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Moment inequalities for sums of certain
independent symmetric random variables

by

P. HITCZENKO (Raleigh, N.C.),
5.J. MONTGOMERY-SMITH (Columbia, Mo.)
and K. OLESZKIEWICZ (Warszawa)

Abstract. This paper gives upper and lower bounds for moments of sums of inde-
pendent random variables (X3) which satisfy the condition P{jX|, > &) = exp(—Np{£)),
where N, are concave functions. As a consequence we obtain precise information about
the tail probabilities of linear combinations of independent random variables for which
N{t) = |t|” for some fixed 0 < r < 1. This complements work of Gluskin and Kwapier
who have done the same for convex functions N.

1. Imtroduction. Let X1, X5,... be a sequence of independent random
variables. In this paper we will be interested in obtaining estimates on the
Ly-norm of sums of (Xj), i.e. we will be interested in the quantity

H ZX’“HP = (E’ ZXk‘p)lfp, 2 < p< oo

Although using standard symmetrization arguments our results carry over
to more general cases, we will assume for the sake of simplicity that Xz have
symmetric distributions, ie. P(X <t)= P(—Xj <t)forallt € R.

Let us start by considering the case of linear combinations of identically
distributed, independent (i.i.d.) random variables, that is, X = axYj, where
Y,Y:,...are iid. We can assume without loss of generality that all a;’s are
nonnegative. Also, since the Y3’s are iid., we can rearrange the terms of
(ar) arbitrarily without affecting the sum Y ax Y. Therefore, for notational
convenience, we will adopt the following convention throughout this paper:
whenever we are dealing with a sequence of real numbers we will always
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16 P. Hitczenko et al.

assume that its terms are nonnegative and form a nenincreasing sequence. In
other words, we identify a sequence (ay) with the decreasing rearrangernent
of ({ax|).

Of course, a huge number of inequalities concerning the Ly-norm of a sum
S ar Yy are known. Let us recall two of them. The first, called Khinchin's
inequality, deals with the Rademacher sequence, i.e. Y = ¢, where ¢ takes
values £1, each with probability 1/2, For p 2 2 it can be formulated as
follows (see e.g. Ledoux and Talagrand (1991, Lemma 4.1)): there exists an
absolute constant K such that

(Zaﬁ)l/z < “ Za’“g’“”p < K\/ﬁ(za%)l/z.

The value of the smallest constant that can be put in place of K,/ is
known (see Haagerup (1982)). The second inequality was proved by Rosen-
thal (1970), and in our generality says that for 2 < p < oo there exists a
constant B, such that for a sequence a = (ag) € £y,

max{|lals|[Yll2, /1Y I}
< | ot | < By max laflal¥ll, lallo ¥ 1},

where |la||s denotes the £;-norm of the sequence . The best possible con-
stant B, is known (cf. Utev (1985) for p > 4, and Figiel, Hitczenko, Johnson,
Schechtman and Zinn (1995) for 2 < p < 4). We refer the reader to the latter
paper and references therein for more information on the best constants in
Rosenthal’s inequality. For our purpose, we only note that Johnson, Schecht-
man and Zinn (1983) showed that B, < Kp/logp for some absolute constant
K, and that up to the value of K, this bound cannot be further improved.
This and other related results were extended in various directions by Pinelis
(1994). When specialized to our generality, his inequality reads as

max{]|all2 [¥ |2, lello ¥ 11}
<[ San| < int max{veer falall¥acloi ¥ 3.

A common feature of these two inequalities is that they express the L -norm
of a sum ) axYj in terms of norms of individual terms axYy. This is very
useful and both inequalities found numerous applications. However, upper
and lower bounds in these inequalities differ by a factor that depends on
p, and sometimes are quite insemsitive to the structure of the coefficient
sequence, (Rosenthal’s inequality is also insensitive to the common distribu-
tion of Yy ’s.) Consider, for example, the coefficient sequence ay, = 1/k, k = 1.
Then the only information on || 3" axex||, given by Khinchin’s inequality is
that it is essentially between 1 and ,/p. Practically the same conclusion
is given for two quite different sequences, namely o = 27%, k > 1, and
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ag = 1/y/n or 0 according to whether k£ < n or k > n, n € N. (The “true
values” of || 3 arexll, are rather different in each of these three cases, and
are of order log(1 + p), 1, and /p A m, respectively.)

From this point of view, it is natural to ask whether more precise in-
formation on the size of | 3" axY%||, can be obtained. Although, in general,
the answer to this question may be difficult, there are cases for which there
is a satisfactory answer. First of all, if Y}, is a standard Gaussian random
variable, then || ai Y| » = [lallz]} Yl so that

evBllals < | ZakYkHP < Cy/Bllala,

for some absolute constants ¢ and C. Next consider the case when (¥3) =
(%), a Rademacher sequence. We have

A A(Z0)

k>p

1/2
<[ S, <o{ o vp(Tet) )
r k<p k>p
(Recall that according to our convention, a; > a3 > ... > 0.) The above in-
equality has been established in Hitczenko (1993), although the proof drew
heavily on a technique from Montgomery-Smith (1990). (In fact, the inequal-
ity for Rademacher variables can be deduced from the results obtained in
the latter paper.) The next step was done by Gluskin and Kwapiei (1995)
who dealt with the case of random variables with logarithmically concave
tails. To describe their result precisely, suppose that ¥ is a symmetric ran-
dom variable such that for £ > 0 one has P(|Y}| > t) = exp(—N(?)), where
N is an Orlicz function (i.e. convex, nondecreasing, and N(0) = 0). Recall
that if M is an Orlicz function and (a;) is a sequence of scalars then the
Orlicz norm of (ag) is defined by ||(ax)ilar = inf{w > 0: Y M(ak/u) < 1}.
Let N' be the function conjugate to N, i.e. N'(t) = sup{st — N(s) : s > O},
and put M,(¢) = N'(pt}/p. Then Gluskin and Kwapies (1995) proved that

e{ll{ar)k<pllag, + vP (o) > pll2}
<[|Xwni| < cli@nrsslian + VB l(ax)kssla)-
In the special case N(f) = [¢|", r > I, this gives
e{ll(a)esplle ¥ llp + vl (ae)iss20] 112}
< || ot < Ctllenicol - 1¥llp + VBl (@155l 2l o),

where 1/r' + 1/r = 1, and ¢, C are absolute constants. From now on, we
will refer to random variables corresponding to N(t) = [t|” as symmetric
Weibull random variables with parameter r.




18 P. Hitczenko et al.

Now let us describe the results of this paper. We will say that a sym-
metric random variable has a logarithmically conves tadl if P(|X| 2 t) =
exp(—N(t)) for t > 0, where N : R, — Ry is a concave function with
N(0) = 0. We will show the following result.

THEOREM 1.1. There exist absolute constants ¢ and K such that if (X;)
is o sequence of independent random variebles with logarithmically conver
tails, then for each p = 2,

1/2

{ (1) "+ va( X 1)}
< |30, < (2 wele) "+ va( 1) ).

This result includes the special case of linear combinations of symmetric
Weibull random variables with fixed parameter r < 1, and in this case we
are also able to obtain information about the tail distributions of the sums.
In fact, we will give a second proof of the moment inequalities in this special
case. We include this second proof, because we believe that the methods will
be of great interest to the specialists.

Let us mention that the main difficulty is to obtain tight upper bounds.
Once this is done the lower bounds are rather easy to prove. For this reason,
the main emphasis of this paper is on the proofs of upper hounds.

‘We will now outline the main steps in both proofs of the upper bounds,
and at the same time describe the organization of this paper. In Section 2, we
describe a weaker version of the result that depends upon a certain moment
condition. In particular, if we specialize to linear combinations of symmet-
ric Weibull random variables, we obtain constants that become unbounded
as the parameter r tends to zero (but are still universal in p > 2). The
proof is based on hypercontractive methods that were suggested to us by
Kwapiefi. In Section 3 we will show that moments of sums of symmetric ran-
dom variables with logarithmically convex tails are dominated by the linear
combinations of suitably chosen multiples of standard exponential random
variables by independent symmetric 3-valued random variables. We are then
able to obtain the main result.

The main idea of the second proof is to reduce the problem to the case
of an iid. sum. This is done in Section 4. In Section 5 we deal with the
problem of finding an upper bound for the L,-norm of a sum of i.i.d. ran-
dom variables. We accomplish this by estimating from above a decreasing
rearrangement of the sum in terms of a decreasing rearrangement of an in-
dividual summand. In Section 6 we apply the results from the preceding two
sections to obtain an upper bound on the Ly-norm of Y ar Xy, where (X4)
are Lid. symmetric with P(JX| > ¢) = exp(—¢"), 0 < r < 1.
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2. Random variables satisfying the moment condition. In this
section we will prove a variant of Theorem 1.1, where the random variables
satisfy a certain moment condition. We use hypercontractive methods, sim-
ilar to those in Kwapieri and Szulga (1991). This approach was suggested to
us by 5. Kwapien. It should be emphasized that if the result is specialized
to symmetric Weibull random variables then the constant B in Theorem 2.2
below depends on r. Let us begin with the following.

DEFINITION 2.1. We say that a random variable X satisfies the moment
condition if it is symmetric, all moments of X are finite and there exist
positive constants b, ¢ such that for all even natural numbers n > k > 2,

[ X1]n —k
< g™,
NXls —

<

S
=13

It is easy to check that the existence of such a ¢ is equivalent tc; the
finiteness of

sup( B|.X %)/ ™"
nel
or

limsup (Int) " 2ln P(|X| > t) < 0.

t—o0

Here is the main result of this section.

THEOREM 2.2. If independent real random variables Xy, X, ... satisfy
the moment condition with the same constants b and c then there exist posi-

tive constants A and B such that for any p > 2, ony naturel number m, and
S= 2:11 X,

A(VBISI + (i 1%:12) ) < 151, < B{vBI1Sl2 + (i xelig) ).
k=1 k=1

‘We will prove a lemma first.

LeMwMA 2.3, If X satisfies the moment condition then there exists a pos-
itive constant K such that for any ¢ > 1 and any real z,

(Blz + X 1?12 < 4eBX?q + (|=[* + KME| X |99
Proof. Put K = +/2ebc? + 1. Let n be the least natural number greater
than ¢. We consider two cases:

(1) |2 < (K = 1)1 X ||z Then ||& + X{2q < [z} + [[Xll2q < K[1X][2q-
(if) f2] 2 (K ~1)||X|l2g 2 7| X|[2n. Then
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2 n 2n(2n—1)...(2n — 2k +- 1) L 2n=2k 2k
E(z + X)* — ¥ = }: 25)! EX
k=

1

(2m)- X3
2 9n—2
< dncgmT Z (2R

2n) 22 1 [z \ 2
< dnPgtn 2 X (
= Z H ||2k- )219 ) HXH2"1

k=1 (2k) (
< 47’1,2 2r— Zi(HXII2CZk_2)2( )2"6_2(%)2‘1‘:_2
k=1 (Qk)!(%—l)%—z

EX? / 2betk \ 22
x4nm2” ZZ X (K—l)

ped \ 2
< n2zx?2e X2 ; (};i 1) < 2eEX 2022,

Hence

|z + X|l2g < |2+ Xl2n < V22 + 2¢EX?n < /22 + deEX 2.

This completes the proof of Lemma 2.3.

Proof of Theorem 2.2. We begin with the left hand side inequality.
The inequality

I8l > (Y Blxer)"”
F=1

follows from Rosenthal’s inequality {Rosenthal (1970)), or by an easy in-
duction argument and the inequality 2(|z|” + |y|”) < |z + y|” + |z — y|*. To
complete the proof of this part we will show that if X is a random variable
satisfying the left hand side inequality in Definition 2.1 with constant b then

1
151 2 5755 I1SlavB.

To this end let G be a standard Gaussian random variable. Then for every
even natural number n we have
XNz 1512
2b

||XH 1/n
“2p Gl = ((n = IS <nfTL

Hence, by the b1nom1al formula, for every even natural number n and any
real number x,

< X1

E’.’c—{- ”iml(?—(} < Elz+ X|™.
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If Gi's are i.i.d. copies of G then, by an easy induction argument, we get

151 Xella . |
=S 2 H 2:” G

Letting n be the largest even number not exceeding p, and putting = = 0,
we obtain

151l = ISl 2

E\z+ G =Ex < Elz+ S|

||3” o 15ll2 1
G > ——|5
” H 2% '\/7_7’-— 2\/51)“ ”2\/1_33

which completes the proof of the first inequality of Theorem 2.2.

To prove the second inequality we will proceed by induction. For N =
L,...,m, let Sy = S p_, Xx, by = K(DN_, B|Xi|?)V?, and ¢ = p/2. We
Wlll show that for any real «,

(Elz + Sn[>)Y2 < 4eqES% + (|22 + R34,

For N = 1 this is just Lemma 2.3. Assume that the above inequality is
satisfled for N < m. Let E' = E(- | X1,..., Xy), B" = E(- | Xy+1). Then

(Blz + S4a )Y = (B"E'|(z + Sn) + Xnvya [9)/*
< (B'(4eqBXR 1 + (l2 + Sn[* + KM E| Xy 41 [9)/9)2) 10
< 4eqEXR .y + (E'|lz + Sx*? + K*¥E| Xy 1?)Y%  (by Lemma 2.3)
< 4eqBXFry; + ((4egBSY + (|2[* + hf) ) + K9B| Xy 41 |?9)}/9
(by the inductive assuinption)
= 4egEX3 11 + [|(4eaBSF + (J2|* + A1), K2 (Bl X w0 |*) Y9
< 4egBX 71 + [1(4eqESK, 0)lg
+ (2> + hHM7, KX E X w11 PV )
= 4eqB S5 11 + (|z]* -+ B3, ).

Cur induction is finished. Taking N = m and x = 0 we have

i 1/p
1] < v/2epBST+ 12, < Vs |Sllev/B+K (Y EIXl)
k=1
This completes the proof of Theorem 2.2,

3. Random variables with logarithmically convex tails. The aim
of this section is to prove the main result, Theorem 1.1. Although random
variables with logarithmically convex tails do not have to satisfy the moment
condition we have the following.

ProOPOSITION 3.1, Let I' be an ezponential random variable with density
e™® for x > 0. If X is a symmetric random wariable with logarithmically
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convez tails then for anyp > ¢ > 0,

1X] o 1Xle

120 = 147l
In particular, random variables with logarithmically convex teils satisfy the
first inequality of Definition 2.1 with constant b= e/ V2.

Proof. Let F = N~!. Then |X| has the same distribution as F(I).
Since N is a concave function and N(0) = 0, it follows that N(z)/z is
nonincreasing. Therefore, f(z) = F(z)/x is nondecreasing. By a standard
inequality for the measure zFe~*dz we have

§5° f(x)PaPe dm) v (SS“ flz)eaPe® dm) La
{5 zpe~=dz - {5 wre=" dx ’
so it suffices to prove that
{o flx)%zPe ™ dz
lg zre=da

S;o f(x)izle " dx

Sgo xle~® g

Since f(z)¢ is a nondecreasing function, it is enough to show that
o0 — (=] —
\. zPe"dz > {, =% mdw’ 430,
I'p+1) I'(g+1)

Let
(CaPe2dz {7 x%edx

Ip+1) Ilg+1)
Then k(0) = 0 and lim,_, ., h{a) = 0. Since &'(a) is positive on (0, ag), and
negative on (ag,00), where aqg = (I'(p+ 1)/I{q+ 1))~ we conclude
that k(a) > 0. To see that b == e/+/2, notice that the sequence (/|| I|x) =
((n”/n')l/”) is increasing to e. Therefore, since 2/ ||z = v/2,

[Xlla 5 Tl o 7 V3
X = 1T = F e
This completes the proof.

hia) =

Since the left hand side inequality in Theorem 1.1 follows by exactly
the same argument as in Theorem 2.3, we will concentrate on the right
hand side inequality. We first establish a comparison result which may be
of its own interest. Let I" be an exponential random variable with mean 1.
For a random variable X with logarithmically convex tails, and p > 2, we
denote by £,( X) a random variable distributed like a@I", where © and I are
independent, © is symmetric, 3-valued (ie. P(6@ = 1) = /2, P(@ =0) =
1-a), and a, o are chosen so that || X ||s = [|£,(X) ||z and || X, = {[£,(X) |-
Proposition 3.1 guarantees that such o and o exist. We begin with the
following lemma.
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LEMMA 3.2. There exists an absolute constant ¢ such that for any random
variable with logerithmically convex tails X and for every 2 < ¢ < p < oo
one has

x1lg < CHSP(X)“q-

Proof. Replacing X by X/ao we can assume ¢ = 1. Assume first that
4 < g < p/2. We have

e 2 Fr o
1x1g=q el at = g ({4 [+ | Jrie VW gz,
0 o 2 P

We will estimate each integral separately. By Markov’s inequality, for every
t > 0 we have

(%) peN )

Hence,

< X105 = ez

oo e g—p
[trte Mg < JopIr|e | ¢ de < |O)2T(p + 1)5—;
P P

2P
< 61— = Kélellge® < KeNg I
We estimate the first integral in a similar way; since for every ¢ > 0,
() 2~ < O3] I3,
we get
2 2
e te Mar < (03 IIFllzﬂtq'S dt < CT||@IRIIr|E = cUNeNlir| g
0

It remains to estimate the mldd]e integral. Notice that () with ¢ = p and
(%) with t = 2 imply that
N(p) z pln(p/|[I'p) —lna 2 pln{e/2) —
and
N(2) = 2ln(e/2) - lna.
Hence, by concavity of N, we infer that N () > tln(e/2) —Inc for 2 <t < p.
Consequently,

p =]
frote VMgt < o | 107t D gt < K02 |12
2 0

Now consider the case 2 < ¢ < 4. Since for ¢ < p, ||I'|lq > kg/p||T|lp

for some absolute constant & > 0, and for @ Holder’s inequality is in fact
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equality, we obtain the following. If 0 < s < 1 is chosen so that 1/q =
5/(2q) + (1 — s}/2, then

k ’ —~8 -3
Tl = [l IrigtelIr = 101, (51rlz ) ety 11

k Lk Lk
> gllﬁflléqlt@ﬂlé z -2~(HXqu/cl)“’\lX\|% * 2 el Xl

Here ¢; denotes an absolute constant obtained in the first part of proof (as
2q > 4). Since the similar argument (with 1/q = s/p + (1 — 5)/2) works for
p/2 < ¢ < p, the proof is complete.

Tn the remainder of this paper we will assume that if (X3) are indepen-
dent, then the corresponding variables £y are independent, too. We have the
following.

PROPOSITION 3.3. There exists an absolute constant K such that if (Xj)
is o sequence of independent random variables with logarithmically convex
tails and for p > 2, (&) = (Ex(Xx)) is the corresponding sequence of (Op ),

s x x| e,

Proof. Let g € N be an integer, p/2 < 2¢ < p. It follows from Kwapief
and Woyczynski (1992, Proposition 1.4.2) (cf. Hitczenko (1994, Proposi-
tion 4.1) for details) that if 2¢ < p and (Z%) is any sequence of independent,
symmetric random variables, then

|32 2], < e {{| 30 ], + el 2115}
<k 2{| Tz, + (Tiz) ",

Therefore,

|Sx), <x{|Sx,, « (Sixdz) )

Tt follows from the binomial formula and Lemma 3.2 that || 3 Xi|2q <
el 3 Exll2q. Hence we obtain

[l < k(| Sa, + (Sia) ) < x| S,

as required.

Remark 3.4. The above proposition is similar in spirit to & result of
Utev (1985), who proved that if p > 4, (¥) is a sequence of independent
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symmetric random variables, and (Z) is a sequence of independent sym-
metric 3-valued random variables whose second and pth moments are the
same as Yi's, then || 37 Yallp < || 35 Zglp-

We do not know what is the best constant K in Proposition 3.3. We do
know, however, that if p is an even number, then K < e.

In order to finish the proof of Theorem 1.1 we need one more lemma.

Lemma 3.5, There exists a constant K such that if © is a symmetric
3-valued random variable with P(10| =1) = § = 1 — P(¢ = 0), independent
of I', then for every g > 1 and 2 € R we have

(Elz + OI*1)M9 < eqB(OT) + (|22 + KX pler|*yt/e,
Proof. We need to prove that
(|2 + 8(E|z + I'\* — |2?9))1/9 < 2e96 + (|z|*? + 6K2LEI?9)1/9,
Set for simplicity A = El|z + I'|29 — |z]?? and B = K??EI'4. Since the case
A < B is trivial, assume A > B. It suffices to show that
¢(A8) — ¢(BS)
&

where ¢(t) = (221 + £)*/9. Since ¢ is a concave function, the left hand side
above is decreasing in 4, so it suffices to check that

¢(A6) — ¢(Bb)
)
But this is equivalent to
Elz + ' — 2% < 2eq?2®7? + KXEI™ = eg?z??EI® + K*IEI™.
The latter inequality follows from the proof of Lemma 2.3 since an exponen-

tial variable satisfies the moment condition. (A direct proof giving K = e?
can also be given.) The proof is complete.

< 2egq,

2eq > Jim — A6/(0) ~ B#(0) = Z(4 - B)a*".

The proof of Theorem 1.1 is now very easy. By Proposition 3.3 it suffices
to prove the result for the sequence (£;). But, in view of the previous lemma
and the proof of Theorem 2.2, we get

|| <& {(X lez)” + va( S neslz)

which completes the proof.

4. L,~domination of linear combinations by i.i.d. sums. The aim
of this section is to prove the following

THEOREM 4.1, Let (Y}) be i.i.d. symmetric random variables. For a se-
quence of scalars (ap) € €2, let m = [(llall2/lallp)?/ =D, where [z] de-
notes the smallest integer no less than x. Then
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mVp
lallp “
|, <] 35
for some absolute constant K.

Remark 4.2. (i) This result is related to an inequality obtained by
Figiel, Iwaniec and Petczyniski (1984, Proposition 2.2'). They proved that if
{ay) is a sequence of scalars and (Y3} are symmetrically exchangeable then

/
| o], < B2 S )

Although we do not get constant I, our m is generally smaller than n. Also
(cf. Marshall and Olkin (1979, Chapter 12.G)), for certain random variables
(¥}), including the Rademacher sequence, one has

Lid n 21/2, "
|-, <« T o)

Our m is chosen so that the £5 and £, norms of a new coefficient sequence
are essentially the same as those of the original one.

(ii) If, roughly, the first p coefficients in the sequence (ay) are equal, then
automatically m > ¢p, and thus mV p in the upper limit of summation can
be replaced by m. This follows from the fact that if a5 > a3 > ... > 0, then
the ratio

k
Ejﬁl a?
k
(Zg =1 3)2/p

is increasing in k. This observation will be important in Section 6.

We will break up the proof of Theorem 4.1 into several propositions.
Recall that for a random variable Z € Lgy, ¢ € N, we have EZ% =
(wl)qe;bz l1)(0) where ¢z is the characteristic function of Z and ¢(2q its
24th derivative.

PROPOSITION 4.3. Let (Yi) be a sequence of i.4.d. symmetric random
variables such that

(D lngy) () 20 forl=1,...,q.

Suppose that a and b are two sequences of real numbers such that llell2r €
[1b]l2z forl=1,...,q. Then

E(i w¥i) <5 3 bt
k=1

k=1 '
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Proof Let § =3 7, axV),. We will show that (~1)%(pg)22(0) is an
increasing function of |lally, [ = 1,...,¢. We have

¢s(t) = exp{lnds(t)} = exp { Z In o,y t)}

Differentiating once and then 2q — 1 times using the Leibniz formula we get

987 =3 (g5’ payy) 3D

-1 ) e
)(1n¢aky)(3+1)¢(s2q 1=4)

Hence, evaluating at zero, and using ¢g)(0) =0, for odd j’s, we get

$50(0) = quil (2‘1 1)1 (1) (g 213
§ 3 ()i 0
= 2% (310} )t ment 0P 0),
E g=1

and it follows that

; -1 - ; 2g—j
15122 = (~1)%$7)(0) = Z ol (347 1) (2 Ga s O30
s

Since we assume that {—1)7(In ¢y )(27(0) > 0, the result follows by induction
on ¢.

PrOPOSITION 4.4. Let p > 2. Suppose that a and b are two sequences
of real numbers such that ||alls < ||blls for 2 < s < p. Let (Yz) be i.i.d.
symanetric such that (wl)l(ln qﬁy)(ZI)(O) >0 for alll < p. Then

" T
|l < x| 2onn],
k=1 P I B
for some absolute constant K.

Proof. It follows from Kwapiei and Woyczyiiski (1992, Proposi-
tion 1.4.2) (cf. Hitczenko (1994, Proposition 4.1) for details) that if 2¢ < p
and (Z),) is any sequence of independent, symmetric random variables, then

sk {34, + lmax|Zilla}

<x i {[ S+ (Sz) )

Applying this inequality to Zy = agYk, using Proposition 4.3, and the in-
equalities
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v 2], <|Sa], = (Sizr) " <1570

we get the desired result, provided p/g < C.

Remark 4.5. It is natural to ask whether we can drop the assumption
(—1)/(In by )®(0) > 0. In general it is not possible. To see this let {ex) be
a Rademacher sequence, and for p € N let gy = 1 or 0 according to whether
E<pork>p b = pandby =0fork > 2 then Halls < [[blis for
2< s < pbut || axerlly @ pand | 3 breklls = /P

Before we proceed, we need some more notation. For a random variable
Z we let Pois(Z) = Eszl Zi, where N, Z1,Z,,..., are independent ran-
dom variables, N is a Poigson random variable with parameter 1, and (Z))
are 1.i.d. copies of Z. Moreover, if the Zj are independent, then Pois(Zy)
will always be chosen so that they are independent. Since P(|Y| > ¢) <
(1/2)(1 e 1) P(|Pois(Y)| >» £), the next proposition is a consequence of the
contraction principle.

PROPOSITION 4.6. Let (Y,) be a sequence of independent symmetric ran-
dom variables. Then

[Xn], = o rescn],

for some absolute constant C.
Next we note that, for an arbitrary random variable Z,
¢Pois(Z} = BXP{¢Z - 1}a

and hence, in particular, if Z is symmetric, then (—1)*(In ¢poss Z))(z'“) (0) =0
for all k and thus, by the above discussion, if (Zy) are i.i.d. copies of Z, then

| 3" awpois(vi)| | < ¢ 3 wapeis(vi)|

whenever ||al|s < ||b]ls, for 2 < s < p.
Now fix a sequence a, and let m = [(|la|l2/]la||p)**/®~2] as in Theo-
rem 4.1. Define a sequence b by

b = g ifk<m,
¥~ 10 otherwise,

where § = |ja||,/m'/?. Note that ||b]l2 > |laf2 and |||}, = |jali,. Hence by

Hélder’s inequality |laljs < ||b||s for all 2 £ s < p. Therefore, for an arbitrary
sequence {Y3) C Ly, of i.i.d. symmetric random variables we have

m N
[, <l | S ru] =l S
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where Ny, is a Poisson random variable with parameter m, independent of
the sequence (¥}).

Our final step is to estimate the quantity || 520" Y|ip. The following
computation is rather straightforward; a very similar calculation can be
found, for example, in Klass (1976, proof of Proposition 1).

PROPOSITION 4.7. For m €N, and (¥;) and Ny, as above, we have
N mvgp
12, < 2,
k=1 T k=1 7

Proof For j > 1,1let §; = 3)i_, Yi. Note that, since (S;/5) is a re-
versed martingale (or by an application of the triangle inequality), ||S;/5p
is decreasing in j. Therefore, for jy to be specified later, we have

N oo ;

P e~ M)

[Xn] =X isk—r
=1 P =1 J:

Jo

emmi  ||85llf < jPemmm!
<85 le Y = T N L

I D
= L s
e~ m FPmi
s+ 2 57)

J>do
The ratio of two consecutive terms in the last sum is equal to
i p P/ g
(“1) RIBPS AL
g i+F1 7 5+1 2
whenever j > max{2em,p}. Therefore, choosing jo ~ max{2em,p}, we
obtain

Nen p 267" L {m Jo
IS5 < sl (1 + 2572 (2 ) ) <2012 < KISl
k=1

Jo
This completes the proof of Proposition 4.7.

Theorem 4.1 now follows immediately from the above results.

5. Distribution of a sum of i.i.d. random variables. In this section,
Yi,...,Y, are independent copies of a symmetric random variable Y. We
fixn, and let § = 8y = S0, ¥i and M = M, = sup;¢ic, ¥i Our aim
is to caleulate || S|, and as we will see below, this is equivalent to finding
15 |p.00+ | M | 5. Let us recall that for a random variable Z, || Z||p,c0 s defined
by

1 Z]|p,00 = sUP s P Z*(s),
5>0
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where Z* denotes the decreasing rearrangement of the distribution function
of Z, ie.
Z*(s)y =sup{t: P(|Z| >1t) >s}, O<s<l
The fellowing simple observation will be useful:
LemMA 5.1, Let p > 2. For any sequence (Zy) C
symmetric random variables we have

Az,

L, of independent,

+ [ max | Zi| | }

<[ Xa], s {| X, +imaxizi)

for some absolute constant K.

Proof. Since for p > ¢ > 1 and for any random variable W,

D i/g
Wllaso < [Wle < (pfq) W oo

the first inequality is trivial. For the second inequality we first use a result
of Kwapieti and Woyczynski (see proof of Proposition 4.4 above)

| Z 2], < &2{| Z 2]+ Imaxiziii}.

and then the right estimate above with ¢ = p/2. This completes the proof,

Throughout the rest of this section, by f(z) = g(x) we mean that f(ez) <
Cyg{z)} for some constants ¢, C. We will write f(z) = g(z) if f(z) < g9(z) and
g{x) = f(z). With this convention we have

THEOREM 5.2. For 0 < 8 <1 we have
S*(6) < T1(6) + Ta(0),

where
1(8) = _og(1/6) —mme—ee || Y (g fnva -1/ 1y 1) |2
W=y '
and

Y {t)
Ty(8) =log(1/8 .
2(6) = log(1/ )9/n<ts<1;81/" L log(1+ (6-V» < 1)/8)

Proof. Let ¢ > 0. Following the argument in Hahn and Klass (1995),
for a > 0 we have

P($21) < P(M > a) + inf E(M50 | M < a)P(M < a)

=1~PYY <a}+ ()1:1;1(:'] E(MY M Y < o) P(Y < a))”.
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If we choose a so that these two terms are equal, and then we let
f=1—-PYY <a)={i MY —t/n) n
{ a) ()1\1;% Ele Y <a)P(Y < a))",
then, by the above computation,
P(S>1t) <20

The whole idea now is to invert the above relationship, i.e. starting with
8 we will find a relatively small ¢ so that S*(f) < #. Since the values of §*(8)
are of no importance for & close to 1 we can assume that 6 is bounded away
from 1, ¢ < 1/10, say. Then P(Y < a) = (1 - 8)*/™ ~ 1 — §/n, so that
P(Y > a) ~ 6/n, which, in turn, means that ¥*(8/n) = q.

In order to find a ¢, we will use the relation

6 = inf B | ¥ < a)" = inf(BNT /M)y,
A

where Y denotes Y Iy <q. Then for A > 0 we have § < e‘”(Ee"f’)“, and
taking logarithms on both sides we get

t< ; In(1/8) + nin{Be*¥ )1/,

Hence, we can take
. 1 ATV 1/A
t= ix;i('] { Aln(l/ﬂ) +nln(Ee™) :

Note that the second term, being equal to nln ||ef" ||, is an increasing func-
flon of A. Since the first term is decreasing in A, it follows that, up to
a factor of 2, the infimum is attained when both terms are equal. Thus

t m (1/)\)111 1/8), where A is chosen so that In(1/8) = nln(Ee)‘?) ie.
Ee*? = 9~/ Since ¥ is symmetric, Ee*Y = F cosh(A\|Y]), and the above

equallty is equivalent to
cosh(A\Y) -1\ _
p(ZAT ) =1

But this simply means that

cosh{s) — 1

i1

(Recall that if ¥ is an Orlicz function and Z is a random variable, then

1Z|lp = inf{u > 0: B¥(Z/u) < 1}.)
In order to complete the proof, it suffices to show that, with s’P’ as above,

t~ || Y]sn(1/8), where &(s) =
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we have
v (2)
S11
o mctetrrn—y 10g(L ¥ (6-3/7 — 1)/1)

¥ |l =~

1
+ T Y ez
We will need the following two observations. For an Orlicz function ¥
and a random variable Z, define the weak Orlicz norm by

1
Z|lwee = 81 s . }
12lee = 200 { Gorgi @)
LEMMA 5.3. Let o(s) = e® — 1. Then
121100 < 112l < 3[12]i,00-

Proof. Only the second inequality needs justification. Suppose || Z|y,c0
< 1. This means that Z*(z) < In{1+ 1/z) for each 0 < z < 1. Hence

1
E(Z/u) = BelZ7 /0t — 1 < [ l/In041/=) g g
0
: /Uy
< {@/z)/vde —1=
Q

—-1=<1
u_,

whenever v > 3.

Remark 5.4, The above relationship is true for more general Orlicz
functions as long as they grow fast enough; see Theorem 4.6 in Montgomery-
Smith (1992) for more details.

LEMMA 5.5. Suppose that &1,P; : [0,00) — [0,00) are nondecreasing
continuous functions that map zero to zero, and such that there exisis o
constant ¢ > 1 such that $;(z/c) < &;(z)/2 (i = 1,2). Suppose further
that there are numbers a, A > 0 such that 1{a) = B3(a) = A. Define
®:[0,00) — [0,00) by

_ [ #:(z) ifz<a,
b(z) = {{152(9:) if ¢ > a.
Then for any measurable scalor-valued function f, we have
I£1le = 110,411l g, + 1F*]ca-1 .00 5,
The constants of approzimation depend only upon c.

Proof. Notice that &(z/c*) < $(x)/2. This is clear if both z/c* and =
lie on the same side of ¢, and otherwise it follows by considering the cases
where z/c is greater or less than a.
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Let us first suppose that the right hand side is less than 1. Then
AR oo
| 22(f*(2))dz <1 and | &1(f*(z))dz < 1.
0 A-1
From the first inequality, we see that A= d3(f*(A~1)) < 1, from which it
follows that f*(A~!) < a. Let B be such that f*(Bt)<a< f*(B7),sothat

B < A. (Here, and in the rest of the proof, we define f(A*) = limg~, a4 f(2)
and f{(A™) = lim, ~4 f(z).) Then

B B
V(£ (2))dz = | Bl f*(2))de < 1,
0 (0]

Av--l
| 2(/"(2))de < A7'0(1(BN)) < 1,
B

[+ o]

S S(f*(x))dz = S S (f*(z))dz < 1.
A=t A1
Hence
§ 8(f*(2)) do <3,
0
and so
S B(f*(z)/c)dx <1, thatis, |flls <c
0

Now suppose that [|flls < 1, so that S(T S(f*(z))dz < 1. Then
AT P(f*(A™1)) < 1, which implies that f*(A™') < a. Let B be such that
F(B+) < a < f*(B"), so that B < A. Then

B B
| 92(F* (@) da = | 8(F*(2)) dz < 1
1] 0
and
AL
[ &2(f" (@) do < A7 B (f*(BT) < L.
B
Hence
AL
§ oa( (@) do <2,
0
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from which it follows that || f|ip,4-1] ||d52 < e Also

o0 00

| e @)de= | #(/*(@)de< 1,
A-1 A1
and hence |\f|{A_17w)j|¢1 < 1. This completes the proof of Lemma 5.5.
Now, in order to finish the proof of Theorem 5.2, let
cosh(s) — 1
2= o1
Then
— @1(5) lfOSSSl,
(s) = {qsz(s) 5> 1,
where
52 et —1
@1(5) 7 m and @2(3) ~ W

Since V* = (Ylvea)* = (Y*|jg/n,1))"; by Lemma 5.5 we obtain
H?”sﬁ m”Y*ha,ewl/ﬂ—l}“siiz + ||Y*|[e—1/ﬂ—1,1]llfﬁn
e

1
10,6-1/0—1)l&s,00 + \/G—_—w'——-?f||1"*|[e-w—1,1; 2
‘Sup V(1)
o/n<t<o—r/m_y og(1+ (8-1/" — 1) /1)
1 *
m‘“‘»,“n——_lHY lio/mvig-2/m—1)11]]2-

This completes the proof of Theorem 5.2.

[}
i~z

_|_

6. Moments of linear combinations of symmetric Weibull ran-
dom variables. In this section we will apply our methods to obtain an
upper bound for the Ly-norm of a linear combination of ii.d. symmetric
Weibull random variables with parameter 0 < r < 1. We will also show that
this upper bound is tight. A random variable X will be called symmetric
Weibull with parameter r, 0 < r < oo, if X is symmetric and | X | has density
given by

fix®) =rt™"te™, >0
We refer to Johnson and Kotz (1970, Chapter 20) for more information on
Weibull random variables. Here we only note that by a change of variables,

| X[ =I'(1+p/r), p>0,

so that using Stirling formula and elementary estimates we have the follow-
ing.

Moment inequalities 35

LeMMA 6.1. If X is a symmetric Weibull random variable with parameter
0<r<l, andp > 2, then

pl Xz < ClX]l,,

where C is a constant not depending on p or r.

As we mentioned in the introduction, Gluskin and Kwapien (1995) es-
tablished a two-sided inequality for the Ly-norm of a linear combinations
of i.id. symmetric random variables with logarithmically concave tails. In

the special case where P(|£] > t) = exp(—t"), r > 1, their result reads as
follows: '

{(ar) " el + ol (3 a2)")

k<p k>p

<| St <o{ ()" tel+ valeta(ad) ),

k<p k>p

where 1’ is the exponent conjugate to r, ie. 1/r+1/r' = 1, and ¢ and C are
absolute constants. In this section we complement the result of Gluskin and
Kwapien, by treating the case » < 1. Here is the main result of this section.

THEOREM 6.2. There erist absolute constants ¢, C such that if (X;) is
a sequence of i.i.d. symmetric Weibull rondom variables with parameter r,
where 0 < r < 1, and (ag) € £3, then

emax{ /5 o] 2 Xl allp} X )
< || Yenxi| < cmex{vplalblX o, lollo X1}

Proof We begin with the following result.

PROPOSITION 6.3. Let p > 2, and let (X)) be a sequence i.i.d. symmetric
Weibull random. variables with parameter r where 0 < r < 1. Then

arl Xl < | o | < Canl X
k<p

Proof The first inequality is trivial. To prove the second, note that
|5, <ol T, <ol ]
k<p v ke k<p #

Assume first that = is bounded away from 0, say r > 1/2. Then letting (I7)
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be a sequence of 1.i.d. exponential distributions with mean 1 we can write
P 1 e] NPT 1] TNR/T
B ) = B([ean ] ) =B((20T)
k<p k<p k<

cB(Sn)" Rz

= I'{p)
<o LW ) < KO0 /)

since 7 is bounded away from zero. This shows the upper bound for r > 1/2.
To handle the case r < 1/2 we will apply a method that was used in Schecht-
man and Zinn (1990). Let (X)) denote the nonincreasing rearrangement
of (| X&|)s<p. For a number ¢ > 0 we have

P(Z|Xk1 > t) =P(EX(k) > t) <D P(Xgy 2 ait),
k<p k<p

where (gx) is any sequence of nonnegative numbers such that Yok <p @k <L
Now, using the inequality

(EjSpP(Y} > 5))*
k! ’

valid for any sequence of independent random variables (¥;) (cf. e.g. Tala-
grand (1989, Lemma 9)) we get

P¥py 28 <

(pexp{-gt" )"

P(X(k >qkt) 7

Therefore,

B <50

(e o]
P X P~ exp{—kq{t"} dt.
k<p 0

Substituting u = (k'/"gzt)" into the kth term and integrating we get

[ s]
} " exp{ (87 qut)"} dt = —oBLT)
0

r(kt/7 g )P
Therefore,
E};@th (p/r)T P/"")Zk%p/r
< r Sy
< (p/r) (P/T)W pBEE

k=1
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which is bounded by C?|| X2, as long as k*/"gy, is bounded away from zero.
The choice g = k=" concludes the proof of the proposition.

Now for the general case. By the previous proposition we can and do
assume that n > p. We will establish the upper bound first.

We first observe that it suffices to prove the result under the additional
assumption that the first [p] entries in the coefficient sequence are equal.

Indeed, suppose we know the result in that case. Then, for the general
sequence (ag), we can write

” S aXi| < H Y mX+ ZakaPH’“H
P k<p k>l 7

S Cmax{yp | Xll2(vBar + llall2), (0" Pas + allp) XI5}
< Cmax{y/p o]zl X2, [lalls | X |5},

since, by Lemma 6.1, we have
paa||Xifz € Kay[| X, < Kllaflp]| X T

Next we note that if the first [p] coefficients are equal, and m is defined as
in Theorem 4.1, then automatically

m 7 (lafla/llall)*/ %) 2 ep,

and the inequality of that theorem takes the form
lallp || 5
| eon] < el S5
By definition m < 2(||all2/||all,)?/®=?, so that

loly = < /25 alla.

ml/e

Therefore, in order to complete the proof it suffices to show that
T

“ ZXka < K max{/pm || X ||z, m P X |5}
R,

In other words, the problem has been reduced to the special case when all
coefficients are equal.

To prove the latter inequality we will use Theorem 5.2. Fix n € N. Let
S= 50, X and M = sup;<;<, Xi, that is, M*(t) &~ X*(¢/n). Our aim is
to show

1511y < K {v/mp | X|l2 -+ (4|5 }-

(Note that | M, < n'/?||X{,.) By Lemma 5.1, it suffices to estimate
[Sllp,e0 + || M]|p- Let us recall that X*(t) = (1og(1/t))1/"
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From Theorem 5.2, we know that
5*(z) 2 Ti(z) + T(a),

where
_ log(l/x) .. ,
hle) = == 1 lermvemrm-n 2
and

X*(t)
Ty(z) = log(1/z) e/ncigoiimy J0g(L+ (2177 — 1)/8)

Now, |[Slip,c0 & SUPgeucr ml/pTl("L') + SUPg<ac1 w'l/pTz(m)-
To get a handle on these quantities, we use the following approximation:

gl _ 1 J(U/n)log(l/z) ifz>e™m,

T gl ifo <em.

Now, we can see that if x < e™, then Ty(2) = 0, and if £ > ¢~ then

T1(2) < ev/ny/log(1/z) ||X | 2.
Hence, supg., <1 22771 (z) < ey/mp || X 2.
As for T3, we use similar approximations, and we arrive at the following
formula. If z > ¢™™, then

sup log(1/x)X*(t)
2/n<t<(2/n)log(1/z) 1 +10g(1/t) - log(n/log(1/z))’

and if © < e™", then

Tz (.T.) ~

D)~ sp  28E/EXE)
z/ntLel/n ]-Og(l/t)
Now let us make the substitution X*(¢) = (log(1/£))}/", where 0 < r < 1.
If 2 < e™, then it is clear that the supremum that defines Th (z) is attained
when ¢ is as small as possible, that is, ¢ = /n. But, since ¢ < e~™, it follows
that log(n/x) = log(1/xz), and hence

Ty(z) = X*(x/n) = M*(z).
Now consider the case z > e, Then

Th(z) ~ sup log(l/a:)H(log(l/t)),'

z/n<t<L(1/n) log(l/z)
where
ul/r
1 —log(n/log(1/z)) +u
Now, looking at the graph of H(u), we see that the supremum of & (u) over
an interval on which H () is positive is attained at one of the endpoints of

H{u) =
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the interval. Hence

Ta(z) ~ log(1/z) max{H (log(n/x)), H (log(n/ log(1/x)))}.
Now,
g1/ 2)(log(n/2)) = BN sty aavg),
because 1+ log(log(1/2)/z) ~ log(1/z). Also,
log(1/z)H (log(n/ log(1/z))) = log(1/z)(log(n/ log(1/z))) /"
Putting all this together, we see that

su ml/mesz log(1
,SIp & PTy(z) = | My, + sup Flog(1/z)),

where
Flu) = e‘“/f’u(log(n/u))lf’”.

Thus, the proof will be complete if we can show that Flu) < /B[l X ]2
for all u < n. To this end, from Stirling’s formula, we observe that 1 X2 =
T(1+2/r)Y2 > e Y2/ (re))V/r.

Notice that

wbiw) w1
Fuy — p+l rlog(n/u)’

This quantity is positive if v is small, it is negative if u = p or u = n, and

it is decreasing. Hence, F'(u) attains its supremum at g, where F” {up) =0
and ug < p. But then

1 1/v

Flup) < /mpG(n/ug), where G(v)= (o_g\/v%_.

Simple calculus shows that

1/r
G(v) < Gl = (3—) < o} X

re

which proves the right inequality in Theorem 6.2.
To prove the left inequality, notice that by the original proof of Rosen-
thal’s inequality (Rosenthal (1970)) we have

| S| = (az) s,

50 it suffices to show that

” Z%X}c”p >.e/D (Zai)lﬂﬂ}(”z.
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RN

Assume without loss of generality that p > 3. Let & = (3 i<p @
and define a sequence d = (dz) by the formula

g = § ik<p,
* =) ar otherwise.

[Eaeri], 2 s i,

for some absolute constant x > 0. Indeed, let ¢ be a constant such that
| S kep Xells < ClIX|p- Since & < a1 we have

S, < m, [Sews], s oot + | Sox,
<@+D|Taxe ,

so that one can take & = 1/(C + 1). Let (g)) be a sequence of Rademacher
random variables, independent of the sequence (Xj). Notice that
maxd;/||d||2 < 1/,/p. Therefore, using the minimality property of Rade-
macher functions (cf. Figiel, Hitczenko, Johnson, Schechtman and Zinn
(1995, Theorern 1.1), or Pinelis (1994, Corollary 2.5)) (here we use p > 3)
and then Hitczenko and Kwapien (1994, Theorem 1} we get

| o], 2 et 2 o o dexelies],
> eyl Xl = ey lalal X

Then

The proof is complete.

Remark 6.4. For 7 = 1 our formula gives p|ja|lp + /P llafz, while
Gluskin and Kwapien obtained psupye, ak + /B (o, 03) /2. Although
these two quantities look different, they are equivalent. Clearly p supj<, ax+
VB hsp @)Y < pllally + /Bllallz- To see that the opposite inequality
holds with an absolute constant, notice that if g, and Ek>p a% are fixed,
then pllallp + /P |le/l2 is maximized if the first several ax’s are equal to aq,
the next one is between a; and 0, and the rest are 0. In this case it is very
easy to check that the required inequality holds.

Theorem 6.2 implies the following result for tail probabilities.
COROLLARY 6.5. Let a = (a) € o, a #0, and let S =Y, ax X, Then
Jua log, In1/P{|S|>t)=r.
Proof. Since P(1S| > t) > 1P(a1|Xy| > t) = Fexp{—(t/a1)"}, we
immediately get
' 1'139;1;1310& Inl/P(S|>t)<r
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To show the opposite inequality note that if s < r then

Bexp{|S|°} = 1+>:E55'

b

by Theorem 6.2. Hence P(|§| > t) < eXp{—ts}E exp{|S|*}, which implies
litrz_1}i1<r)1f1c.g‘t Inl/P(|S] >t) > s.
Since this is true for every s < r, the result follows.

Acknowledgments. We would like to thank S. Kwapieri for his remarks
and suggestions that led to discovery of the proof of Theorem 2.2.
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The boundary Harnack principle for the fractional Laplacian
by

KRZYSZTOF BOGDAN (Wroctaw)

Abstract. We study nonnegative functions which are harmonic on a Lipschitz domain
with respect to symmetric stable processes. We prove that if two such functions vanish
confilnuonsly outside the damain near a part of its boundary, then their ratio is bounded
near this part of the boundary.

1. Introduction. The boundary Harnack principle (BHP) for nonneg-
ative harmonic functions has important applications in probability theory
and potential theory. Among these are approximations to excursion laws
for the Brownian motion (see [6]), “3G Theorem” and “Conditional Gauge
Theorem” (sec (8]). BHP was first proved in [9] for Lipschitz domains by ana-
lytic methods (see also [12], [11]). Later, the classical link between harmonic
functions and the Brownian motion in R® was used to give a probabilistic
proof of BHP ([2]). The result and generalizations of BHP to elliptic opera-
tors and Schrédinger operators have yielded stimulating interplay between
probability theory, harmonic analysis and potential theory (see [7], [3], [8],
6], [11).

The Brownian motion is a particular (and limiting) instance of the stan-
dard rotation invariant a-stable process, & € (0, 2]. The infinitesimal gener-
ator A%/2 of the latter and the related class of a-harmonic functions have
simple homogeneity properties analogous to those of the classical Laplacian
and harmonic functions (o = 2) in R™. Also, the potential theory of A%/2
(n > a) enjoys an explicit formulation in terms of M. Riesz kernels, and is
similar to that of the Laplacian in R®, n > 2 {[13]).

The main result of this paper is the following theorem which gives an-
other extension of the classical theory (@ = 2) to the case o € (0, 2).
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Key words and phrases: boundary Harnack principle, symmetric stable processes, har-
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