Acknowledgments. We thank T. Iwaniec and N. Fusco for helpful discussions on the subject.

References

Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate
Facoltà di Ingegneria
Università di Roma “La Sapienza”
Via A. Scarpa 16
00161 Roma, Italy
E-mail: giachett@dmmu.uniroma1.it
schianchi@dmmu.uniroma1.it

Received July 10, 1996
Revised version September 25, 1996

On a theorem of Gelfand and its local generalizations

by

DRISS DRISSI (Kuwait)

Abstract. In 1941, I. Gelfand proved that if a is a doubly power-bounded element of a Banach algebra A such that $\text{Sp}(a) = \{1\}$, then $a = 1$. In [4], this result has been extended locally to a larger class of operators. In this note, we first give some quantitative local extensions of Gelfand–Hille’s results. Secondly, using the Bernstein inequality for multivariable functions, we give short and elementary proofs of two extensions of Gelfand’s theorem for m commuting bounded operators, T_1, \ldots, T_m, on a Banach space X.

1. Introduction. In 1941, I. Gelfand [14] proved that if T is a bounded linear operator on a complex Banach space X which satisfies $\text{Sp}(T) = \{1\}$ and $\sup_{k \geq 2} \|T^k\| < \infty$, then $T = I$. This result was generalized by E. Hille in 1944 (see [15] or [16, Theorem 4.10.1]), who proved that if $\text{Sp}(T) = \{1\}$ and $\|T^k\| = o(k)$ for $k \in \mathbb{Z}$, then $T = I$. In [4, Theorem 3.4], we generalized these results locally to a wider class of operators. A natural question arises: What happens to each of these results if we drop the assumption on the boundedness of the negative powers of the operator T? On the other hand, in 1965 H. F. Bohnenblust and S. Karlin [9] asked the following question: Is 0 the only quasi-nilpotent dissipative element in a Banach algebra? In 1961, G. Lumer and R. S. Phillips [22] gave a negative answer to this question, but nobody noticed that Shilov’s negative answer to Gelfand’s problem in [28] is also a negative answer to H. F. Bohnenblust and S. Karlin’s question. Just looking at the Gelfand problem, the condition $\text{Sp}(T) = \{1\}$ implies, using the F. Riesz and N. Dunford holomorphic functional calculus, that $T = e^S$ with S quasi-nilpotent and the hypothesis $\sup_{n \geq 0} \|T^n\| < \infty$ implies that S is dissipative for an equivalent norm.

In this paper, we will study these cases locally for a general class of operators. We will also give an extension to m commuting operators T_1, \ldots, T_m in a Banach space X. For this we need to introduce some preliminaries on

1001 Mathematics Subject Classification: 47B10, 47B15.

Key words and phrases: locally power-bounded operator, local spectrum, local spectral radius.

Research supported by the Kuwait University Research Grant No. SM 138.
local spectral theory; for more details on this subject we refer to [11] or [5].

Let \(T \in \mathcal{B}(X) \) and \(x \in X \). We define \(\Omega_x \) to be the set of \(\alpha \in \mathbb{C} \) for which there exists a neighbourhood \(V_{\alpha} \) of \(\alpha \) with \(u \) analytic on \(V_{\alpha} \) having values in \(X \) such that \((\lambda - T)u(\lambda) = x \) on \(V_{\alpha} \). This set is open and contains the complement of the spectrum of \(T \). The function \(u \) is called a local resolvent of \(T \) on \(V_{\alpha} \). By definition the local spectrum of \(T \) at \(x \), denoted by \(Sp_x(T) \), is the complement of \(\Omega_x \), so it is a compact subset of \(Sp(T) \).

In general, this set may be empty even for \(x \neq 0 \) (take the left shift operator on \(l^2 \) with \(x = e_1 = (1, 0, \ldots) \)). But for \(x \neq 0 \), the local spectrum of \(T \) at \(x \) is non-empty if \(T \) has the uniqueness property for the local resolvent. That is, \((\lambda - T)v(\lambda) = 0 \) implies \(v = 0 \) for any analytic function \(v \) defined on any domain \(D \subseteq \mathbb{C} \) with values in a Banach space \(X \). It is easy to see that an operator \(T \) having spectrum without interior points has this property (for more details see [11]). For operators with this property there is a unique local resolvent which is the analytic extension of \((\lambda - T)^{-1}x \) to \(\Omega_x \). Also in this case the local spectral radius \(r_x(T) = \max\{\|x\| : x \in \mathcal{S}_x(T)\} \) is equal to \(\limsup_{k \to \infty} \|T^k x\|^{1/k} \). In general, we only have \(r_x(T) \leq \limsup_{k \to \infty} \|T^k x\|^{1/k} \).

2. Local properties for a single operator. In [4], using the Levin subordination theory for entire functions of exponential type (see [19] for more details), the following generalization of Gelfand’s and Hille’s results was proved:

Theorem 2.1. Let \(T \in \mathcal{B}(X) \) and \(x \in X \). Suppose that

(i) \(r_x(T) = 0 \), and

(ii) \(\|I + T\|^k x\| = O(k^\gamma) \) as \(k \to \infty \), for some positive integer \(\gamma \).

Then \(T^n x = 0 \) for every \(n \geq r + 1 \).

The purpose here is to give a local quantitative extension of Gelfand’s theorem.

Theorem 2.2. Let \(T \in \mathcal{B}(X) \) and \(x \in X \). Suppose that

(i) \(\|T^n x\| = O(1) \) as \(n \to \infty \), and

(ii) there exists \(S \in \mathcal{B}(X) \) such that \(T = e^S \).

Then

\[
\|T^n x - x\| \leq 2 \tan(\tau_x/2),
\]

where \(\tau_x = (2/\sqrt{e}) \limsup_{k \to \infty} k\|S^k x\|^{1/k} \).

Proof. Suppose that \(\|T^n x\| = O(1) \) as \(n \to \infty \). Let \(S \in \mathcal{B}(X) \) be such that \(e^S = T \). Let \(g(x) = u(e^{S} x) \), where \(u \) is a functional of norm one. Then \(g \) is an entire function of exponential type \(\tau_x \), with

\[
\tau_x = \limsup_{n \to \infty} \|g^{(n)}(0)\|^{1/n} = \limsup_{k \to \infty} \|g^{(2k)}(0)\|^{1/(2k)} \leq 2 \sqrt{e} \limsup_{k \to \infty} k\|S^k x\|^{1/k},
\]

So, if \(\limsup_{n \to \infty} n\|S^n x\|^{1/n} \neq 2\pi e/4 \), then by Bernstein’s theorem [8, Theorem 11.4.1, p. 214], we obtain

\[
\|e^{S} x - x\| = \|g(1) - g(0)\| \leq 2 \tan(\tau_x/2),
\]

which gives us \(\|T^n x - x\| \leq 2 \tan(\tau_x/2) \). If \(\tau_x = 0 \), then we have \(T^n x = x \).

Theorem 2.3. Let \(T \in \mathcal{B}(X) \) and \(x \in X \). Suppose that

(i) \(\|T^n x\|^{1/n} \to 0 \) as \(n \to \infty \), and

(ii) \(\|I + T\|^k x\| = O(k^\gamma) \) as \(k \to \infty \), for some positive integer \(\gamma \).

Then \(T^n x = 0 \) for all \(n \geq r + 1 \).

Proof. The case \(r = 0 \) follows from Theorem 2.2, and the rest of the proof follows the same idea as in [3] but locally.

Remark. Let \(T \) be a bounded operator on a Banach space \(X \) and let \(x \in X \) be such that \(\|I + T\|^k x\| = O(n^\gamma) \). Suppose that \(T^n x \neq 0 \). It follows from Theorem 2.2 that \(\limsup_{n \to \infty} n\|T^n x\|^{1/n} \neq 0 \). So the series \(\sum_{n=1}^{\infty} \|T^n x\|/\|I^n x\| \) diverges. Consequently, we obtain a result by P. Hille’s [14], which is an extension of a result of J. Esterle and F. Zouakia’s.

The following two theorems are well known. Esterle’s theorem [13, Theorem 9.1] was the first significant generalization of Gelfand’s theorem. Subsequently, Y. Katznelson and L. Tafriri [17] generalized this result to a wider class of operators where condition (i) of Theorem 2.1 is replaced by \(Sp(T) \cap I \subseteq \{1\} \), \(I \) being the unit circle. G. E. Shilov [28] showed that Hille’s result, and G. Allan & T. J. Ransford [2] as well as V. Quoc Phong [31] showed that the Esterle–Katznelson–Tafriri results, are all consequences of Gelfand’s theorem. So this brings us to think that any improvement of Gelfand’s theorem has significant consequences on Esterle–Katznelson–Tafriri’s results. For other related work see [6], [7], [13], [14], [20], [21], [23] and [30]. Related results in a particular case can also be found in [1].

Theorem 2.4 [E. Hille]. Let \(T \in \mathcal{B}(X) \) be such that

(i) \(Sp(T) = \{1\} \), and

(ii) \(\|T^n\| = O(k^\gamma) \) as \(k \to \infty \) for some positive integer \(\gamma \).

Then \((T - I)^n = 0 \) for every \(n \geq r + 1 \).
Theorem 2.5 [J. Esterle]. Let $T \in B(X)$ be such that

(i) $\text{Sp}(T) = \{1\}$, and
(ii) $\sup_{n \geq 0} \|T^n\| < \infty$.

Then $\|T^n - T^{n+1}\| \to 0$ as $n \to \infty$.

Is it possible to split Hille’s theorem in a way similar to Esterle’s theorem, at least for the case when $\|T^n\| = o(n)$ as $n \to \infty$? The answer is of course negative, but if we put restrictions on the behaviour of $(T - I)^n$ we obtain from Theorem 2.3 the following local extension.

Corollary 2.6. Let $T \in B(X)$ and $x \in X$. Suppose that

(i) $n \|T^n x\|^{1/n} \to 0$ as $n \to \infty$, and
(ii) $\| (I + T)^k x \| = o(k)$ as $k \to \infty$.

Then $Tx = 0$.

In [33] J. Zemánek proved the following result.

Theorem 2.7. Let $T \in B(X)$ be invertible. Suppose that

(i) $\text{Sp}(T) = \{1\}$, and
(ii) $\|T^n - T^{n+1}\| = O(n^{-1})$ as $|n| \to \infty$, for some positive integer r.

Then $(T - I)^n = 0$ for every $n \geq r + 1$.

Here we give two local extensions relaxing condition (ii) to a more general class of operators as follows:

Theorem 2.8. Let $T \in B(X)$ be invertible and $x \in X$. Suppose that

(i) $\text{Sp}(T) = \{1\}$,
(ii) $\|T^n x - T^{n+1} x\| = O(n^{-p})$ as $n \to -\infty$, for some integer $p \geq 2$, and
(iii) $\|T^n x - T^{n+1} x\| = O(n)$ as $n \to \infty$.

Then $(T - I)^3 x = 0$.

Proof. By a local version of Theorem 2.7, we have $(T - I)^{p+3} x = 0$. Suppose that $(T - I)^{p+2} x = 0$ for some $p \geq 2$. Let $y = (T - I)^p x$. Then $(T - I)^3 y = 0$ which implies

$$
\frac{M_n(T)y}{n} = \left(\frac{n-1}{2n}\right) \frac{Ty - y}{n} - \frac{1}{2} \frac{(Ty - y)}{n} \quad (n \to \infty)
$$

where $M_n(T) = (I + T + \ldots + T^{n-1})/n$. On the other hand, from (iii), we get

$$
\frac{M_n(T)y}{n} = (T - I)^{p-1} \left(\frac{T^n - I}{n^2}\right) (T - I) x \to 0 \quad (n \to \infty).
$$

Hence $(T - I)y = 0$, which implies $(T - I)^{p+1} x = 0$. Therefore, by induction, we get $(T - I)^3 x = 0$.

Theorem 2.9. Let $T \in B(X)$ and $x \in X$. Suppose that

(i) $n \|T^n x\|^{1/n} \to 0$ as $n \to \infty$, and
(ii) $\|T^n x - T^{n+1} x\| = O(n^{-r})$ as $n \to \infty$, for some positive integer r.

Then $(T - I)^n x = 0$ for every $n \geq r + 1$.

Proof. Condition (ii) implies $\|T^n y\| = O(n^r)$, with $y = (T - I)x$. Applying Theorem 2.3 we obtain $(T - I)^n y = 0$, hence the result.

Here we give an elementary proof of the following local extension to Theorem 6 [33]:

Theorem 2.10. Let $T \in B(X)$ and $x \in X$ be such that

$$
\text{Sp}_x(T) = \{1\} \quad \text{and} \quad \limsup_{n \to \infty} \|T^n x - T^{n+1} x\|^{1/n} < 1.
$$

Then $Tx = x$.

Proof. The condition $\limsup_{n \to \infty} \|T^n x - T^{n+1} x\|^{1/n} < 1$ is equivalent to $r(T-I)x(T-I)x < 1$. So the local spectrum of T at $(T-I)x$ is strictly included in the unit disk. On the other hand, we have

$$
\text{Sp}_{(T-I)x}(T) \subset \text{Sp}_x(T) = \{1\}.
$$

So $\text{Sp}_{(T-I)x}(T) = \emptyset$. Since T has the property of uniqueness of the local resolvent, we conclude that $(T-I)x = 0$.

In [25], M. Mbekhta and J. Zemánek proved the following generalization of Gelfand’s theorem.

Theorem 2.11. Let $T \in B(X)$ be such that

(i) $\text{Sp}(T) = \{1\}$, and
(ii) $M_n(T)$ and $M_n(T^{-1})$ are bounded.

Then $T = I$.

A natural question was raised in [32]: It is interesting to give a characterization of the asymptotic behaviour of order n for the mean $M_n(T)$ for the operator T as n tends to infinity.

Using ideas from the proof of Theorem 2.1, we give here a partial answer to this question and thereby give a local extension to the above result.

Theorem 2.12. Let $T \in B(X)$ and $x \in X$. Suppose that

(i) $n \|T^n x\|^{1/n} \to 0$ as $n \to \infty$, and
(ii) $\|M_n(T)x\| = o(n^r)$ as $n \to \infty$, for some positive integer r.

Then $(T - I)^n x = 0$ for every $n \geq r + 1$. However, if $r = 1$, then we obtain $Tx = x$.

Proof. From condition (ii) and the relation

\[\frac{I - T^n}{n} x = (I - T) M_n(T) x, \]

it follows that \(\|T^n x\| = o(n^{n+1}) \). By Theorem 2.3, we get the result.

For the second assertion, we have \(\|T^n x\| = o(n) \) as \(n \to \infty \). By applying Theorem 2.2, we get \((T - I)x = 0 \).

The following result is an extension of [25, Theorem 2]. It also improves [18, Corollary 7].

Theorem 2.13. Let \(T \in B(X) \) and \(x \in X \). Suppose that

(i) \(\text{Sp}_x(T) = \{1\} \), and
(ii) \(\|(I - T)^k M_n(T) x\| \to 0 \) as \(n \to \infty \), for some positive integer \(k \).

Then \((I - T)^k x = 0 \).

Proof. Case \(k = 2 \). Let \(T \in B(X) \) and \(x \in X \). It is easy to see that

\[\frac{I - T^n}{n} (I - T)^{k-1} x = (I - T)^k M_n(T) x. \]

So, from condition (ii) with \(k = 2 \), we get

\[\|T^{n+1} x - T^n x\| = o(n) \] as \(n \to \infty \).

Let \(y = (T - I)x \). Then (2) implies \(\|T^n y\| = o(n) \) as \(n \to \infty \). On the other hand,

\[\text{Sp}_y(T) = \text{Sp}_{(T - I)x}(T) \subset \text{Sp}_x(T) = \{1\}. \]

Hence, from Theorem 2.1, we then get \((T - I)y = 0 \), which implies that \((T - I)^2 y = 0 \).

Case \(k = 3 \). Suppose that \(\|(I - T)^3 M_n(T) x\| \to 0 \). Then from

\[\frac{I - T^n}{n} (I - T)^2 x = (I - T)^3 M_n(T) x, \]

we have \(\|T^{n+1} x - T^n x\| \to 0 \) as \(n \to \infty \). But

\[T^n(T - I)^2 x = T^n(T - I)x - T^n(T - I)x. \]

So, if we put \(y = (T - I)x \), we obtain

\[\|T^{n+1} x - T^n x\| = o(n) \] as \(n \to \infty \).

It follows from the case \(k = 2 \) that \((I - T)^2 x = 0 \), which implies \((I - T)^3 x = 0 \).

Finally, suppose that \(\|(I - T)^k M_n(T) x\| \to 0 \) as \(n \to \infty \), and let \(y = (T - I)^k x \). Then from (1) we have

\[\|T^n y - T^{n+1} y\| = o(n) \] as \(n \to \infty \).

\[\text{Sp}_y(T) = \{1\} \]. By applying Theorem 2.1, we obtain

\[(T - I)^k x = 0. \]

3. Local extensions for \(n \) commuting operators. Let \(T = (T_1, \ldots, T_n) \) be a commuting multi-operator and let \(x \in X \). Then \(T \) is said to be locally power-bounded at \(x \) if

\[\sup_{j_1, \ldots, j_n \geq 0} \|T_{j_1} \cdots T_{j_n} x\| < \infty. \]

Then \(T \) is locally doubly power-bounded if and only if

\[\sup_{j_1, \ldots, j_n \geq 0} \|T_{j_1} \cdots T_{j_n} x\| < \infty. \]

Then \(T \) being locally doubly power-bounded is defined similarly. We can easily see that if each \(T_i \) is locally power-bounded at \(x \), then \(T = (T_1, \ldots, T_n) \) is locally power-bounded at \(x \), but the inverse implication is not true. For related work see [24].

Using the following generalization of Bernstein's theorem on multivariable functions, we give elementary proofs of two local extensions of Gelfand's theorem for \(n \) commuting operators \(T_1, \ldots, T_n \) in a Banach space \(X \).

Theorem 3.1. Let \(f : \mathbb{R}^n \to \mathbb{C} \) be real-analytic. Suppose that

(i) \(|f| \leq M \) on \(\mathbb{R}^n \), and
(ii) for every \(k = 1, \ldots, m \),

\[\limsup_{n \to \infty} \left| \frac{\partial^n f}{\partial t_1^{t_1} \cdots \partial t_m^{t_m}} (t_1, \ldots, t_m) \right|^{1/n} \leq r_k \]

Then for every \(n \geq 1 \), and all non-negative integers \(j_1, \ldots, j_m \) such that \(j_1 + \cdots + j_m = n \), we have

\[\left| \frac{\partial^n f}{\partial t_1^{j_1} \cdots \partial t_m^{j_m}} (t_1, \ldots, t_m) \right| \leq M r_1^{j_1} \cdots r_m^{j_m} \]

on \(\mathbb{R}^n \).

Theorem 3.2. Let \(T = (T_1, \ldots, T_n) \in B(X)^n \) be a commuting multioperator and let \(x \in X \). Suppose that

(i) \(T \) is locally doubly power-bounded at \(x \), and
(ii) there exists \(j_0 \) such that \(\|S_{j_0} x\|^{1/n} \to 0 \) as \(n \to \infty \), where \(e^{S_{j_0}} = T_{j_0} \).

Then for every \(n \geq 1 \), and all non-negative integers \(j_1, \ldots, j_n \) with \(n = j_1 + \cdots + j_n \), we have

\[(T_1 - I)^{j_1} \cdots (T_n - I)^{j_n} x = 0. \]

Proof. As \(T_1, \ldots, T_n \) are commuting operators, their local joint spectrum is non-empty. In addition, if \(M \) is the set of characters on the Banach algebra generated by \(T_1, \ldots, T_n \), then \(\text{Sp}(T_1, \ldots, T_n) = \{x(T_1), \ldots, x(T_n) : x \in M \} \).

Consider the following function:

\[f(t_1, \ldots, t_n) = u e^{i t_1 S_1} \cdots e^{i t_n S_n} x, \]

where \(u \in X^* \), \(\|u\| = 1 \), and \(e^{i S_i} = T_i \) for \(i = 1, \ldots, n \). Condition (i) implies
that f is bounded on \mathbb{R}^n. On the other hand, we have
\[
\lim_{n \to \infty} \left| \frac{\partial^n f}{\partial t_1^n} \right|^{1/n} \leq \limsup_{n \to \infty} |S^n f|^{1/n} = r(S) \quad \text{for } i = 1, \ldots, n.
\]
Since T_i are commuting we deduce from condition (ii) and Theorem 3.1 that for every $n \geq 1$, and all non-negative integers j_1, \ldots, j_n with $n = j_1 + \ldots + j_n$, we have
\[(T_1 - I)^{j_1} \ldots (T_n - I)^{j_n} x = 0.
\]

Theorem 3.3. Let $T = (T_1, \ldots, T_n) \in \mathcal{B}(X)^n$ be a commuting multi-operator and let $x \in X$. Suppose that
\begin{enumerate}
\item T is locally power-bounded at x, and
\item there exists a j_0 such that $n|\|S^{j_0} f\|^{1/n} \to 0$ as $n \to \infty$, where $e^{s(t_j - j_0)} = T_j^n$.
\end{enumerate}
Then for every $n \geq 1$, and all non-negative integers j_1, \ldots, j_n with $n = j_1 + \ldots + j_n$, we have
\[(T_1 - I)^{j_1} \ldots (T_n - I)^{j_n} x = 0 \quad \text{for every } n \geq 1.
\]

Proof. We use the same idea as in the proof of Theorem 3.2, but with a new function
\[f(t_1, \ldots, t_n) = u(e^{t_1 S_1} \ldots e^{t_n S_n} x),
\]
where $u \in X^*$, $\|u\|_1 = 1$, and $e^{t_i} = T_i$ for $i = 1, \ldots, n$. Condition (i) implies that f is bounded on \mathbb{R}^n. On the other hand, we have
\[
\lim_{n \to \infty} \left| \frac{\partial^n f}{\partial t_1^n} \right|^{1/n} \leq 2 \sqrt{\limsup_{n \to \infty} n|S^n f|^{1/n} = r(S)} \quad \text{for } i = 1, \ldots, n.
\]
Since T_i are commuting, the result follows from Theorem 3.1 and condition (ii).

Acknowledgements. I am grateful to J. Zemánek for the warm hospitality and stimulating discussions on these questions during my stay at the Banach Center in Warsaw.

References

Geometry of Orlicz spaces

1996, 204 pp., ISSN 0012-3862
$48.50 ($24.25 for individuals)

From Julian Musielak's preface:

“The importance of this book lies in the fact that it is the first book in English devoted to the problem of geometric properties of Orlicz spaces, and that it provides complete, up-to-date information in this domain. In most cases the theorems concern necessary and sufficient conditions for a given geometric property expressed by properties of the function M which generates the space L_M or l_M. Some applications to best approximation, predictors and optimal control problems are also discussed.

This book shows the great role played recently by the Harbin School of Functional Analysis in problems of geometric properties of Orlicz spaces. There are many results in this book which have so far been published only in Chinese.

Anyone interested in the domain of geometric properties of Banach spaces will certainly find the book indispensable.”

To be ordered through your bookseller or directly from
Institute of Mathematics, Polish Academy of Sciences
P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-6293997