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A. condition implying boundedness and VMO for a function f
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MICHELANGELO FRANCIOSI (Salerno)

Dedicated to the memory of my friend Filippo Chiarenza

Abstract. Some boundedness and VMO results are proved for a function f integrable
on a cube (@g, starting from an integral bound.

1. Introduction. In [12] the following condition, intimately connected
with the idea of sharp function ([1]) was introduced:

(L.1) [ £ -1 f|do<eflsian,
Q Q Q
@ C Qo (for notation and hypotheses see Section 2).

From condition (1.1), extraintegrability for f was obtained with different
methods and in more and more general situations ([12], [3], [10], [14], e.g.).
The general approach using maximal functions and rearrangements as in
[10], [14] seems to be the best. In particular, in {10], [12] it is proved that
there exists a constant v depending only on 7 such that if 0 <& < 1/, then
f belongs to LP(Qo) for any 1 < p < 1/(e7y) and the order of the optimal in-
tegrability exponent is exact. Using this result the following integrability and
continuity result is proved in [11]. Suppose that instead of (1.1), f satisfies

(1.2) f|r-§¢|do <o0) §171da,
Q Q Q

for any @ with |@Q| < o and limy_,oe(o) = 0. Then f belongs to LP(Qy) for
any 1 € p < oo, Moreover, if
(1.3) flf = 5| <P {15l ds,

Q Q Q@
G > 0, for any @ with |Q| € o and for o tending to zero, then f is Hélder-
continuous of order 5.
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In this paper we introduce an integral condition for f generalizing (1.2)
that implies boundedness for f. This condition also implies that f is in the
VMO space, but it is not sufficient for the continuity of the function.

At this point we want to emphasize that functions belonging to L% N
VMO but not necessarily continuous have recently been isolated and con-
sidered in very important regularity problems connected with elliptic differ-
ential equations and systems with rough coefficients ([4], [6]-[9], e.g.).

The condition that we introduce is

|Qal
) - @) 1
(F) {SJ ‘“’fT(t)“M . Zdt < 00

We shall note that this condition is more general than (1,2) and the
condition in [16]. In particular, in [16] from a condition like (F), but stronger,
the boundedness of f is deduced, but with a completely different method.

We point out that condition (F) seems different and more general than
that in [16], just because it does not involve continuity.

Finally, we remark that condition (1.3) and (F) are in the same order of
ideas of [5], [18).

2. Some notations and results. From now on { is a cube in RrR™,
Le. a translate of [0,s]", 0 < & < 00, and we fix a cube Qy and consider
subcubes Q) of (Jg. We denote by f a function belonging to L'(Qg). For any
measurable subset & of Qp we denote by |E| its Lebesgue measure, and set

1
= | |flds
1B| &
where the integrals are with respect to the Lebesgue measure.

The nonincreasing rearrangement of f is denoted by f* and is defined
by ([1], e.g.)

&fdm:
B

f7(t) = sup essinf f(z), te€]0,|Qoll.
\B|=t €E

‘We then set

0

Mf(z)= sup Sfd:c, z € Qo,

QCQo Q

wEQ
@)= swp f|r-{5ds, 0<t<iqil

QQU Q Q

zEQ

QI
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The following definitions are used.
The function f is in the space BMO(Qo) ([15]) if

sup §|f—5f|d$<oo;
@CQo Q O
then, setting for any 0 < r < [Qg],
n(r) = 2 | |f — fl dz,

0e%. @ @

a function f belonging to the space BMO is in VMO ([17]) if
lim n(r) = 0.
P

We need the following results.

THEOREM 2.1 ([2], [10]). Let £2 be a relatively open subset of Qqu such
that
1£2] < |Qol/2
Then there exists a family (Q;)jen of cubes with pairwise disjoint interiors
such that:

(12N Q;] £ 1Q;1/2<1C2MQy;

(3) [21 < 32, 1Q;] < 274 q2].

THEOREM 2.2 ([13]). For any 0 <t < |Qq|,
BTHME)() < ) < (L2 ME) (@)

3. An integral bound for f implying boundedness. Suppose f is
as in Section 2 and satisfies the condition

- @ fw(fi,,}t{*(t)
0
We prove the following:
THROREM 3.1. If f satisfies (F), then f belongs to L°°(Qo).

Proof. Set

1
< —dt < o0,
t .

n(t) = -—-——~mf** (;1;5 (t)»

Then, obviously, f**(t) = f*(¢)/(1 - n(t)). From this we deduce
FE 1)
fo £7(s) ds t

0<t<|le.'

(3.1)
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Integrating (3.1) from ¢ to £, 0 < t < ¥ < |Qo|, we obtain

12 t' t 3
£ 3
IR e R N et
f. ¢ 2 ® t
Hence, for a.a. 0 <t <1t < |Qol,
t - t
* d t
(3.2) log -S—E—]—c——@j = log - — S n(s) ds.
fo 7*(s)ds to] s
Taking the exponential in (3.2) gives
i Fris)ds i/t
ng*(s)ds exps J“’—)als
and so
t {nls)
(3.3) [ 17(s) ds = f*"(%) exp | —* ds.
0 t

But f* is decreasing, which vields

t£*(8) < { £*(s) ds < 5 (F) exp | ) g,
0 Q

that is,
(3.4) Fr) < A E)e S
0

Using (F) we deduce immediately from (3.4) that f* is bounded, and
then f belongs to L™(Qg).

We note at this point that (F) does not imply continuity for f. In fact,
consider a nonnegative strictly decreasing and continuous function f of a real
variable defined in the interval |0, 5. Suppose that f satisfies condition (F).
Then, by Theorem 3.1, f is bounded. Now we can consider a function f that
is equal to f in |0,a[ where 0 < a < b, but is discontinuous in a subset of
Ja, b of positive measure and f(z) < f(a) for any a < z < b, The function
f satisfies (F) and hence is bounded, but it is not continuous.

Now we want to consider a condition introduced in [16] from which, with
a method different from the one used in this paper, boundedness for I is
deduced. We shall prove that this condition implies (F).

To do this, we prove a rearranged inequality for f. This inequality is a
local version of a theorem in [2], [10].
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THEOREM 3.2. Let f be a nonnegative function belonging to L*(Qg).
Then, for any 0 <t < |Qo|/(3-27H1),

FE) - 0 <32 (fE ) 1),
Proof. Fix 0 <t < |Qo]/(3- 2" and set
E={zecQo:f(z)> f'{t)},
F={22Qo: ffym) > (Fpnnn) (0}

Obviously, | B U F| < 2¢, and we can find a set {2 relatively open in Qp
such that [£2| € 3¢, EUF C £2 C @y, from which |2| < |Qql/2. From a well
known property of decreasing rearrangements ([1], e.g.) we have

(3.5) (@) ~ £(8) = [ (f(z) — £*(1)) da.
E

Let {@,} be the covering of {2 furnished by Theorem 2.1. Then, by (3)
of Theorem 2.1,

(3.6) Qi) < 3.2

ancl by (3.5), (3.6) and (1) of Theorem 2.1 we obtain

B7) - o) < Y V| fe) - § f|ae
.7 Q; Qi

+ZtEﬂQj|( fr-r0)

i

<22 ‘f (z) — g fldm<2Z|QJ|f3 2n+1t(m3):

JQJ

for any z; 5 € Q;. From (1) of Theorem 2.1 we note that @; NC'F is nonempty
for any §. Choosing ; € Q; N C'F we obtain from (3.7),

LP(E) — P < 221Qj|(f3.2n+1t ) (8)-

Finally, using (3) of Theorem 2.1 we deduce
B () = f*(8) € 8- 274 (fTpnn ) (B)-
For f nonnegative and integrable in Qg in [16] the following quantity is

considered:
ko |7 =g fide
(Ky) v(fm)msup*"*’ - o 0<o<|Ql

where the sup is extended over all Q@ C Qo with |@Q| € ¢ such that §Q f >0
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From the condition
Qs 1
(K3) | o(f,0)> do < o
0
it is deduced that f belongs to L™ (Qg).

Obviously, from (K;} we can deduce
fF (@) <v(f,0)Mf(a)

for any 2 € Q¢ and 0 < & < |Qp] and consequently,
(3.8) (fF)"() < u(f o) (M P* (),
for any 0 < ¢ < |Qof and 0 <t < [Qg).

From Theorem 3.2 and (3.8) we obtain

FE = £ <3-20 (3 27 (M 1) (1),
and using Theorem 2.2,
%% t — t .,

(39) f {fz*(t.;c ( ) S 3n+12n+2,u(f’ 3. 2n+].t)‘

From (3.9) it is clear that condition (K,) implies condition (F).

4. The VMO result. Suppose f to be as in Section 2 and sabisfy
condition (F). Then, by Theorem 3.1, f belongs to L=(Qy), and (F) implies

(1) o=~ re

" dt < oo.

Let us prove:

THEOREM 4.1. If f satisfies (4.1) then f belongs to VMO.

Proof. Fix ¢ > 0. Condition (4.1) assures the existence of 7 > 0 such
that

S(f*(ﬂ) —fr(t)ds <e

for any t € ]0,¢ - E, where E is some subset of |0, %[ with |E| =

If ¢ belongs to |0, t[ E then by the property of decreasing redrrangemcms
(f1], e-g.) we have

§|f<m - t)|dx<§< ) — F(5)*(s) ds < e
and so

(4.2) { Jf(a:) - Sf‘dz <2
Q Q
for any @ € Qo with |Q| = ¢.
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Now suppose that ¢ € E. For any 6 > 0 such that [t — §,¢ + 6 < 10,7]
there exists 5 € |t — §,£+ 6] — E. We can select a 6 such that if Q is a cube
with |Q| =t and Q is the cube with the same center and |Q| =15, @ C Qp,
G C Qu, then

(4.3) ’glf(m)~§?ftd:c-i.f(m)—Sf‘dw<E,
Q

O

Then, by (4.2) and (4.3), for any 0 < ¢ < 7 and any cube Q C Qq with
Q] =t,

Hf(w)—gf’dﬂrSBE
Q

and f is in VMO.

References

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New
York, 1988.
2] C. Bennett, R. DeVore and R. Sharpley, Weak-L™ and BMO, Anu. of Math.
113 (2981}, 6O1-611.
3] B.Bojarski, Remarks on the stability of reverse Hélder inequalities and gquasicon-
Jormal mappings, Ann. Acad. Sci, Fenn. Ser. Al Math. 10 (1985), 89-94.
[4] M. Bramantiand M. C. Cerutti, WI,12 solvability for the Couchy~-Dirichlet prod-
lem for perabolic equations with VMO coefficients, Comm. Partial Differential Equa-
tions 18 (1993), 1735-1763.
[5] 8.Campanato, Proprietd di hilderianité di aleune classi di funzioni, Ann. Scuola
Norm. Sup. Pisa 17 (1963}, 175-188.
[6] F. Chiarenza, M. Franciosi and M. Fraaca, LF estimates for linear elliptic
systems with discontinuous coefficients, Rend. Accad. Naz. Lincei 5 (1994), 27-32.
[71 F. Chiarénza, M. Frasca and P. Longo, Jnterior WP estimates for non di-
vergence elliptic equations with discontinuous coefficients, Ricerche Mat. 40 (1991},
149-168.
18] < WP golvability of the Dirichlet problem for nondivergence elliptic equa-
hom wz.ﬁh VMO coefficients, Trans. Amer. Math. Soc. 336 (1993), 841-853.
] G DI Fagio, L estimates for divergence form elliptic equations with discontinuous
eoefficients, preprint, Universita di Catania.
[10] M. Frauciosi, Weighted rearrangements and higher integrability results, Studia
Math, 92 (1989), 131-138,
(14 . Higher integrability results end Hélder continuity, J. Math. Anal Appl. 150
(1990), 161- 165.
12 L. G Gurov and G. Yu, Reshetnyak, On an analogue of the concept of function
of bounded mean oscillation, Sibirsk. Mat. Zh. 17 (1976), 540-546 (in Russian).
[13) C. Herz, The Hardy-LitHewood mazimal theorem, in: Symposium on Harmonie
Analyais, University of Warwick, 1968.
[14] T.Iwaniec, On LP-integrability in p.d.e. and quasiregular mappings for large ex-
ponents, Ann., Acad. Sci. Fenn. Ser. Al Math. 7 (1982}, 301-322.



icm

118 M. Franciosi

[15] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comn,
Pure Appl. Math. 14 (1961), 415-426.

[18] A. Korenovskii, One refinement of the Gurov-Resheinyak inequality, preprint,
Université de Toulon et du Var.

[17] D.Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207
(1%75), 351-405.

[18] S. Spanne, Some function spaces defined using the mean oscillation over cubes,
Ann. Scuola Norn. Sup. Pisa 19 (1965), 593-608.

DIIMA

Universitd di Salerno
Via 3. Allende
Baronissi, Italy

Received September 11, 1995 (3523)

STUDIA MATHEMATICA 123 (2) (1997)

Higher-dimensional weak amenability
by

B. E. JOHNSON (Newcastle upon Tyne)

Abstract. Bade, Curtis and Dales have introduced the idea of weak amenability.
A commutative Banach algebra 2 is weakly amenable if there are no non-zero continu-
ous derivations from 2L to 2*. We extend this by defining an alternating n-derivation to
he an alternating n-linesr map from 2 to 2* which is a derivation in each of its vari-
ables. Then we say that % is n-dimensionally weakly amenahle if there are no non-zero
continuous alternating n-derivations on . Alternating n-derivations are the same as al-
ternating Hochselild cocycles. Since such a cocyele is a coboundary if and only if it is 0,
the alternating n-derivations form a subspace of H™ (2, ™). The hereditary properties of
n-dimengional weak amenability are stodied; for example, if J is a closed ideal in 2 such
that 2/J is m-~dimensionally weakly amenable and J is n-dimensionally weakly amenable
then 2 i (7o 4 0 — 1)-dimensionally weakly amenable, Results of Bade, Curtis and Dales
are extended to n-dimensional weak amenability. If % is generated by n elements then it
is (n + 1)-dimoensionally weakly amenable. If 2 containg enough regular elements a with
o™} = o{m™ 1)} as m -+ oo then U is n-dimensionally weakly amenable. Tt fol-
lows that if 2l is the algebra lip, (X) of Lipschitz functions on the metric space X and
o< nf{n-+1) then A is n-dimensionally weakly amenable. When X is the product of n
copies of the ¢ircle then 2 13 n~-dimensionally weakly amenable if and only if & < n/(n+1).

1. Introduction. Throughout this paper & denotes a commutative Ba-
nach algebra and X a symmetric Banach #-bimodule, that is, we have
ar = xo for all @ € A, z € X. Following [1], A is weakly amenable if,
for all X, all derivations from 2l inte X are zero. In this paper we extend
this by saying that 2l is n-dimensionally weakly amenable [Definition 2.1]
if, for all %, all alternating n-cocycles from 2 into X are zero. By an n-
cocyele we mean a continnous n-linear map from 2L into X whose Hochschild
coboundary is 0 (cf. [5]). For n = 1 this reduces to weak amenability in the
sense of Bade, Curtis and Dales. In Section 2 we show that an alternating
n-cocycle is the same as an alternating linear map which is a derivation in
gach of its variables. This enables us to show how the values of an alternat-
ing n-cocycle are related to its values on the generators of an algebra and
show in particular that if 2% has n-generators then it is (n+1)-dimensionally
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