp} Y_{\Delta}^{*, l}$; and U_r, V_r are the bands of X^* , resp. Y^* supported by $S_r = \operatorname{Supp} \varphi(X,Y)^* \cap \operatorname{Supp} X_{\Delta}^* \cap \operatorname{Supp} Y_{\Delta}^{*, l}$.

A simple example of a regularly varying C.-L. function is

$$\varphi(u,v) = u^{1-\alpha}v^{\alpha} \wedge u^{1-\beta}v^{\beta}.$$

(c) Couples (X,Y) with nontrivial sets S_l , S_r . We now give an example of a couple (X,Y) such that Supp $Y_{\Delta}^{*\perp} \cap \text{Supp } X_{\Delta}^* \neq \{0\}$, and moreover this set does intersect Supp $\varphi(X,Y)^*$ for every C.-L. function φ .

We take $X = \ell_{\infty}(\ell_2)$, $Y = \ell_{\infty}(\ell_p)$, with, say, $2 . In this case <math>\Delta = X$, hence $X_{\Delta}^* = X^*$. Define sequences $(f_n^*) \subset \ell_2$ and $(g_n^*) \subset \ell_{p_*}$ by

$$f_n^* = \frac{e_1 + \ldots + e_n}{\sqrt{n}}, \quad g_n^* = \frac{e_1 + \ldots + e_n}{n^{1/p_*}},$$

where (e_i) denote indifferently the ℓ_r basis (for all r) and $1/p + 1/p_* = 1$. Define $F^* \in X^*$ and $G^* \in Y^*$ by

$$\langle F^*, (f_n) \rangle = \lim_{n, \mathcal{U}} \langle f_n^*, f_n \rangle, \quad \langle G^*, (g_n) \rangle = \lim_{n, \mathcal{U}} \langle g_n^*, g_n \rangle$$

for every $(f_n)_n \in \ell_{\infty}(\ell_2)$ and $(g_n)_n \in \ell_{\infty}(\ell_p)$, where \mathcal{U} is some nontrivial ultrafilter over \mathbb{N} . Then $G^*|_{X} = 0$, i.e. $G^* \in Y_{\Delta}^{*\perp}$, since for all $F = (f_n) \in X$,

$$\langle G^*, F \rangle \le ||F||_X \lim_{n,\mathcal{U}} ||g_n^*||_2 = 0.$$

On the other hand, it is easy to verify that Supp $G^* \subset \text{Supp } F^*$. For, let $G \geq 0$ in Y with $\langle G^*, G \rangle \neq 0$. We may suppose that $G = (g_n)$, where for every n, g_n is supported by (e_1, \ldots, e_n) . Then $||g_n||_2 \leq n^{1/2 - 1/p} ||g_n||_p \leq n^{1/2 - 1/p} ||G||$; so if we set $f_n = n^{1/p - 1/2} g_n$, we have $F := (f_n) \in X$ and

$$\langle f_n^*, f_n \rangle = \langle n^{1/p_*-1/2} g_n^*, n^{1/p-1/2} g_n \rangle = \langle g_n^*, g_n \rangle,$$

hence $\langle F^*, F \rangle = \langle G^*, G \rangle$. More generally, if $h \in \ell_{\infty}(\mathbb{N} \times \mathbb{N})$, it is easy to see that $\langle F^*, hF \rangle = \langle G^*, hG \rangle$, which means that $\pi_G G^* = \pi_F F^*$. Thus $\operatorname{Supp} \pi_G G^* \subseteq \operatorname{Supp} F^*$ for all $G \in Y$, wich means that $\operatorname{Supp} G^* \subseteq \operatorname{Supp} F^*$.

Let φ be an arbitrary element of \mathcal{C}_1 . We have

$$\varphi(\ell_{\infty}(\ell_2), \ell_{\infty}(\ell_p)) = \ell_{\infty}(\varphi(\ell_2, \ell_p))$$

isometrically. Let r be such that 1/2 = 1/p + 1/r. We have $\ell_2 = \ell_p . \ell_r$, so that

$$\varphi(\ell_2, \ell_p) = \varphi(\ell_p, \ell_r, \ell_p, \ell_\infty)$$

$$= \ell_p, \varphi(\ell_r, \ell_\infty) \quad \text{(2-isomorphically)}$$

$$= \ell_p, \ell_M \quad \text{with } M^{-1}(s) = \varphi(s^{1/r}, 1).$$

For every $n \in \mathbb{N}$, denote by $\lambda(n)$, $\lambda_*(n)$ and $\lambda_M(n)$ the norms of $e_1 + \ldots + e_n$ in the spaces $\varphi(\ell_2, \ell_p)$, $(\varphi(\ell_2, \ell_p))^*$ and ℓ_M respectively. Then $\lambda(n) \sim n^{1/p} \lambda_M(n)$, and $\lambda_*(n) = n/\lambda(n) \sim n^{1/p_*}/\lambda_M(n)$. Define $H^* \in \mathbb{Z}^*$ by $\langle H^*, H \rangle = \lim_{n,\mathcal{U}} \langle h_n^*, h_n \rangle$, where

$$h_n^* = \frac{e_1 + \ldots + e_n}{\lambda_*(n)}.$$

With each $G = (g_n) \in Y$, we associate $H = (h_n) \in \varphi(X, Y)$, where $h_n = \lambda_M(n)^{-1}g_n$. Then $\langle H^*, H \rangle \sim \langle G^*, G \rangle$, and by the same reasoning as for F^* , we obtain Supp $G^* \subseteq \text{Supp } H^*$.

References

- [A] T. Andô, Linear functionals on Orlicz spaces, Nieuw Arch. Wisk. 8 (1960), 1-16.
- [Au] R. J. Aumann, Measurable utility and the measurable choice theorem, in: Proc. Conf. La Décision 2, Aix-en-Provence 1967, Actes Colloq. Internat. CNRS 171, CNRS, 1969, 15-26.
- [C] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190.
- [F] R. Fernandez, Characterization of the dual of an Orlicz space, Comment. Math. 30 (1990), 69-83.
- [Fr] D. H. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge University Press, 1974.
- [K] K. D. Kürsten, Lokale Reflexivität und lokale Dualität von Ultraprodukten für halbgeordnete Banachräume, Z. Anal. Anwendungen 3 (1984), 245-262.
- [L1] G. Ya. Lozanovskiĭ, On some Banach lattices, Siberian Math. J. 10 (1969), 419-431 (English transl.).
- [L2] -, On some Banach lattices III, ibid. 13 (1972), 910-916 (English transl.).
- [L3] -, On some Banach lattices IV, ibid. 14 (1973) 97-108 (English transl.).
- [LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II: Function Spaces, Ergeb. Math. Grenzgeb. 97, Springer, 1979.

Y. Raynaud

- R] S. Reisner, On two theorems of Lozanovskii concerning intermediate Banach lattices, in: Geometric Aspects of Functional Analysis (Israel GAFA Seminar, 1986– 87), Lecture Notes in Math. 1317, Springer, 1988, 67–83.
- [VL] B. Z. Vulikh and G. Ya. Lozanovskii, On the representation of completely linear and regular functionals in partially ordered spaces, Math. USSR-Sb. 13 (1971), 323-343 (English transl.).
- [Z] A. C. Zaanen, Integration, North-Holland, 1967.

Equipe d'Analyse (CNRS) Université Paris 6 4, place Jussieu 75252 Paris Cedex 05, France

36

Received January 2, 1996 (3592) Revised version October 28, 1996

Almost multiplicative functionals

by

KRZYSZTOF JAROSZ (Bowling Green, Ohio, and Edwardsville, Ill.)

Abstract. A linear functional F on a Banach algebra A is almost multiplicative if

$$|F(ab) - F(a)F(b)| \le \delta ||a|| \cdot ||b||$$
 for $a, b \in A$,

for a small constant δ . An algebra is called *functionally stable* or *f-stable* if any almost multiplicative functional is close to a multiplicative one. The question whether an algebra is f-stable can be interpreted as a question whether A lacks an *almost corona*, that is, a set of almost multiplicative functionals far from the set of multiplicative functionals.

In this paper we discuss f-stability for general uniform algebras; we prove that any uniform algebra with one generator as well as some algebras of the form R(K), $K \subset \mathbb{C}$, and $A(\Omega)$, $\Omega \subset \mathbb{C}^n$, are f-stable. We show that, for a Blaschke product B, the quotient algebra H^{∞}/BH^{∞} is f-stable if and only if B is a product of finitely many interpolating Blaschke products.

1. Introduction. Let G be a linear and multiplicative functional on a Banach algebra A and let Δ be a linear functional on A with $\|\Delta\| \leq \varepsilon$. Put $F = G + \Delta$. We can easily check by direct computation that F is δ -multiplicative, that is,

$$|F(ab) - F(a)F(b)| \le \delta ||a|| \cdot ||b||$$
 for $a, b \in A$,

where $\delta = 3\varepsilon + \varepsilon^2$. The problem we want to discuss here is whether the converse is true; that is, whether an almost multiplicative functional must be near a multiplicative one. We are interested mostly in uniform algebras. We shall call a Banach algebra functionally stable or f-stable if

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall F \in \mathfrak{M}_{\delta}(A) \ \exists G \in \mathfrak{M}(A) \quad \|F - G\| \le \varepsilon,$$

where we denote by $\mathfrak{M}(A)$ the set of all linear multiplicative functionals on A, and by $\mathfrak{M}_{\delta}(A)$ the set of δ -multiplicative functionals on A. We shall

¹⁹⁹¹ Mathematics Subject Classification: Primary 46J10.

Research was supported in part by a grant from the International Research & Exchanges Board, with funds provided by the National Endowment for the Humanities and the U.S. Department of State.