

### STUDIA MATHEMATICA 123 (2) (1997)

## A condition implying boundedness and VMO for a function f

by

### MICHELANGELO FRANCIOSI (Salerno)

Dedicated to the memory of my friend Filippo Chiarenza

**Abstract.** Some boundedness and VMO results are proved for a function f integrable on a cube  $Q_0$ , starting from an integral bound.

1. Introduction. In [12] the following condition, intimately connected with the idea of sharp function ([1]) was introduced:

(1.1) 
$$\oint_{Q} \left| f - \oint_{Q} f \right| dx \le \varepsilon \oint_{Q} |f| dx,$$

 $Q \subseteq Q_0$  (for notation and hypotheses see Section 2).

From condition (1.1), extraintegrability for f was obtained with different methods and in more and more general situations ([12], [3], [10], [14], e.g.). The general approach using maximal functions and rearrangements as in [10], [14] seems to be the best. In particular, in [10], [12] it is proved that there exists a constant  $\gamma$  depending only on n such that if  $0 < \varepsilon < 1/\gamma$ , then f belongs to  $L^p(Q_0)$  for any  $1 \le p < 1/(\varepsilon \gamma)$  and the order of the optimal integrability exponent is exact. Using this result the following integrability and continuity result is proved in [11]. Suppose that instead of (1.1), f satisfies

(1.2) 
$$\oint_{Q} \left| f - \oint_{Q} f \right| dx \le \varepsilon(\sigma) \oint_{Q} |f| dx,$$

for any Q with  $|Q| \le \sigma$  and  $\lim_{\sigma \to 0} \varepsilon(\sigma) = 0$ . Then f belongs to  $L^p(Q_0)$  for any  $1 \le p < \infty$ . Moreover, if

(1.3) 
$$\oint_{\Omega} \left| f - \oint_{\Omega} f \right| dx \le \sigma^{\beta} \oint_{\Omega} |f| dx,$$

 $\beta>0$ , for any Q with  $|Q|\leq\sigma$  and for  $\sigma$  tending to zero, then f is Hölder-continuous of order  $\beta$ .

<sup>1991</sup> Mathematics Subject Classification: Primary 26D10; Secondary 46E30.

In this paper we introduce an integral condition for f generalizing (1.2) that implies boundedness for f. This condition also implies that f is in the VMO space, but it is not sufficient for the continuity of the function.

At this point we want to emphasize that functions belonging to  $L^{\infty} \cap VMO$  but not necessarily continuous have recently been isolated and considered in very important regularity problems connected with elliptic differential equations and systems with rough coefficients ([4], [6]-[9], e.g.).

The condition that we introduce is

(F) 
$$\int_{0}^{|Q_{0}|} \frac{f^{**}(t) - f^{*}(t)}{f^{**}(t)} \cdot \frac{1}{t} dt < \infty.$$

We shall note that this condition is more general than (1.2) and the condition in [16]. In particular, in [16] from a condition like (F), but stronger, the boundedness of f is deduced, but with a completely different method.

We point out that condition (F) seems different and more general than that in [16], just because it does not involve continuity.

Finally, we remark that condition (1.3) and (F) are in the same order of ideas of [5], [18].

2. Some notations and results. From now on Q is a cube in  $\mathbb{R}^n$ , i.e. a translate of  $[0,s]^n$ ,  $0 < s < \infty$ , and we fix a cube  $Q_0$  and consider subcubes Q of  $Q_0$ . We denote by f a function belonging to  $L^1(Q_0)$ . For any measurable subset E of  $Q_0$  we denote by |E| its Lebesgue measure, and set

$$\oint_E f \, dx = \frac{1}{|E|} \oint_E |f| \, dx$$

where the integrals are with respect to the Lebesgue measure.

The nonincreasing rearrangement of f is denoted by  $f^*$  and is defined by ([1], e.g.)

$$f^*(t) = \sup_{|E|=t} \underset{x \in E}{\text{ess inf}} f(x), \quad t \in ]0, |Q_0|[.$$

We then set

$$f^{**}(t) = \frac{1}{t} \int_{0}^{t} f^{*}(s) \, ds \equiv \int_{0}^{t} f^{*}(s) \, ds, \quad 0 < t < |Q_{0}|,$$

$$Mf(x) = \sup_{\substack{Q \subseteq Q_{0} \\ x \in Q}} \int_{Q} f \, dx, \qquad x \in Q_{0},$$

$$f_{t}^{\#}(x) = \sup_{\substack{Q \subseteq Q_{0} \\ x \in Q}} \int_{Q} \left| f - \int_{Q} f \right| dx, \qquad 0 < t < |Q_{0}|.$$

The following definitions are used.

The function f is in the space  $BMO(Q_0)$  ([15]) if

$$\sup_{Q\subseteq Q_0} \oint_Q \left| f - \oint_Q f \right| dx < \infty;$$

then, setting for any  $0 < r < |Q_0|$ ,

$$\eta(r) = \sup_{\substack{|Q| \le r \ Q \subset Q_0}} \int_Q \left| f - \int_Q f \right| dx,$$

a function f belonging to the space BMO is in VMO ([17]) if

$$\lim_{r\to 0}\eta(r)=0.$$

We need the following results.

Theorem 2.1 ([2], [10]). Let  $\Omega$  be a relatively open subset of  $Q_0$  such that

$$|\Omega| < |Q_0|/2.$$

Then there exists a family  $(Q_j)_{j\in\mathbb{N}}$  of cubes with pairwise disjoint interiors such that:

- (1)  $|\Omega \cap Q_j| \le |Q_j|/2 \le |C\Omega \cap Q_j|$ ,
- (2)  $\Omega \subset \bigcup_j Q_j \subset Q_0$ ,
- (3)  $|\Omega| \le \sum_{j} |Q_j| \le 2^{n+1} |\Omega|$ .

THEOREM 2.2 ([13]). For any  $0 \le t \le |Q_0|$ ,

$$3^{-n}(Mf)^*(t) \le f^{**}(t) \le (1+2^n)(Mf)^*(t).$$

3. An integral bound for f implying boundedness. Suppose f is as in Section 2 and satisfies the condition

(F) 
$$\int_{0}^{|Q_{0}|} \frac{f^{**}(t) - f^{*}(t)}{f^{**}(t)} \cdot \frac{1}{t} dt < \infty.$$

We prove the following:

THEOREM 3.1. If f satisfies (F), then f belongs to  $L^{\infty}(Q_0)$ .

Proof. Set

$$\eta(t) = \frac{f^{**}(t) - f^{*}(t)}{f^{**}(t)}, \quad 0 < t < |Q_0|.$$

Then, obviously,  $f^{**}(t) = f^*(t)/(1 - \eta(t))$ . From this we deduce

(3.1) 
$$\frac{f^*(t)}{\int_0^t f^*(s) \, ds} = \frac{1 - \eta(t)}{t}.$$

Integrating (3.1) from t to  $\bar{t}$ ,  $0 < t < \bar{t} < |Q_0|$ , we obtain

$$\int_{t}^{\overline{t}} \frac{f^{*}(t)}{\int_{0}^{s} f^{*}(\sigma) d\sigma} ds = \int_{t}^{\overline{t}} \frac{1 - \eta(s)}{s} ds = \int_{t}^{\overline{t}} \frac{1}{s} ds - \int_{t}^{\overline{t}} \frac{\eta(s)}{s} ds.$$

Hence, for a.a.  $0 < t < \overline{t} < |Q_0|$ ,

(3.2) 
$$\log \frac{\int_0^{\overline{t}} f^*(s) ds}{\int_0^t f^*(s) ds} = \log \frac{\overline{t}}{t} - \int_t^{\overline{t}} \frac{\eta(s)}{s} ds.$$

Taking the exponential in (3.2) gives

$$\frac{\int_0^{\overline{t}} f^*(s) ds}{\int_0^t f^*(s) ds} = \frac{\overline{t}/t}{\exp \int_t^{\overline{t}} \frac{\eta(s)}{s} ds}$$

and so

(3.3) 
$$\int_{0}^{t} f^{*}(s) ds = t f^{**}(\overline{t}) \exp \int_{t}^{\overline{t}} \frac{\eta(s)}{s} ds.$$

But  $f^*$  is decreasing, which yields

$$tf^*(t) \leq \int\limits_0^t f^*(s) \, ds \leq tf^{**}(\overline{t}) \exp \int\limits_0^{\overline{t}} \frac{\eta(s)}{s} \, ds,$$

that is,

$$(3.4) f^*(t) \le f^{**}(\overline{t}) \exp \int\limits_0^{\overline{t}} \frac{\eta(s)}{s} \, ds.$$

Using (F) we deduce immediately from (3.4) that  $f^*$  is bounded, and then f belongs to  $L^{\infty}(Q_0)$ .

We note at this point that (F) does not imply continuity for f. In fact, consider a nonnegative strictly decreasing and continuous function f of a real variable defined in the interval ]0,b[. Suppose that f satisfies condition (F). Then, by Theorem 3.1, f is bounded. Now we can consider a function  $\widetilde{f}$  that is equal to f in ]0,a[ where 0 < a < b, but is discontinuous in a subset of ]a,b[ of positive measure and  $\widetilde{f}(x) \leq f(a)$  for any a < x < b. The function  $\widetilde{f}$  satisfies (F) and hence is bounded, but it is not continuous.

Now we want to consider a condition introduced in [16] from which, with a method different from the one used in this paper, boundedness for f is deduced. We shall prove that this condition implies (F).

To do this, we prove a rearranged inequality for f. This inequality is a local version of a theorem in [2], [10].

THEOREM 3.2. Let f be a nonnegative function belonging to  $L^1(Q_0)$ . Then, for any  $0 < t < |Q_0|/(3 \cdot 2^{n+1})$ ,

$$f^{**}(t) - f^{*}(t) \le 3 \cdot 2^{n+2} (f_{3,2^{n+1}t}^{\#})^{*}(t).$$

Proof. Fix  $0 < t < |Q_0|/(3 \cdot 2^{n+1})$  and set

$$E = \{x \in Q_0 : f(x) > f^*(t)\},\$$

$$F = \{ x \in Q_0 : f_{3 \cdot 2^{n+1}t}^{\#}(x) > (f_{3 \cdot 2^{n+1}t}^{\#})^*(t) \}.$$

Obviously,  $|E \cup F| \leq 2t$ , and we can find a set  $\Omega$  relatively open in  $Q_0$  such that  $|\Omega| \leq 3t$ ,  $E \cup F \subset \Omega \subset Q_0$ , from which  $|\Omega| < |Q_0|/2$ . From a well known property of decreasing rearrangements ([1], e.g.) we have

(3.5) 
$$t(f^{**}(t) - f^{*}(t)) = \int_{E} (f(x) - f^{*}(t)) dx.$$

Let  $\{Q_j\}$  be the covering of  $\Omega$  furnished by Theorem 2.1. Then, by (3) of Theorem 2.1,

$$(3.6) |Q_i| \le 3 \cdot 2^{n+1}t$$

and by (3.5), (3.6) and (1) of Theorem 2.1 we obtain

$$(3.7) \quad t(f^{**}(t) - f^{*}(t)) \leq \sum_{j} \int_{Q_{j}} \left| f(x) - \int_{Q_{j}} f \right| dx$$

$$+ \sum_{j} |E \cap Q_{j}| \left( \int_{Q_{j}} f - f^{*}(t) \right)$$

$$\leq 2 \sum_{j} \int_{Q_{j}} \left| f(x) - \int_{Q_{j}} f \right| dx \leq 2 \sum_{j} |Q_{j}| f_{3 \cdot 2^{n+1} t}^{\#}(x_{j}),$$

for any  $x_j \in Q_j$ . From (1) of Theorem 2.1 we note that  $Q_j \cap CF$  is nonempty for any j. Choosing  $x_j \in Q_j \cap CF$  we obtain from (3.7),

$$t(f^{**}(t) - f^*(t)) \le 2 \sum_{j} |Q_j| (f_{3 \cdot 2^{n+1}t}^{\#})^*(t).$$

Finally, using (3) of Theorem 2.1 we deduce

$$t(f^{**}(t) - f^{*}(t)) \le 3 \cdot 2^{n+2} t (f_{3 \cdot 2^{n+1}t}^{\#})^{*}(t).$$

For f nonnegative and integrable in  $Q_0$  in [16] the following quantity is considered:

$$(K_1) v(f,\sigma) = \sup \frac{\oint_Q |f - \oint_Q f| dx}{\oint_Q f dx}, \quad 0 < \sigma < |Q_0|,$$

where the sup is extended over all  $Q\subseteq Q_0$  with  $|Q|\leq \sigma$  such that  $\oint_Q f>0$ .

From the condition

(K<sub>2</sub>) 
$$\int_{0}^{|Q_{0}|} v(f,\sigma) \frac{1}{\sigma} d\sigma < \infty$$

it is deduced that f belongs to  $L^{\infty}(Q_0)$ .

Obviously, from  $(K_1)$  we can deduce

$$f_{\sigma}^{\#}(x) \le v(f,\sigma)Mf(x)$$

for any  $x \in Q_0$  and  $0 < \sigma < |Q_0|$  and consequently,

$$(3.8) (f_{\sigma}^{\#})^{*}(t) \leq v(f,\sigma)(Mf)^{*}(t),$$

for any  $0 < \sigma < |Q_0|$  and  $0 < t < |Q_0|$ .

From Theorem 3.2 and (3.8) we obtain

$$f^{**}(t) - f^{*}(t) \le 3 \cdot 2^{n+2} v(f, 3 \cdot 2^{n+1} t) (Mf)^{*}(t),$$

and using Theorem 2.2,

(3.9) 
$$\frac{f^{**}(t) - f^{*}(t)}{f^{**}(t)} \le 3^{n+1} 2^{n+2} v(f, 3 \cdot 2^{n+1} t).$$

From (3.9) it is clear that condition  $(K_2)$  implies condition (F).

**4.** The VMO result. Suppose f to be as in Section 2 and satisfy condition (F). Then, by Theorem 3.1, f belongs to  $L^{\infty}(Q_0)$ , and (F) implies

(4.1) 
$$\int_{0}^{|Q_{0}|} \frac{f^{**}(t) - f^{*}(t)}{t} dt < \infty.$$

Let us prove:

Theorem 4.1. If f satisfies (4.1) then f belongs to VMO.

Proof. Fix  $\varepsilon > 0$ . Condition (4.1) assures the existence of  $\overline{t} > 0$  such that

$$\oint\limits_0^t \left(f^*(s)-f^*(t)\right)ds<\varepsilon$$

for any  $t \in ]0, \overline{t}[-E]$ , where E is some subset of  $]0, \overline{t}[$  with |E| = 0.

If t belongs to  $]0,\bar{t}[-E]$  then by the property of decreasing rearrangements ([1], e.g.) we have

$$\oint_{Q} |f(x) - f^{*}(t)| \, dx \le \oint_{0}^{t} (f(x) - f^{*}(t))^{*}(s) \, ds < \varepsilon$$

and so

$$(4.2) \qquad \qquad \oint_{C} \left| f(x) - \oint_{C} f \right| dx \le 2\varepsilon$$

for any  $Q \subseteq Q_0$  with |Q| = t.

Now suppose that  $t \in E$ . For any  $\delta > 0$  such that  $]t - \delta, t + \delta[\subset ]0, \overline{t}[$  there exists  $t_{\delta} \in ]t - \delta, t + \delta[-E]$ . We can select a  $\delta$  such that if Q is a cube with |Q| = t and  $\widetilde{Q}$  is the cube with the same center and  $|\widetilde{Q}| = t_{\delta}, \ Q \subset Q_0$ ,  $\widetilde{Q} \subset Q_0$ , then

(4.3) 
$$\left| \oint_{Q} \left| f(x) - \oint_{Q} f \right| dx - \oint_{\widetilde{Q}} \left| f(x) - \oint_{\widetilde{Q}} f \right| dx \right| < \varepsilon.$$

Then, by (4.2) and (4.3), for any  $0 < t < \overline{t}$  and any cube  $Q \subseteq Q_0$  with |Q| = t,

$$\oint\limits_{Q} \left| f(x) - \oint\limits_{Q} f \right| dx \le 3\varepsilon$$

and f is in VMO.

#### References

- C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988.
- [2] C. Bennett, R. De Vore and R. Sharpley, Weak- $L^{\infty}$  and BMO, Ann. of Math. 113 (1981), 601-611.
- B. Bojarski, Remarks on the stability of reverse Hölder inequalities and quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. AI Math. 10 (1985), 89-94.
- [4] M. Bramanti and M. C. Cerutti,  $W_p^{1,2}$  solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients, Comm. Partial Differential Equations 18 (1993), 1735–1763.
- [5] S. Campanato, Proprietà di hölderianità di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa 17 (1963), 175-188.
- [6] F. Chiarenza, M. Franciosi and M. Frasca, L<sup>p</sup> estimates for linear elliptic systems with discontinuous coefficients, Rend. Accad. Naz. Lincei 5 (1994), 27-32.
- [7] F. Chiarenza, M. Frasca and P. Longo, Interior W<sup>2,p</sup> estimates for non divergence elliptic equations with discontinuous coefficients, Ricerche Mat. 40 (1991), 149-168.
- [8] --, -, -, W<sup>2,p</sup>-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc. 336 (1993), 841-853.
- [9] G. Di Fazio, L<sup>p</sup> estimates for divergence form elliptic equations with discontinuous coefficients, preprint, Università di Catania.
- [10] M. Franciosi, Weighted rearrangements and higher integrability results, Studia Math. 92 (1989), 131-138.
- [11] Higher integrability results and Hölder continuity, J. Math. Anal. Appl. 150 (1990), 161-165.
- [12] L. G. Gurov and G. Yu. Reshetnyak, On an analogue of the concept of function of bounded mean oscillation, Sibirsk. Mat. Zh. 17 (1976), 540-546 (in Russian).
- [13] C. Herz, The Hardy-Littlewood maximal theorem, in: Symposium on Harmonic Analysis, University of Warwick, 1968.
- [14] T. Iwaniec, On L<sup>p</sup>-integrability in p.d.e. and quasiregular mappings for large exponents, Ann. Acad. Sci. Fenn. Ser. AI Math. 7 (1982), 301-322.





- [15] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426.
- [16] A. Korenovskii, One refinement of the Gurov-Reshetnyak inequality, preprint, Université de Toulon et du Var.
- [17] D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405.
- [18] S. Spanne, Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa 19 (1965), 593-608.

DIIMA Università di Salerno Via S. Allende Baronissi, Italy

116

Received September 11, 1995 (3523)

# STUDIA MATHEMATICA 123 (2) (1997)

# Higher-dimensional weak amenability

by

B. E. JOHNSON (Newcastle upon Tyne)

Abstract. Bade, Curtis and Dales have introduced the idea of weak amenability. A commutative Banach algebra 21 is weakly amenable if there are no non-zero continuous derivations from  $\mathfrak{A}$  to  $\mathfrak{A}^*$ . We extend this by defining an alternating n-derivation to be an alternating n-linear map from  $\mathfrak A$  to  $\mathfrak A^*$  which is a derivation in each of its variables. Then we say that  $\mathfrak A$  is n-dimensionally weakly amenable if there are no non-zero continuous alternating n-derivations on  $\mathfrak{A}$ . Alternating n-derivations are the same as alternating Hochschild cocycles. Since such a cocycle is a coboundary if and only if it is 0. the alternating n-derivations form a subspace of  $H^n(\mathfrak{A},\mathfrak{A}^*)$ . The hereditary properties of n-dimensional weak amenability are studied; for example, if J is a closed ideal in  $\mathfrak A$  such that  $\mathfrak{A}/J$  is m-dimensionally weakly amenable and J is n-dimensionally weakly amenable then  $\mathfrak{A}$  is (m+n-1)-dimensionally weakly amenable. Results of Bade, Curtis and Dales are extended to n-dimensional weak amenability. If  $\mathfrak A$  is generated by n elements then it is (n+1)-dimensionally weakly amenable. If  $\mathfrak A$  contains enough regular elements a with  $||a^m|| = o(m^{n/(n+1)})$  as  $m \to \pm \infty$  then  $\mathfrak A$  is n-dimensionally weakly amenable. It follows that if  $\mathfrak A$  is the algebra  $\lim_{n \to \infty} (X)$  of Lipschitz functions on the metric space X and  $\alpha < n/(n+1)$  then  $\mathfrak A$  is n-dimensionally weakly amenable. When X is the product of n copies of the circle then  $\mathfrak A$  is n-dimensionally weakly amenable if and only if  $\alpha < n/(n+1)$ .

1. Introduction. Throughout this paper  $\mathfrak A$  denotes a commutative Banach algebra and  $\mathfrak X$  a symmetric Banach  $\mathfrak A$ -bimodule, that is, we have ax = xa for all  $a \in \mathfrak A$ ,  $x \in \mathfrak X$ . Following [1],  $\mathfrak A$  is weakly amenable if, for all  $\mathfrak X$ , all derivations from  $\mathfrak A$  into  $\mathfrak X$  are zero. In this paper we extend this by saying that  $\mathfrak A$  is n-dimensionally weakly amenable [Definition 2.1] if, for all  $\mathfrak X$ , all alternating n-cocycles from  $\mathfrak A$  into  $\mathfrak X$  are zero. By an n-cocycle we mean a continuous n-linear map from  $\mathfrak A$  into  $\mathfrak X$  whose Hochschild coboundary is 0 (cf. [5]). For n=1 this reduces to weak amenability in the sense of Bade, Curtis and Dales. In Section 2 we show that an alternating n-cocycle is the same as an alternating linear map which is a derivation in each of its variables. This enables us to show how the values of an alternating n-cocycle are related to its values on the generators of an algebra and show in particular that if  $\mathfrak A$  has n-generators then it is (n+1)-dimensionally

[117]

<sup>1991</sup> Mathematics Subject Classification: 46J10, 46M20.