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On duals of Calderén—Lozanovskii intermediate spaces
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YVES RAYNAUD (Paris)

Abstract. We give a description of the dual of a Calderén-Lesanovskit intermediate
space (X, Y} of a couple of Banach Kéthe functior spaces as an intermediate space
P{X*, Y™} of the duals, associated with a “variable” function 1.

Introduction. Given two Kéthe function spaces over the same measure
space, Xy and X, the interpolation spaces Xcl,"ng, 0 < # <1, were de-
fined by Calderén ([C}) as the order ideal generated by the functions ¢ ~*z§
with 2o € X, zp > 0 and 7 € X7,z > 0. When X or X1 is reflexive,
these spaces coincide (in the complex case) with the spaces [Xp, X1]¢ ob-
tained by the complex interpolation method. In this case the dual spaces
can also be described by complex interpolation; more precisely, if XpNX; is
dense in Xp and X, then X} and X7 embed naturally in (XN X1)*, and
[Xo, X135 = [X§, X{)e. The description of the dual of X579 X9 without any
restriction on the Banach lattices X and X (except their order complete-
ness) was achieved by Lozanovskil {[L1], [L2]). When Xy N X is dense in
Xp and Xy, then (X179X8)* = X}'=9X}?, the definition of this last space
being unambiguous since X and X7 are order ideals of (Xo N X1)*; in the
general case Lozanovskil shows how to realize X and X7 as order ideals of
a common space of measurable functions and then identifies (isometrically
and order isomorphically) (X3~7X¢)* with X3 ?X1%. A consequence of
this fact is that the equality (X379X7) = X{1~?X{® holds for the Kéthe
duals of the spaces Xo, Xi.

These results were (partially) extended to a more general class of interpo-
lation spaces of Kdthe function spaces, the so-called Calderdn-Lozanovskil
spaces. Let us recall their definition. Consider a function ¢ : Ry xRy — Ry
which is concave, positively homogenecus of degree one, continuous and not’
identically zero (we denote by C the set of such functions, which we call
Calderén—Lozanovskii functions). By rescaling if necessary, we may suppose
that ¢(1,1) = 1 (we denote by C; the subset of such normalized functions).
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Then the space @(Xp, X1) is the order ideal gemerated by the functions
@(xg, 1) with = € X;, z; > 0, ¢ = 0,1. This space is normed by the
formula ||z|| = inf{||za| V |lz1]] : |2] < @(@0, 21); 2; € Xy, 25 > 0}

The Calderén—Lozanovskil function ¢, conjugate to ¢ is defined by
w«(5,1) = inf{(ou + Bv)/p(e, B) : &, 8 > 0}. It is generally not normalized
but 1 < .(1,1) < 2 if  is normalized. Suppose that XoMN Xy is dense in Xy
and X1; let Zp be the closure of Xg N Xy in ¢(Xg, X1). Then Lozanovskil
proves ([L3]) that Z% = @, (X, X{); this is an equality between subspaces of
(XoN.X31)*, but the norms are only equivalent up to a constant 2. However,
following [R], one can obtain isometry by putting on . (X, X{) the mod-
ified norm ||| = inf{Jlsgllo + 23]l : 12| < (3, 01); a1 € X7, a7 2 O,
As a consequence one can deduce the equality ¢(Xp, X1)' = . (X§, X1) for
the K&the duals {(without any deusity assumption), This last fact is reproved
in [R], without considering the whole duals. When ¢ satisfies the two-sided
“reverse As-condition”

Je>0, Vs, t >0, ofs,ct) < 3(s,t) and (es,t) < Lio(s,t)

(this is in particular the case for ¢(s,t) = s*7%t%) then Xp N X7 is dense
in (X, X1) and the preceding result gives a description of the whole dual
(9(Xo0,X1))* (under the density assumption).

A particular, well known class of Calderén—Lozanovskil spaces is that of
Orlicz spaces: if we set M ~*(t) = (¢, 1), then M is an Orlicz function, and
the corresponding Orlicz space Ly is simply @{I1, L) (with equality of
norms if Ly is equipped with the so-called Luxemburg norm). Let M, be
the Young conjugate of M; one has M 1(s) = w.(1,s). If M satisfies the
usual A; condition, then L}, = Las, = @4 (Lee, L1); if not, L= Ly, ® L,
where L is an abstract (nonseparable) L,-space (Andd’s theorem [A]; see
also (2], [F]). _

‘The purpose of this paper is to give a unified description of the dual of
the space ¢(Xp, X1) in the most general case. Let a generalized Calderén-
Lozanovskit function, for short g.C.-L. function, defined on the measure
space (S, %, m), be a measurable map ¢ : § x Ry x Ry — Ry such that
for a.e. s € S, the partial function 1, := 4(s,-,-) either belongs to C or is
identically 0. If Yy, ¥; are K&the function spaces over (S, X, m), then the
generalized Calderdn-Lozanouskit’ space (Yo, Y7) is the order ideal gener-
ated by the functions ¢(yo,¥1) = ¥(-, yo("), v (")}, where y; € Y3, g4 2 0,
t =0, 1. Then the dual of the space {Xj, X) can be described as a g.C.-L.
space (X5, X7) (see Theorem 4.1), for a suitable realization of X§ and
X7 as order ideals of a space Lo(S, £,m), and a g.C.-L. function 1 over
(8, X, m). Moreover, for a.e. s € 8, the conjugate function Wey 18 a limit
of “dilations of ", i.e. functions a1 (u,v) — @(au, bv)/e(a,b) (with the
convention that 1, = 0 when +; = 0).
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In Section 1 we recall some basic notions and facts firstly about Kéthe
function spaces, Kdthe duality and the Vulikh-Lozanovskii representation of
the duals, and secondly about the set ¢ of Calderén—Lozanovskif functions,
remarkable subsets of C associated with a given C.-L. function ¢, and the
conjugation operation on C. In Section 2, given two Kéthe function spaces
X, Y we define a functional ¥ over the product of the positive cones of
the dual spaces, with values in ¢{X,Y)*, which provides a way to express
the norm on @(X,Y)* (Theoremn 2.5). In Section 3 we consider a triple
(B, F,¥), congisting of a couple (F, F) of K&the function spaces and an
abstract functional ¥ defined on Ey x Fy; with this triple is associated a
Kéthe space ¥(E, F), the Kothe dual of which can be expressed in terms of a
dual functional ¥,. In Section 4 we give the above announced representation
theorem for ¢(X,Y)* as a space ¥(X*,Y*) (Theorem. 4.1), and in Section b
we refine this theorem, by decomposing the underlying measure space into
disjoint parts over which v takes its values in remarkable subsets of C.-L.
functions asymptotically associated with ¢, (Theorem 5.12). An example is
given to show that this decomposition can be nontrivial (Section 6).

1. Preliminaries

(a) Kdthe function spaces and their duals. A Kéthe funciion space over
the measure space (12, A, p) is an order dense order ideal (= solid subspace)
of the space Lp(2, A, i) of all measurable functions over {12, A, u}, equipped
with a norm for which it is a Banach lattice for the natural order. By exten-
gion, we shall also consider function spaces whose elements have supports
in a fixed subset A € A, and are Kéthe function spaces over (A, A, pla)
(generalized Kothe function spaces). We call A the support of X.

In the case where p is not o-finite, we shall suppose that the measure
space is decomposable (or strictly localizable), i.e. there exists a measur-
able partition {Aa)s of £2 into p-integrable sets such that a subset £ of
1 is A-measurable {resp. p-negligible) iff all the intersections E N A, are
A-measurable (resp. u-negligible). In this case Lo{{2, A, i) is Dedekind com-
plete ([Fx]).

If X is an abstract Banach lattice, its Nakano dual X' is the subspace of
X* whose elements are order continuous, i.e. 2* € X' iff for all decreasing
nets (wi)ier with A, z; = 0, one has lim; (x*, ;) = 0. The space X' is a
band in X*. When X is a generalized K&the space over (£2, 4, u), then X’
can be realized as a generalized Kothe space over (£2, A, u) with the same
support, the Kothe dual of X, consisting of the elements f € Lo(2, A, 1)
such that fo € Ly for every ¢ € X, and living on the support of X; then
{f,x) = { fz dp. The natural embedding ¢ : X — X** takes values in X*/
and is an isometric lattice isomorphism (onto a sublattice of X*/). Let r
be the restriction projection from X*' onto X'. Then j =r o4 is a lattice
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homomorphism from X into X”, which is injective in the case of Kéthe
function spaces. The equality X = X", with equality of norms, is equivalent

to the Fatou property of X, i.e. that every norm bounded increasing net of

nonnegative elements has a supremum whose norm is the suprermnum of the
norms of the elements. In particular, duals have the Fatou property, hence
X*h’ — X*

Let Y be an order complete Banach lattice. We can find in ¥ a com-
plete system of local units, i.e. a maximal system (ya). of disjoint nonzero,
nonnegative elements. Then the order ideal 7 generated by the y.'s is or-
der dense in Y. On the other hand, let Z(¥) be the center of Y, i.e. the
closure in £(Y"), for the operator norm topology, of the space of operators
of the type 3 i, aip;, where the a; are scalars and the p; are digjoint band
projections. Then every ¥ in 7 can be formally written y = 3 @ala, with
@a € Z(Y);if y > 0, so are the ¢,, and }_, means simply the supremur.

Let us briefly recall now the realization of X* as a Kdthe function space
given in [VL! (for X a K&the function space over (12,4, u)). If z € X, we
have an order continuous lattice homomorphism 7, : X* — Lo (£2)* defined
by (mez*,h) = {z*, hz). These homomorphisms =, induce a bijection 7
between the bands of X* and the subbands of a band Ry of Lo (2)* (by
F(V) == band{m,(z*) : 2* € V|, = € X}). By identifying the bands with the
associated band projectiong, 7 is an isomorphism from the complete Boolean
algebra B{X ™} of projections of X* to that of Rx. This isomorphism induces
naturally an isometric order isomorphism from Z(X*) onto Z(Rx) (also
denoted by 7).

Conversely, we can define a homomorphism g from the complete Boolean
algebra B(Loo(12)*) onto B(X*) by setting {o(p)z*, 2} = {pmpa*, 1) for all
zt € X*, z € X and p € B(Loo(£2)*). Then o7 = idg(x»), while Tp is
the natural restriction from B(Lo(f2)*) to B(Rx). Note that p induces a
continuous homomorphism from Z({L.(2)*) onto Z(X*}. .

Note that Lo (2, A, u)* is an abstract Ly space, and thus identifies (iso-
metrically and order isomorphically) with a space Li(S, 2, m) (see [LT]).
Then Ry is the band generated by a set Sx € X in L1(9); Z{L.(2)*)
identifies with Lo (S, X, m), and Z(Ryx) with Leo{Sx). Then X* appears as
an Leo(8)-module for the action defined by h.z* = p(h){z*) (z* € X*, h €
Lo(5)). If z* € X*, and p,» is the projection onto the band gcnera.i:ecl by
z*, we call the set Sz« € T whose indicator function is identified with 7 (py«)
the support of z*

We can choo::e then a complete system (27 ), of local units in X* and an-
other one (14} in Ry, such that 7(band ¥} ) = band vy for every cv, We can
suppose that v, is an indicator function 1g,, with S, € T, and m(5,) < .
Then with every element ©* =3 .z} in the order ideal generated by the
zy’s we associate T(z*) = ¥ T(wa)ls, and we extend 7 by order density
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to an order isomorphism from X™* onto an ideal of Ly(S, X, m) {supported
by Sx): then 7(X™*) is the desired realization of X* as a Kéthe function
space over (5, X, m).

We call such a realization of X* in Ly(S, ¥, m) a standard realization
(associated with the complete systems (z3,) and (v,) of local units). If w €
Lo(8) 4 with w > 0 a.e., then T defined by 7 (2*) = w.7(z*) gives
another standard realization of X™*: for, we may assume that w is bounded
from above cmd below on the support S, of each #(x%), and set 3% (!} =
(1g,w '1) a, thus obtaining a new complete system of loca,l units of X * for
which 71 (2% () = F(a%) = 15, . We say that the new standard realization
of X* is obtamcd from the old one by a change of density.

A standard realization of X* induces in turn a realization of X*' in
Lo(8, Z,m). The embedding ix of X into X*' is then characterized by the
relations 4 x ()7 (2*) =7, (2*) for every 2* € X* (or equivalently 15, ix(z)=
7y (2%) for every a). The order ideal Zx generated by X in X*' consists of
the elements h.ix{z), #€ X, h€ L (9), and one has X*' =T% (since clearly
X*=T%). Hence nonnegative elements of X*' are suprema of norm-bounded
directed families of nonnegative elements of Zx (see [Z]).

We can find a maximal system (S5,), of disjoint subsets of Sx whose
indicator functions 1g, are simultaneously in (the realization of) X* and
(that of) X*'. By a change of density, we can obtain a standard realization
of X* for which 1g, = lg,ix{z,) for a certain complete system (z4), of
local units of X.

(b) The set of Calderdn-Lozanouskif functions. Now let us say a few
words about the set C; of normalized Calderén-Lozanovskil functions. We
equip ¢ with the topology of simple convergence on the open quadrant
P = {(u,v) : w >0, v > 0}. Using Ascoli’s theorem, it is easy to see that
this topology coincides with the topology of uniform convergence on compact
subsets of P (or of the open segment A = P N {(w,v) : w4 v = 1}). Thus
this topology is metrizable; in fact, one obtains a compatible metric setting
d(p, ) = 3 oot 27 eo(ug, vi) — 1 (ui, v;)|, where (ug,vi)i2; is, say, the set of
rational couples in A, Note that the balls relative to this metric are convex.
Moreover, Cq is compact for this topology. The same is true of course for the
set Cop == {9 € C 1 a < @(1,1) < b} for all positive numbers a, b. Given a
@ € Cy, we shall denote by IS I the subset of €, consisting of all ¢-dilations
W (defined by g p(u, v) = (au bv)/tp(a b)) where a,b > 0; and by I, the
closure of Ff in Cy. Denote also by F the closure of {iga5: a > Mb > 0}
and by I'7; .t that of {pap: b > Ma > 0}, and finally let Iz = N, I's M
resp. Iy o0 = (s 1"‘"'M

Lct us show thcmt the conjugates of the elements of I', appear after nor-
malization as elements of the set [T, associated with the conjugate of .
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LEMMA 1.1. The conjugation map ¢ — @, is continuous from Cy into C.

Proof. We have to prove that if @, — ¢ uniformly on compact sets
then @, — (. pointwise.
From the inequalities

n, Yu,v,8,t >0,  ©n(8t)@n(u,v) < us+ vt

we deduce

Yu,v,8,t >0, s, t)hp{u,v) Sus+ vt

where ¥{u, v) = lim sup,,_, . ©¥nx(1,v), which means that ¥ < ..
Conversely, fix u,v > 0, and let 0 < a < 1. Set

P32 (u,v) = Palu,v) V (vion (6, 1)) V (upn(l, a))
and define {®) similarly. From o) >
(

cotnpute zp,ff.?. We have

> on, we deduce go( o) < 0px. Now

ﬂp (u v) = us + vt
Tk N
5 t>0 (a)( )
— inf S + vt in us + vt inf Y8 + vt
s<attgn(a, 1) at<s<a=lt @n{5,t)  s2a-tt Spn(l,a)
Y . us + vt U
= A n .
on(a,1) " at<s<a=it pu(s,t} en(l,a)
Since

onlst) | plsit
s+t n—oo 5§41
uniformly on the set {s,£ >0 :at < s < a7't}, we have
us + vt us -+ vt
in: — inf ——
at<s<a=1t p (8,1} n—oo atgs<a—tt (s, t)
whence '3 (u,v) ~ o (u ,v), hence Hminf, .o wns > @i, for every
0<a<l. Butwehave
v

5 _ Y
wle,1) ~ watv

w«(u,v) and

QO*('UJ, 'U),

"
w{lya) = utav

hence

wi“)(u,fu)z( A . )go*(u,v)mgo*(u,v).l

uwa+v  u-av

COROLLARY 1.2. The conjugates of the elements of I'y (resp. I's™,
I'G™) are proportional to elements of Iy, (resp. I)™, I’J;f’“).

Proof If v € I'f, Le. 9(u,v) =

Yulu,v) =

w(au, bu)/p(a,b) for u,v > 0, we have
us + vt

)so(a ,b)

s, z>0 w(as, bt
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.. oueT Y+ ubTl
= inf ——— =
8,850 (p(s,t) [’D(a’b)

:go*(t: U) w(a,b).

In particular, ¥.(1,1) = @.(1/a,1/b)¢(a, b), hence

90* (u/a,v/ b)
Now if 1 € I'y, ¥{u,v) = limp.oc ‘P(anu, bnfu)/tp(an, b,), then by Lemma 1.1
we have
a1, v) = Puluftn, /B )ap*(l,l). "

n—wo 0x(1/an, 1/bn)

2. The VY-functional and the norm on ¢(X,Y)*. Let X and ¥ be
two Kothe function spaces over the same measure space (§2,.4, i), and ¢ a

normalized Calderén-Lozanovskil function. We set once forall Z = ¢(X,Y).
‘We identify Lo, (2)* with L1(S, X, m).

DeriNiTION 2.1, For every * € X}, y* € ¥} and z € Z.,, set
Pz, y")(e) = inf {{z*,2) + (y*,9) 1z € Xy, y € Y5, 2 S o{z,0)}-

ProposiTION 2.2. The map ¥(x*,y*) extends to a bounded positive lin-
ear form over Z.

Proof We have to prove that W(z*,y*) is positively linear over Z,. Let
z =z + 20, wWith z; € Z.

Let € > 0, and let 2; € X4 and y; € ¥} be such that 2 < ¢(z;, 1) and
@z, y*)(2:) = (=%, ) + (¥, ) — &. Then (by concavity and homogeneity
of )

21+ 2y < @(m1,01) + (@2, v2) < (21 + 22,91 + ¥2);

whence
P,y ) o + 22) < (8 @1+ z2) + (¥ 9 + 1)
S W(x*, y*)(2) + ¥ (2%, v7) (2} + 2¢.
Conversely, let © € X, and y € Y} be such that z < @(z,y) and

Tz, y*)(2) 2 (2%, ) +{y*,y) —&. We may write z; = hiz with h; € Lo (£2)
and hy + hy = 1g. Set z; = h;x and y; = hsy. We have

z < hie(z,y) = w(haz, hiy) = (24, 94),

thus

Tz, y*) (@) £ (@) + W i)
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and ‘
T2,y ) (z) + ¥(e", v ) (=) < {2 21+ z2) + W 11+ 12)
= {z*,z) -+ (¥, y) <P 97)(2) +e

To prove the boundedness of W(z*,y*), choose for any z € Z4 two ole-
ments z € Xy and y € Yy with z < ¢(z,y) and [Jz] Viyll £ 1+ )|zl
Then

Tz, y*)(2) < (2%, 2) + (" w) < (L4 )zl (=] -+ Ty]D)-

Thus ¥(z*,y") € 23 and [|#(e*,y")]| < =¥+ [ly"[]. »

PROPOSITION 2.3. For every 2o € X4, %o € Y, and 2* € Z1, we have

inf{{£", za) + (", yo) : ¥(¢",y") 2 2"} = limsup (", 0(z,y)).
mga:gﬂko

(Note that we set inf § = -+c0.)

Proof For all x € X4, y € Y, and z* € Z7, we have for all * € X*
and y* € Y™ such that ¥(z*,y*) > 2%,

(2%, 0z, y) < (@@ y"), elz.) < {8 + 7 y)

by the very definition of ¥(z*,y*). Hence

limsup (", (z, y)) < limsup((e®, @) + (y*,9)) = (=", 20) + (4" v0)-

v Y0
For the proof of the converse inequality, set
h(zo,yo) := liﬂiup {(z*, p(z,y)).
y—yp
z20,y2>0

Note that we allow © = zp or ¥ = yo in this limsup, thus A(zg,y0) =
{z*,10(z0, yo)}. The function h is clearly upper semicontinuous (it is the u.s.c.
envelope of the function (z,%) — (2%, ¢(z,y))). It is also straightforward to
verify that h is positively homogeneous and concave over X, x Y. As a
consequence of the Hahn-Banach Theorem, for all (zg,30) € X X Y4 and
g > 0, there exists a F € (X x Y} such that

{F(m,y) Zhz,y), YeeX, VyeYy,
F(zo,y0) < h{zo,yo) + &

We may write F(z,y) = (&*, ) + (y*, y) for certain 2* € X% and y* € ¥},
We then have, for every x € Xy and y € ¥,

(z*,tp(a:,y)) < h’(x: y) < F(xiy)?
hence for every z € Z,,

(2% 2) Sinf{F(2,9) : 2 < p(z,9)} = (F(2",57), 2),
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which means that z* < ¥(z*,y*). On the other hand,
(&, 20) + (¥, y0) = Flo, yo) < h(zo,v0) +¢. m

Remark. If @ satisfies a two-sided reverse As-condition (see the intro-
duction), then in fact

inf{ (2", @0) + {y",90) : ¥ (2", 4") 2 2"} = (2", (w0, %0)).
For, in this case, the map X, x Yy — Z4, (z,¥) — 9(z,y), is continuous.

COROLLARY 2.4. For every z* € Z7, there exist z* € X} and y* € Y
such that 2* < W(x*, y*).

Proof We have

limsup (2", (z,y)) < limsup [l2"[(h=| v fyl)

L—E0
Y= Y=y
z20,320 z20,y20

= [lZ%[[(flzoll V" llwoll) < oo. =
TuroREM 2.5. The norm of any element z* in Z* is given by
2 = inf{||=*]| + iy*]l : [2"] £ ¥(2",9")}.

Proof. Let {z*|| be the right hand side in this relation. The inequality
llz*|l < |2*|] results from the fact that if 0 < |2| < @(z,y) with ||z} v ly|| <
(1+¢&)||z||, and if |2*| < #{z*,y*), then

(2", 2)] < (2™, y7), () < (2%, 2) + (57, )
< ([l 1+ Ty =l v i) < 1+ ell=il (el + fy™D-
Conversely, let a < [|2*]]. Set Hp» = {(z*,y") € XL x Y] : ¥(z",y")

> 2*}. This set is nonempty (by Corollary 2.4), convex and w*-closed: for we
have H,» = ﬂmexop,yeh H 5y, Where Ho» 5 o is the w*-closed hyperplane
{(z*,y*) € X3 x Y} (g*2)+ "y 2 " el v))}-

Set B, = {(z",y") € X} x Y} |la*}|+|[v*| < a}. By the Hahn-Banach
Theorem, we can separate H,+ from the nonempty w*-compact set B, by
a w*-closed hyperplane, i.e. there exists a nonzero couple (zo,y0) € X x ¥
guch that

inf{(z*, zo) + (v*, yo} : ¥(z*, ") = 2"}
> sup{{z*, zo} -+ (v, yo) : [l + lly™l| < a} = allzmo]l V llzoll

We may suppose that #p,yo = 0 (replacing these elements by their absolute
values). By Proposition 2.3, we deduce that

lim sup(z", 2(z.9)) 2 elzo]| V ol
—iy

T
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But the left hand side ig less than

I2* [ im sup [z v [lyll = 12" [ {llzoll V [[voll)-
10
Hence ||2*|| > a. =

In the following proposition we list some important properties of the
¥-functional.

PROPOSITION 2.6. (a) The function ¥ is concave, positively homogencous
on X3 x Y} and (w*,w™)-upper semicontinuous.

(b) The function ¥ is nondecreasing, i.e. * 2 xf, y* 2 yi implics
P(a*,y") 2 ¥(21,97)-

(c}) The function ¥ is (Leo(S))4-homogeneous, i.e. for every h €
(Loo(8)) 4, we have T(h.z*, h.y*) = h.¥(z*,y*).

(d) The function ¥ is order continuous, in the sense that for all increas-
ing nets ok T z* and v} T y*, we have ¥(zk,y) T ¥(z*,y*), and similarly
for decreasing nets.

(By (w*,w*)-upper semicontinuity of ¥ we mean that for every z € Z,.,
the map (z*,3*) — (¥(z*,y*), 2) is w*-upper semicontinuous.)

Proof. (a) Forevery z € Z., themap (2, y*) — (¥ (z*, y*}, 2) is defined
as a g.l.b. of w”-continuous linear forms. The positive homogeneity of ¥ is
straightforward.

(b) is straightforward.
(c) Consider first the case where h is an element of Loo(f2, A4, ). Let

z € Z, and let ¢ € X and y € Y, satisfy z < o(z,y). Then clearly
hz < p(hz, hy), thus

(M (2", y"), 2) = (F(2*,4%), ha) < {&* hz) + (¥, hy)
= (ha", =) + (hy™, y)-

Passing to the infimum with respect to z,y in the last expression, we obtain
R (", y") < W(he™, hy*).

Suppose now that A < 1p, and set g = 1 — h. We also have
g¥(z",y") < ¥lge™, 9y*).

Adding these two inequalities, we obtain

V(2™ y") < ¥(ha”, hy') + T(ga*, gy*) < F(z*,y*)

where the last inequality is a consequence of the concavity and the positive
homogeneity of ¥ (and the fact that g + h = 1). Hence in this relation,
the inequality in the middle is an equality, and the same is true for the two
preceding relations we added. '
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If now h € Lo(8,%,m),, then there exists, by the lattice version of
Helly’s theorem (see [K], Thecrem 2), a net (hq) in (Loo(f2})4+ which con-
verges to h for the w*-topology of Lo ({2)**. Then h,.z™ — h.z*, ha gy —
h.y* and he ¥ (z*,v*) — h.¥(z*,y*) for the appropriate w*-topology. Using
the upper semicontinuity of ¥, we obtain the inequality

WU (s", ") < U(hat, hy)
and we derive equality as before.

(d) The case of decreasing nets is a consequence of the w*-upper semi-
continuity of ¥ (see (a)). Consider increasing nets z7, T =* and g, T y*. We
have 2% = haz* and yo = koy*, With ko, ke € Loo(S) and 0 < ha T 1,
0 <k, T1 Then
W (o™, koY) 2 V(ha Akat™ o Akaly®) = ha Ao (2™, y") T ¥(z™,y"). =

Remark 2.7. Suppose that the two Kéthe spaces are identical: X =
Y =: A. Then the ¥-functional is simply given by

WI:@ €Ay, Sp(f{,t;) = (P*(t;:t;)'

Proof. Set 2* = t} + t5; using Proposition 2.6, we can reduce to the
case where £f = a;2* for some nonnegative reals ar, az. Then . (z*,y*) =
@ula1, az)z*. For every t,t1,1s € Ay such that ¢ = p(t1,{2), we have

(13,80 + (t5,72) = (2% arts + agte) 2 (2%, pular, a2)p(t1, 2))
= <‘P*(a1’a2)3*:t>r
and conversely: if & > 0 choose positive reals u1,uz such that p(u, up) =1
and uiay + usag = go*(al,az) 4 £, Set t1 = urt and ta = uat. Then go(tl,tg)
=1, and
(2*, a1ty + asty) < (2%, (we(a1, a2) +€)E)
= <(P*(a'1>a'2)Z*at) + E(z*:t>‘

Then let € — 0. =

Remark 2.8. The W-functional is also characterized by the following

formula:
limsup {@«(z',¥"), 2}
w' —a* (w*)
Y=y (W)
e'e X w' ey,

(@(z",y%),2) =

for every z* € X1, y* €Y and z € Z.

This formula is analogous to the formula given in Proposition 2.3 (whose
left hand side is related to the dual functional @, : X3 x Y} — ZY, see
§3), except that here the w*-convergence on X* and Y™ is involved, n.ot t?ne
norm convergence. The befter properties of the norm convergence justify
that we prefer to consider ¥, rather than ¥ in the subsequent sections.
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Proof. Consider the map h: X} x Y} — R, defined by
h(z*,y*)= limsup (e.(z"y),2).

o'z (w*)

y’_’y* (w*)

e'eX! eyl
The map h is w*-u.s.c. and concave. The inequality h{z*,y*) < (¥ (z*, 4"}, 2)
is easy. Conversely, using the Hahn-Banach theorem, for every couple (7, ¥3)
in X% x Y} and £ > 0, we can find a couple (z,y) in X4 x Y. with

{ (@=, &)+ (y*y) > h(z*,y*) for every (z",9*) € XI x Y,
(a5, 2) + (W5, y) < P25, 45) + ¢
We apply the first inequality to a couple (z/,y') € X x Y; we obtain
(@' z)+ (v y) 2 Ma', ) 2 {ea(a’ 7). ).
Let 2’ € Z. We see that
inf{{z',2) + (¢,9) - 2’ € XL, v € YL, pule,y) 2 2} 2 (&, 5).
From Lozanovskil’s paper [L3] (Lemma 17}, or from Proposition 3.5 be-
low, we know that the left hand side in this last inequality is nothing but
(z',¢(z,1)). Hence (2, p(x,y) — z) > 0 for every 2’ € Z/_ , which suffices to
show that ¢(z,y) > 2. Thus, by the definition of ¥,
(¥(z3,90),2) < (@5, 2) + (w6, ) < B2, 45) + =
Thenlete — 0. =

3. Kothe duality of generalized Calderén—Lozanovskil spaces.
Let E, F and G be three (generalized) Kothe function spaces over the mea-
sure space (S, X, m), and let ¥ : B, x Fy — G4 be a map which is concave,
nondecreasing, Leo(S)+-homogeneous, order continuous and onto, and sup-
pose that the norm of & is given by the relation

Vge G, gl =inf{le] +ifl|:ec By, feFy, g/ <¥(e )}
Let us call G an abstract Calderdn~Lozanovskit space. Qur main candidates
for G and ¥ will be of course (X, Y)* and the ¥-functional of Section 2.
LeMMA 3.1. For every (e*, f*) € EX x F} and g € G, set
Tu(e™, f*)g) = 1inf {{e*, &) -+ (", ) : ¥(e. f) 2 g}
Then ¥, extends to an element of G7.. The functional ¥, Bl x FY —
G7 is concave, (w*,w*)-upper semicontinuous, nondecreasing, Lioo(S). -

homogeneous, and order continuous. Moreover, the restriction of W, to
EL x F. takes values in G',.

Proof. It is clear that ¥,(e", f*) extends to an element of G7. (same
proof as for Proposition 2.2). The properties of ¥, are proved like those of
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¥ in Proposition 2.6. Let now &' € B/ and f' € F\. If (g,) is a decreasing
net in G, g« | 0, then we can write g, = fia.go With ke € Leo(5), ko | 0.
Let (eq, fo) be such that ¥(eg, fo) > go, and set e, = hgeg and f, = ha fo.
Then ey | 0, fo | 0 and !p(eou fa) Z ga; thus

(e, f)(ga) S {€sea) +{f', fa) — 0,
hence @, (¢, f') is order continuous. m

Let us denote by « the natural band projection. E* — E' (resp. F* — F',
G* — (') associating with a linear form its absolutely continuous part.

LEMMA 3.2. For every (e¢*, f*) € B} x F}, we have n¥,(e*, f*) =
@, (we*, wf*).

Proof. Represent Lo, (S)* as a space L (T, T, 7). Since L, (S} is a band
in Ln(T), S can be considered as a subset of T It is easy to see that the
natural band projection 7 coincides with the action of the indicator function
Lg on all duals of Kéthe function spaces over (S, 2, ). The assertion is then
a consequence of the Lo (77)-homogeneity of ¥,, whose proof is analogous
to that of Proposition 2.6(c). m

PROPOSITION 3.3. The map ¥, : B/, x FL — G, is onto, and the norm
of every g' € G' is given by

I = mf (| v 1Y+ ¢ € By, J' € FL o S T(e

Proof. By the reasoning of Corollary 2.4, the map ¥, : B} x F} — G}
is onto; so is the map 7%, : Ef x Ff — G. Upon using Lemma 3.2, it
becomes clear that the map ¥, : E| x F} — G is onto. Similarly the
reasoning of Theorem 2.5 gives the formula

gl = inf{|le*|| v [|F*] : e* € EL, f* € FY, ¢ <W(€7, )},
and an appeal to Lemna 3.2 allows us to replace e*, f* by ¢’ = we*, f' =« f*
in this formula. w
LEMMA 3.4 (Reciprocity formula). For every (eo, fo) € Ey x Fy and
every g’ € G, the following relation holds:
(g',!?(e(}, fO)) = illf{(ely@@ + (f’i fO) e € E-r|-1 f‘r € Ff}-a W*(elaff) Z QI}
Proof. By the proof of Proposition 2.3, we have
(%) inf {(e*,e0) + (f*, fo) 1 &* € B}, fr€ FL, V(e f") 2 g}
= limsup {g’, % (e, [)).
e—eq
F=fo
ez0, f=0
But by Lerma 3.2, ¥, (e*, f*) = g’ implies ¥, (we*, wf*) > g', hence in (%%)
the left hand side equals inf {{¢/,eq) +{(f', fo} : ¢’ € B}, [' € FL, w.(e, f)
> ¢'}. Let (e,) and (f) be such that the right hand side in (*x) equals
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it oo (g, T{en, fr)). We may suppose that e, > eg, fo > fo and that
these sequences are nonincreasing (by assuming that [le, — eo| < 277,
| fn — foll < 27 and replacing (en); (fn) DY &0 = sz'n, ep, fn= VpZn fo)-
Then ¥{e,., f.) | (e, fo) (order convergence), and since ¢’ is order contin-
wous, (g, ¥(en, fn)) — (9, ¥(eo, fo))- m

Let us now give a description of the ¥,- and ¥-functionals in terms of
g.C.-L. functions.

PROPOSITION 3.5. Let Sg € X' be the support of G. There exist g.C.-L.
functions ¥ and @ over (Sg, £|ss, m|ss) such that:

(i) for every (e, f) € By x Fy and (¢/, f') € EL x Fy, we have ¥ (e, f}(s)
= (s, e(s), f(s)) and W (e', £)(s) = p(s,€'(5), f'(5)) for m-a.e. s € Sg;

(ii) the partial functions v, and @y ore conjugate C.-L. functions for
a.e. 8 € S¢a.

Proof. Let A C Sz be such that the indicator function 1,4 belongs
to BN F. Then the support of W(la,14) is A (since every 14%¥(e, f) =
¥(14e,14F) belongs, by order continuity of ¥, to the band generated by
W(14,14)). For every a,b > 0, we have (a AD)P(la,14) < Flala,bly) <
(@Vbd)¥(1a,14); hence there exists a unique hqp € Lo (Sg) with support
A such that ¥(ala,bla) = hep¥(14,14). The G/ -valued map (a,b) —
W{aly,bly) is concave, positively homogeneous and order continuous. For
every couple (r,1) of positive rationals we can choose a measurable repre-
sentative s — h(s,r,t) of A, such that for all s € A the map QF. — Ry,
(r,t) — h(s,r,t), is concave, positively homogeneous (for coefficients in Q4. ),
and continuous at the points of the boundary (Qy x {0})U({0} x Q..). This
function h(s,-,-} is nondecreasing, locally lipschitzian in each variable on
the rational open quadrant, and so can be extended by countinuity to Rﬁ,
(set e.g.

h{s,a,b) = lim , h(s,r,t)

r—a,t—

r<a, t<h
if a,b > 0; h(s,a,0) = ah(s,1,0); h(s,0,b) = bh(s,0,1)); then for all non-
negative reals a, b, A(:,a,b) is a measurable representative of b, ;, and for
every s € A the partial function h(s, -, -) belongs to C;.

If now A C Sg is such that the indicator function 14 belongs to E and
is disjoint from £, then the support of ¥(14,0) is A (since for every e € B
and f € Fy, 14%(e, f) = ¥(14e,0), which belongs to the band generated
by ¥({14,0)). We have ¥(alys,0) = a¥(14,0).

We have a partition Sg = Sy U S1 U Sa, where Sy is the intersection of
S¢ with the support of EN F, while Sy (resp. 83) is the part.of Sg disjoint
from F (resp. F). Finally, let (Aq)aes, be a K-measurable partition of 5;
(¢ = 0,1,2) with the corresponding indicator functions in E N F, resp. B,

icm

Celderén—Lozanovskit spaces 23

F. Find a family (hq)acy, of normalized g.C.-L. functions by the preceding
construction applied to the sets (Ay)qes,; set

¢ = Z W(lAaplAa)hrx + Z W(lAa,O)Pl =+ Z ‘_17(0, 1AQ)P2
aEJy aeS; a&Jy
where p1, pa are the (constant) C.-L, functions p; {u, v) = u and pa(u,v) = v.
The equality ¥(e, f)(s) = 1(s,e(s), f(s)) is then verified first for step
functions; then for arbitrary e, f, by using the order continuity of ¥.
Define now ¢ by ©(s,a,b) = (¢;).(a,b), for every s € Sg. It is in fact
measurable, because in the definition of the conjugate functions (s}« one
can restrict the infimum to the positive rationals (or by Lemma 1.1). For
¢ € B, and f' € Fi, define (e, f') by (e, f')(s) = (s, (s), ['(5)) if
s € Sg,and = 0 if s ¢ Sg. Since for all e ¢ Ey and f € F, we have
(s, e'(s), f'(s))w(s, e(s), f(s)) < €'(s)e(s) + f'(s)f(s) for a.e. s, it is clear
that #(e’, f') < T.(¢', f'). Conversely, using a suitable version of the von
Neumann measurable selection theorem (as in [Au]}, we can find, for every
g > 0, two measurable maps k, k : Sg — Ry such that

h(s)e'(s) -+ k(8)f'(8) < (L+e)e(s, €(s), F(8)), (s, h(s),k(s)) =1,
for a.e. s € Sg. For all A € X, A C Sg, with m(A) > 0, there exists

B e X, B cC A, with m(B) > 0, such that 1gh € E and 1gk € F. Then
¥(1gh,1pk) = 1p, and

S ﬂ?*(e",ff) dm < S he" dm + S k'_f" dm < (1+E) g @(e’,f") dm.
B B M ]
This shows W (e, f') < B(¢', f') (since ¥, (e, f') is supported by Sg). =

Note that by the reciprocity formula of Lemma 3.4, we would obtain the
same result by constructing first ¢ from %,, and then setting 1, = (@s)-

4. The representation theorem. In this section, we prove the follow-
ing representation theorem:

THROREM 4.1. Let X and Y be two Kéthe function spoces over the same
measure space (2,A, ), @ a normalized Calderdn-Lozanovskit function and
@(X,Y) the corresponding Calderdn—Lozanouskii space. Given two standard
realizations of the duals X*,Y* as (generolized ) Kdthe function spaces over
the measure space (S, X, m), there is a standard realization of (X, Y)* and
a generalized Calderén-Lozanovskit function v over (8, X, m} such that m-
almost all nonzero partial functions 1, have their conjugate functions in the
set Iy and (X, Y)* = (X", Y*).

Note. By Corollary 1.2, the normalized functions 1 /4.(1,1) belong in
fact to Iy, .
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We postpone the proof of Theorem 4.1 after that of the following Propo-
sition 4.2. Let & = W, be the conjugate functional X7 x Y}' — ZY' (as
defined in Section 3) of the @-functional X} x ¥ — 21 defined in Sec-
tion 2,

PROPOSITION 4.2. Let £ € XY and n € Y}’ be such that $(§,n) # 0.
There exists a normalized g.C.-L. function § = @ , defined over the support
Sen of B(E,m), with partial functions B, belonging to Iy for a.e. s € S¢q,
such that for every a,b € Ry, we have $(a&,bn) = §(-,a,b)P(§,n). For two
such functions @, @, one has Ps = @, for a.e. 5 € S¢,n.

Proof The existence and unicity of @¢, are clear (see the proof of
Proposition 3.5), the point is to prove &gy € L.

We first reduce to the case where & € ix(X4) and n € iy(Y,) (where
ix, iy are the natural injections X — X*, Y — ¥™). For, if the lemma
is true in this case, it is then trivially true when & = 3 ;14,ix(m;) and
n = ¥, 1adv{y;), where (A;) C X is a system of digjoint sets. In the
general case, we can find directed nets &, T £ and n, T 77, where g € X * and
Ne € Y* have the preceding form. Then ${aéa,bn.) T ®(aé,by) for every
a,b > 0, whence ¢, 5. (-, 0,b) — Pen(:,a,b) for every a,b > 0. Hence for
a.e. s € gy we have @z, n.(s,a,b) — B¢ (s, a,b), a priori for all rationals,
but in fact for all nonnegative reals a,b by a continuity argument. Hence
s € I, for ae. s.

Fix 25 € X, and yo € ¥, (we shall identify zo,y0 with their images
ix (%o), 4y (y0)). We shall prove the following claim:

CLAIM. For every 2* € Z3 such that ($(xo,40),2") > 0, and every e > 0,
there exists A € A such that {($(zo,y0), 142"} > 0 end that the map

1 *
H:l :(u:,u) — <gj(uw0:vy0)a AR >
(@(30, yﬂ)a ].AZ*)
lies in C; at a distance from I', less than c.

Suppose that the claim is proved. Assume that the function & = &g, 4,
has partial functions @, not belonging to I, for s in a nounegligible set.
Since the function Sy, — Ry, § — d(§a, Iy), is measurable (see §1(b)
for the definition of the distance d), there exist € > 0 and a subset 57 € ¥
such that d(@,, I,) > € for every s € S;. Since C; can be covered by a
finite number of d-balls of diameter less than £/3, we can find § € C; with
d{#,I,) > 2¢/3 and a subset S C Sy such that d(F,0) < &/3 for every
s € 8. For every 2* € Z} with support in Sy, the map H. : (u,v)
(@ (uxo, vy0), 2°) /(D0 Y0), 2*) satisfies d (H,«,0) < £/3, since

_ §@(s,,v)2"(s) dm(s)
Hz_* (’U': 'U) - S z*(s) dm(&)
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and the d-balls are convex. Fixing such a z*, and considering a set A € A
given by the Claim (with £/3 in place of £), we obtain a contradiction for
27 =142".

Now we prove the claim. It suffices to prove that for every £ > 0,
Ul oo Um > 0, and vp,...,vn > 0 there exist # € I, such that for all
67 =1, ..,my |H(ug,vy) — 0(us, v5)| <e.

By Proposition 2.3, for every u,» > 0, we can find sequences (£n)r C X4+
and (yp)n C Yy such that z, — 2o, yn — yo and

() (2 (e, v90)) = (B(uzo, vye), 2.

In fact, we may assume that =, > zo and ¥, > yo for all n (since this limit
is a limsup). We can find sequences (z,), and (y,) which give rise to this
limit (+) simultanecusly for the (m + 1)? couples (u;,v;), 4,5 = 0,...,m,
(where we set up = 1,vo = 1) in place of (u,v): for, we choose for each {u,v)
Sequences (mgu‘”)) (y(”’”)) greater than zp, resp. yo, converging to g

™) n n ? 3 H
resp. yo and satisfying (*), and then set

m m
Ty = \/ zl%) and g, = \/ ylusvs),
i,j=0 1,§=0

The point now is that in fact we have
(", o (uimn, viyn)) —2 (B(ui%0,vi%0),17)
uniformly for all t* € Z% with ¢* < 2*. For, we have
{B(uizo, viy0), t)y — (8", o(win, vy )
= limsup {t*, @ (uwiz, viy) — @(Uiln, VilUn))

T—Ip
Y—+yo

< limsup (¢, o(ui(@ V 20), 05 (¥ V 9)) — 9 (usn, Vi¥a))
—ag
Yo

< limsup (2", o(us(@V ), 0 (y V ) — @(Uilln, vitn)) —= 0
A
since
lim sup lim sup{z*, (Ui V &, v59 V 4n)) = {B(uizo, v530), 2*)
neaog TR

= lim (z* . go(uz'ﬂ"‘m '“jyn))-
—OC

Hence

(dj(uimﬂa T"ij)at*> - (t*: 'vo(u'imm'vjyﬂ)) <é&n
where the sequence (€5 )n, converging to zero, can be chosen independent of
t* < z*. By applying this also to 2* —1* in place of z*, we obtain the desired
uniform convergence.
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Define a pseudometric on Cq by
l Val)gg Ecla 5(91:92) = sup

1,5=0,..c,

|6 (g, 05) — Oa(ws, vg)].

Consider now a finite covering (I',...,I'w) of I, by Borel subsets of &-
diameter less than /2. For every (z,y) € X4 x Y4, define ¢, : 2 — I,
by

p(uz(w), vy(w))

p(a(w), y(w))

when p(z(w),y(w)) # 0 and = @(u,v) if not. Set A} = {w € 2 w;, 4. (W)

el }forp=1,...,N. Note that U;\;l Ai’,\r = {2. Then we have
Vp=1,...,N, Vi,j=0,...,m,

Jim (2%, Lano(wian, viyn)) = lim ($(uizo, vsyo), Lag2*)

Py (W) (1, 0) =

by the uniform convergence result proved above (up to taking a subsequence
we may suppose that all these limits do exist). There is a pp such that
limy,— oo (® (2o, ¥0), lﬂ%zﬂ > 0. We have

\V'q,,j = 1,..-,'”1,
. (2%, 1an (usn, vjYn))
n—o00 <Z*, 1Ago¢(mn:yn)>

. {®(wimo, vjo), Lag 2*)
= lim 2
oo <.(P(Cﬂ(), yﬂ)a 1A;"D Z*>

In other words, for sufficiently large n, the map H = H ifl” o) has the property
that 6(8 — H) < £/2 for some 8 in the closed convex hull {in C;) of I}, (set
B(u, v} == (2", Lap p(ugn,vyn))/ (2", Lap #(2n, Ya)))- By convexity of §, the
function @ lies at a 6-distance of I, less than or equal to £/2. Hence there
is a fp € I', with 6(I,6p) € &, which finishes the proof of the Claim, and
of Proposition 4.2. u

Remark. When p satisfies a two-sided reverse Ap-condition, we have
D(z,y0) = (o, yo) (see the Remark following Proposition 2.3). In this case
the ratio @(wuzg, vyo)/P{xo, yo) defines an element Ay, 5 of Lo (2) € Loo(S)
(the embedding here comes from the embedding Leo (§2) C Lo {£2)™*, which
is mot the conjugate of the band projection Lo (2)* — Ly(£2)). Viewed in
Loo(f2), these h.,, define an element of Lo (f2; Fg ); but viewed in Lo (9),
they define an element of Lo(S; I'y) (not Lo(S; ') in general).

- Proof of Theorem 4.1. An appeal to Proposition 3.5 shows that
Z* and Z*' are identified with generalized Calderén-Lozanovskil spaces
P(X*, V™) and . (X, Y*) for some conjugate g.C.-L. functions ¢ and
1.; the functicnals ¥ and @ are then related to ¢ and %, by the formulas
W(a*,y*)(s) = (5,7 (),4"(s)) and B(E, n)(s) = vuls, £(s), (s)) (For ace.

5 € 5). It remains to show that 1,(s) € I', (when nonzero).
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Given a standard realization of X* and Y™* as (generalized) K6the func-
tion spaces over {S, X, m), we can realize Z* in such a way that for all
indicator functions 14 € X* and 15 € ¥*, the element ®(14,15) of Z* is
an indicator function. For, let Sx+ and Sy~ be the supports of X* and ¥*. It
suffices to show that $(1,4,14), (1,0} and ${0, 1) are realized as indica-
tor functions, for every A C Sx« NSy, B € Sx+\ Sy and C € Sy« \ Sx~;
and this can be obtained by a simple change of density.

We now perform the construction of the proof of Proposition 3.5, but
starting from the $-functional {and considering ¥ as the conjugate &, by
Lemma 3.4). Proposition 4.2 shows that the resulting g.C.-L. function has
partial functions a.e. in I, (when nonzero). w

5. Refinement of the representation theorem. In this section we
make more precise the set of partial functions %, of the g.C.-L. function
1) which describes (X, Y)*, according to the position of s in Sz« {Theo-
rem 5.12 at the end of the section).

We can already treat the case where s € Sx« \ Sy», resp. s € Sy« \ Sx~:
in this case it follows from the proof of Proposition 3.5 that necessarily 1. is
linear, and depends only on the first, resp. second variable; that is, 9, (u, v) =
u, Tesp. s (u,v) = v. Hence the band generated in Z* by Sz« N .Sx~ \ Sy-,
resp. Sz« N Sy \ Sx« coincides with that generated by the same set in X™,
resp. Y.

Denote by A the intersection X N'Y (equipped with its natural norm).
Let X% be the band in X* whose elements are normal extensions of their
restrictions to A, in the sense that

Ve e Xy, ({lz*,z)=sup{{z*],t):t€ A, 0 <t <z},

and let (X Z)l be the complementary band in X*. The latter band is simply
the band of elements z* € X* having zero restriction to A. Let X be the
closure of A in X; then there is a canonical isometric order isomorphism
2* — ext(z*) from X7 onto X%, defined for nonnegative z* € X§ by

Vo e X, (ext(z*),z)=sup{{z*,t):te A 0<t <z}
If r is the restriction map X* — X, then ext or is the band projection from
X* onto X% (see [VL]).
The relation between the respective restrictions of X*, ¥Y* and Z* to A
{(which we denote indifferently by 74) is given by the following proposition.
PROPOSITION 5.1. For every z* € X} and y* € Y, we have
7al (e, y") = P(ras*, may”) = pu(Taz”, may®).

Note that the last member of these equalities is well defined, since moz*
and 74y belong to the same Kéthe space A%
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Proof Letz* € X}, y" €Y and t € A’ We have
(ma¥(e*,y* ), t) = inf{{z*, 2) + "9}z € X, U € Yy, t <z, )}
<inf {{z", t1) + (", ta) st 82 € Ay, t <ty d2)}
= (!P(frAw*,'rrA'y*),t).
So it remains to prove the reverse inequality. Let ¢ > 0, z € X andy €Y,
be such that ¢ < ¢(z,y) and
| (TFASF(:B*,y*),t> z (w*,m)+(y*,y)——a.

Suppose first that limas—eo (M, 1) = 00 = limasco (1, M). Then for
every 8 > 0, we can find M such that ¢(M,§) > 1 and w(6, M) > 1. Then
we have

t < ol(z A ML)Vt (y A ML)V 6t).
Then #; = (z A Mt) V 6t and t5 = (y A Mt) V §t belong to A, and satisty
t; < £+ 6t and t2 < y + 8¢, whence ’

(@ t1) + (™ ta) < (e, 2) + ) + 60012 lltllx A+ [yl - Hellv)
< {ma¥(z*,y7), 1) + 2
for sufficiently small §. Since t < ¢(t3,%2), we obtain the desired inequality.
Suppose now that limas—,co (M, 1) = oo > limpr—oo (1, M). By the
same trick as before, we find to € Ay and y; € ¥ with ¢ < (to, v1) and
{@*,to) + (¥, y1) < (wa¥(a™,y7),1) +2¢.

For all £ > 0, there exist Mg such that supy, (1, M) < {1+ &)p(1, My).
Then
o(to, y1) < (1 +¢€) ¢(to, y1 A Moto).

Set t1 = (14 ¢€) g and tp = (1 + &) y1 A Moto. We obtain ¢ < @(t1,12) and
<W*=t1) + (y*:t2> S (1 + 5) ((Wﬂw(w*r'y*)vt) + 25)-

Finally, if limps—ce ©(M,1) < 00 and limps.e (1, M) < co we apply
the second trick above simultaneously to = and y.
For the second equality in Proposition 5.1, see Remark 2.7. m

COROLLARY 5.2. (a) The spaces Zy = (X, Y )g and ¢(Xo, Yo)o are iden-
tical, with the same norm.
(b) For every x* € X} and y* € Y, we have

r¥(x*,y*) = r¥{ra*, ry).

Proof. (a) The assertion means that the spaces Z = @(X,Y) and
©{Xq,Yy) induce the same norm on A. It is clear from the definitions that
©(Xo,Yy) C Z, with a norm one inclusion map. However, this inclusion
map is perhaps not an isometry, nor is A necessarily dense in ¢(Xo, Yp).
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One can directly show the identity of these two norms on A, or deduce it
from Proposition 5.1 as follows:

Let t € 4, and let 23 € (X, Yo)* of norm one be such that £l pexo.v0)
= {z5,t). We have, by Theorem 2.5, 2} = @(z§,33) with 2§ & (X%,
vy € (Y5 )+ [1zgll + [lw5]] < 1+e. Let z*, y* be the normal extensions of =,
resp. y§ to X, resp. Y, and 2* = ¥(z*,y™). We have |z*|| < ||z*|| + ||lz*]| =
llzgl| +ilysl| < t+e&. By Proposition 5.1, 2* and 2% have the same restriction
to A, Hence [[toox,,va) = (2" 8) < (1+ )|t 2.

(b} Note that the asserted equality makes sense, since by the above,
r¥{z*,y*) and r¥(rz*,ry*} are members of the dual of the same space. To
check their equality, it suffices to check the equality of their restrictions to
A, and this is a trivial consequence of Proposition 5.1, and the fact that
TATIY = Tax™ and TaTY" = Tay*. w

LemMa 5.3. (a) If z € X}, then for every z € X, we have w,z* =
sup{mz* 1t € Ay, t <z}

(b} For every a* € X}, we have Suppz* = Suppraz*. Consequently,
Supp X% = SuppraX™.

Proof. (a) Let v = sup{mz* : t € Ay, t < z}. It is clear that moe* >
max™ for every £ < z, hence m,a* > v. Conversely, let h € L™ ({2) be a step
function. For every £ > 0, we have (m,z*, h) = (z*, hz) < (z*, o) +¢ for some
g € Ay with tg < haz. Setting t = A~ (t = 0 where h = 0), we have t €
Ayt € zand (mpa*, h) < (ma*, h)+e. Thus (mpa*, h) < sup{(mz*, h}:t €
AL, t <z} = {v, k) (the last equality because (m2* }yca i< is an upwards
directed set). This remains true for every h € Lo ({2), by approximation,
hence m,z* < v.

(b) For every v € Lo (£2)*, we have v 1. o* iff v 1 m,z” for all z € X
by the above, this is equivalent to saying that v L mz* for all £ € Ay, e
that v L waz* =

COROLLARY 5.4. (a) If limas—co (M, 1) = 00 = limar—oeo (1, M), then
Supp Z% = Supp X3 NSupp Y.

(b) If limpgovoo 9(M,1) = o0 > limprco ¢(1, M), then Supp Z; =
Supp X 4.

(¢) If limpgooo @(M, 1} < 00 and limpr—oo (1, M) < 00, then Supp Z3
= Supp X4 USupp Y-

Proof. We use the elementary equivalence @i (A, 1) ~ {(A71, 1))

(a) In the first case, we obtain ¢.(0,v) = 0 = @.(u,0) (for every
u,v > 0). By Proposition 5.1, we have TaZ* = @,(maX”,maY™), which
clearly implies Supp 74 Z* = Supp 14 X* NSupp 7AY™*, and we conclude by
Lemma 5.3. '
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(b) In the second case, we have wa(0,0) = 0 < wu(u,0) for all u,v >0,
whence SuppmaZ”® = SuppraX*.

(c) In this case, p.(0,v) > 0 and . (u,0) > 0 for all w,v > 0; hence
SuppmaZ* = SuppmaX™ U Buppmal”. =

PROPOSITION 5.5. There are standard realizations of X*, Y™, Z7 for
which Z* = (X*,Y*), and the g.C.-L. function ¢ satisfies ¥, = @. a.e. on
the support of Z%.

Proof. Consider the restriction maps 7x 4 : X* = A*and 7wy 4 : ¥ —
A*; these order continuous order homomorphisins have injective restrictions
to X%, resp. Y.

Suppose first that we are in the case (a) of Corollary 5.4. Consider a
complete system (%), of local units of the band V of A* generated by
7aX* NTaY*. We may assume that for all o, £}, € T4 X" NTaY™; then &), =
mx.a(zh) = my,alyL) for uniquely determined elements z7, € X3, ys € V3,
which have same supports as the #, (Lemma 5.3); then (23)a and (¥3)e
are complete systerns of local units of the bands of X*, ¥* whose supports
are both Supp Z%. Finally, set 2, = ¥(zh,y%) Then 2 € Z} (since its
support is included in the common support of z,, y3). By Proposition 5.1,
we have ma2 = t%. For the same reason, we obtain ma¥(hzt, kyl) =
@u(h, K)E = Talpa(h, k)2k) (for every b,k in Loo(S)). But W(hay, kyg) <
(I hlloo V [%lloo) 25 also belongs to Z. Hence W(ha}, kyh) = wu(h, k)2, (by
the injectivity of 74 over Z}4).

Using the order continuity of ¥, we conclude that ¥(z*,y") is realized
as . (z*,y*) for every z*, y* with support included in Supp Z7.

In the case (b) of Corollary 5.4, we complete the system () by some
system (tg*), to obtain a complete system of local units in waX™; then
consider zjf € X}, with mazy = tj, and set 2 = ¥(zj,0). We proceed
analogously in the case (c) of Corollary 5.4. m

Remark 5.6. (a) The preceding realization of X", Y™, Z* induces a
realization of X*, Y*, Z* for which Z* = Z(X*,Y™*) and §, = ¢ for a.e.
s € Supp Z4.

(b) If we start from arbitrary standard realizations of X™, ¥, and apply
the procedure of the proof of Theorem 4.5, we only find that &, € I'J (see
§2 for the definition of this set) for a.e. s € Supp Z7.

For (b), note that by different changes of density on X*, Y™, the space
H(X*,Y™*) becomes @(X*,Y*) with 9, € qu; for a.e. 3,

The following corollary is a slight improvement of Theorem 1 of [L3].

COROLLARY 5.7. Suppose that A is dense in X and Y. Then the dual
Z* of Z = (X,Y) can be identified with V @ . (X*,Y*) @ W, where V,
resp. W, is @ band in X*, resp. Y.
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Proof This is an immediate consequence of Proposition 5.5, Corol-
lary 5.4 and the remark at the beginning of this section. »

‘We now investigate the range of values of the g.C.-L. function ¢ of The-
orem 4.1 cutside Supp Z7.

LEMMA 5.8. The bands X%+~ and Y41 have disjoint supports.

Proof. This means that for every z* € X4+, y* € Y3+, z € X, and
y € Y4, we have mpz” L myy*. But this is evident, since, setting t = z Ay,
we have mz™ = 0 = my", hence m,a* = 7mz.ex™, mY* = my_wy*, and
(z—t) L{y—1t). =

ProrosITiON 5.9. The partial functions of the conjugate g. C.-L. function
to the g.C.-L. function i of Theorem 4.1 belong to the set I’é"’" foro.e. 5 €
Supp Z* NSupp X3+, and to the set I for a.e. s € Supp Z* NSupp YA~

In view of the proof of Theorem 4.1 (and of L.emma 5.8), this assertion
is a consequence of the following proposition.

PROPOSITION 5.10. If £ € X41' and if n € Y} has the same sup-
port, or n = 0, then the g.C.-L. function ¢, (defined by (-, u,v) =
B(ué,vn)/B(E, 1)) has a.e. partial functions in the set T ™.

We first prove a lemma.

LeEMMA 5.11. Let tp € A, o € X, and 2* € 2} with z* L X7. Then
for every M > 0, we have

(#(zo,t0),2*) = limsup (2", ¢(z,y)).
e—rag4-MiEp
y—+to
x> My
Proof. We remark that, for every M > 0,
(B{z0,t0), 2*) = (B(z0 + Mto, t0), 2")-
Yor, we have
(B(z0, t0), 2*) = inf {(a*, 2o} + (¥*,t0) : ¥(z",y") 2 2"}
We may assume that the support of the element z* appearing in this infimum
is included in that of z*, hence z* € X% *; thus (&*,4o) =0, and
(B (0, t0), 27) = it {(a*, 0 + Mta) + (", o) : D(a",y") = '}
= (P(eg + Mo, tg), 2%}
In the formula asserted in Lemma 5.11, the right hand side is certainly less
than

lim sup (z*a ‘p(mwy» = (45(-’)30 + Mtﬂato)a Z*) = (@(wu,‘ﬁo),z*).
mwma-iMyo :
y—in
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Conversely, let z, — zo and y, — fo be such that
('Z*: (P(xn: yn)) n‘:::o<@(w[}, to), Z*).
We may assume that y, = tg. Set
1
Y = (Yn — to) A ‘Mﬁcn +to and z, =z, + Mi.

We have clearly z!, — zo + Mtg, 2/, > My, and tg < y, £ yn, hence
yl, — ty. We now check that replacing (., yn} by (z/,, yy,) can only increase
(hence does not change) the preceding limit. We have (by right subadditivity

of )
0< ‘P(wmyn) — o(2n, y;) < l{y;<yn}‘P(mﬂ: Yn ™ y»’m)
< 1{mnSM(yn~—to)}(P(mmyn - tO) < (10(1‘71 A M(yn - tD):yn - 1|t0)'
Observe that t, := x, A M {y, —to) € A; hence writing 2* < ¥(x*, y*) with
z* € X1, we obtain

. <z*’¢(tn’y” - to)) = ('y*?yn '_' tO) _::,O}o 07

')
hence
(2", (n, ¥n)) — (B(20,t0), 27).

Then we have a fortiori
liminf(z*, o{z}, yn)) = (H(zo,t0), 2"} w
T~ 0

Proof of Proposition 5.10. It is sufficient to prove the assertion
when ¢ = 1,479 and 0 = 14y, where 25 € X, yp € Y, and A C Supp X3t
is such that 14n € Y% In fact, we may assume that y € ¥ (since ¥ =
(Y1)'), and even that yg € A by density: more precisely, there exists a
nondecreasing sequence (f,) in A, with ¢, — yp in Y-norm; then (1a%,)
is nondecreasing, and 14%, — 1ayo in Y*-norm; then Layo = V,, Lata,
whence S(ul 4o, vl atn) T B(ul 430, v1AYe)-

By Lemma 5.11, from yo € A we deduce that for every 2* € 2%, and
u,v > 0, we have

lmsup {(Laz*, @(uz,vy)).
z—zo+Miyg

Y=yo

o> My

(P(ulamo,vlayg), 2*) =

Now the reasoning of the proof of Proposition 4.2 shows that for a.e.
s € A, the partial function $, belongs to F&’M . Since this is true for all
M > 0, we conclude that &, € I';™ for ae. s € A. m

Applying Corollary 1.2, we can sumn up the main results of this section
in the following theorem:
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THEOREM 5.12. The partial functions of the normalization o /4(-,1,1)
of the 9.C.-L. function ¥ of Theorem 4.1 belong to the set I'S for a.c.
s € Supp Z, to I*° for a.e. s € Supp Z* N Supp YA N Supp XL, and to
Ibe for a.e. s € Supp Z* NSupp X} N Supp YA+ Finally, 1 (u, v) = u for
a.e. 5 € Supp Z"\Supp Y™ and 1, (u,v) = v for a.e. s € Supp Z*\ Supp X *.
Moreover, on Supp Z%, we can obtain v = ¢, by choosing appropriate real-
izations of X* and Y™,

Let us remark that when the linear functions {u,v) = u and (u,v) — v
do effectively appear as possible values of (¢, )., they belong in fact to o=
or I's®. For instance, when s € Supp Z2* N Supp X% \ Supp Y*, we have
(s)w € I‘Qw, by Proposition 5.10. When s € Supp Z* M Supp X% \ Supp Y'*,
we have, on the contrary, (¥,). € Iz, To see that, it is sufficient to note
that if tg € A4, and Supp 2* C Supp X% \ Supp Y™, then for every M > 0,
we have

<(P(t01 0)1 z*> = (@(tO: Mt(}): Z*> == ].imsup(z*, (,O(t[], My))?

y—tp
y2to

the first equality because if #* < W(2*,y*) then in fact 2* < ¥(2*,0), hence
(P(to, Mtp), 2™y = inf {{z",1g) : 2* < ¥(z*,0)} = ($(to,0), 2*),

and the second one because if z, — ¢y and y, — Mty with z, > t9, yp >
Mto, and (2", 0{2n, yn))—(B(t0, Mto), 2*), then, writing again z*<¥(z*,0),

(& p(@n, yn) = @(to, yn)) < (2" 0(2n —to,yn)) < (&7, 20 —t0) — 0.

6. Examples

(a) Spaces By where E is order continuous. Denote by M the Orlicz
function associated with the C.-L. function @ by M~1{#) = ¢(¢,1). If Eis a
Kdthe function space over (12, 4, u), we denote by Exs the space ¢(E, Lno).
We have Enr = {f € Lo(02, 4, ) : 3X > 0, M(|fI/)) € E} and ||f||z,, =
inf{A>0:{7/Mg<1}.

If B is order continuous, we have B = E* = E% (the second equality
because A is dense in ), hence Supp E* = 2 (considering 2 as embedded
in § = Supp L) is contained in the support of the dual of every Kothe
space, in particular in that of Li 4 = L, o (where Logo Is the closure of
A= FENLyg in Ly ). We then obtain, by Theorem 5.12,

Ey = (B, L)) L

where L is (isometrically order isomorphic to) a band in L7, i.e. an abstract
Ly space. In particular, if E = L, we have Epr = Ly, and we recover the
case of Orlicz spaces. If E is the Lorentz space Ly, ; associated with the
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weight w, then Ey is a Lorentz—Orlicz space Ly ar. The description of the
dual L}, ,, reduces thus to that of the Kéthe dual,

(b) Regularly varying C.-L. functions. We say that the Calderdn-Lozan-
ovskil function ¢ is regularly varying if the limits

. plow,v) . plov,v)
Jm oy etey) e IO

exist (for every w,v > 0). Then ; and i, are necessarily Calderdn in-
terpolation functions: ¢{u,v) = ut Oy 1=8-98+ (for some

=: pp{u, v}

, or{u,v) = w
0 < 6;,8, <1). The conjugate functions @y ., ¥y are respectively identical
{up to a constant factor) to i, ¢,. Hence we have

(XYY = pu(XE, ) S ULV o U

where Xg, Yo are the closures of A = X NY in X, resp. ¥; U, Vi are
the bands of X*, resp. Y* with common support S; = Supp@(X,¥)* N
Supp X% N SuppY}; and Uy, V;. are the bands of X™, resp. Y™ supported
by S, = Supp ¢(X, Y)* N Supp X4 N Supp Y5+,

A simple example of a regularly varying C.-L. function is

olu,v) = w0 Aut B,

(c) Couples (X,Y) with nontrivial sets S}, Sy. We now give an example
of a couple (X,Y) such that Supp YA+ N Supp X} # {0}, and moreover this
set does intersect Supp (X, Y)* for every C.-L. function ¢.

We take X = £oo{f2), ¥ = Leo{fp), with, say, 2 < p < co. In this case
A= X, hence X% = X. Define sequences (f) C £2 and (g;,) C £p, by

f*_“61+-"+en « Lt T éen
n o \/—ﬁ : gn"’" Tbl/p* bl

where (e;) denote indifferently the £, basis (for all r) and 1/p+ 1/p. = 1.
Define F* € X* and G* € Y™ by

(F*ﬂ (f'n)> = &%(f::a f'ﬂ>a

for every (fu)n € Loo(f2) and (gn)n € £oo(€p), where U is some nontrivial
ultrafilter over N. Then @*|x = 0,ie. G* € YA+ sinceforall F = (f,) € X,

(6", F) < |F|x im g3l = 0.

(G, (gn)) = grg;(g-,’i, )

¥

On the other hand, it is easy to verify that Supp G* C Supp F*. For, let
G > 0in Y with {G*,G) # 0. We may suppose that G = (gn), where for
every n, gn is supported by (ey,...,en). Then jgallz < nt2= 1P| gn|lp <
n2=UP||G||; so if we set fn, =nt/P"Y2g, wehave F :=(fu) € X and

(£5, fu) = (nMP1 20 p1/P=1i20.% = (g%, gn),
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hence (F*, F}y = (G*,G). More generally, if h € {o(N x N), it is easy to

see that (F*,hF) = (G*,hG), which means that ngG* = npF*. Thus

Supp 1gG* C Supp F* for all G € Y, wich means that Supp G* C Supp F*.
Let ¢ be an arbitrary element of C;. We have

P (Loo (£2): boo (b)) = Lol (£2; £p))

isometrically. Let » be such that 1/2 = 1/p + 1/r. We have 4, = £,.£,, so
that
w(la, fp) = @€y dry €p.Loo)

s by 0(€ny o) (2-isomorphically)

=Lyl with M™Y(s) = p(s¥/7, 1).
For every n € N, denote by A(n), A«(n) and Aps{n) the norms of ey + ...
...+e, in the spaces @(£a, £,), (12(€2, £p))* and £y respectively. Then A(n) ~
nYPAp(n), and A(n) = n/A(n) ~ n}Pr /iy (n). Define H* € Z* by
(H*, H) = limp g (hpy, hn), where
_ 1+ ...+ e,

A(n)

With each G = (gn) € Y, we associate H = (h,) € ¢(X,Y), where h, =

Apt (1) gn. Then (H*, H} ~ (G*, G}, and by the same reasoning as for £,
we obtain Supp G* C Supp H*.

ha
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Almost multiplicative functionals
by

KRZYSZTOF JAROSZ (Bowling Green, Ohio, and Edwardsville, IlL.)

Abstract. A linear functional F' on a Banach algebra A is almost multiplicative if
|[F(ab) — F(a)F(d)| < 8llali - bl fora,be A,

for a small constant 6. An algebra is called functionally stable or f-stable if any almost
multiplicative functional is close to a multiplicative one. The question whether an algebra
is f-stable can be interpreted as a gquestion whether A lacks an almost corona, that is, a
set of almost multiplicative functionals far from the set of multiplicative functionals.

In this paper we discuss f-stability for genera! uniform algebras; we prove that any
uniform algebra with one generator as well as some algebras of the form R(K), K C C,
and A(2), 2 € C", are f-stable. We show that, for a Blaschke product B, the quotient
algebra, FI°° /B H™ ig f-atable if and only if B is a product of finitely many interpolating
Blaschke products.

1. Introduction. Let G be a linear and multiplicative functional on a
Banach algebra A and let A be a linear functional on A4 with ||4] < .
Put F = G + A. We can easily check by direct computation that F is
§-multiplicative, that is,

|#(ab) — F(a)F(b)| < 8|all - ||?]
where § = 3¢ -+ g2. The problem we want to discuss here is whether the
converse is true; that is, whether an almost multiplicative functional must

be near a multiplicative one. We are interested mostly in uniform algebras.
We shall call a Banach algebra functionally stable or f-stable if

Ve>036>0VF € M(A) 3G e M(A)  ||F-G| Le,

where we denote by W(A) the set of all linear multiplicative functionals
on A4, and by 90%5(4) the set of §-multiplicative functionals on A. We shall

for a,b e A,
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