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On the maximal operator associated
with the free Schrédinger equation

by

SICHUN WANG (Harnilton, Ont.)

Abstract. For d > 1, let (Saf)(z,t) = {, et Fley de, & € R®, where T is
the Fourler transform of f € S(R"), and (53 F){%) = SuPgerer [(Saf)(z,t)| its maximal
operator. P. 8jélin ([11]) has shown that for radial f, the estimate

ip
() (1 wsin@ra)” < oalifin,
lzl<R :
holds for p = 4n/(2n — 1) and fails for p > 4n/(2n — 1). In this paper we show that for
non-radial f, («) fails for p > 2. A similar result is proved for a more general maximal
operator.

1. Introduction. Consider the integral operator

(1.1) (Saf)(m,t) = | &=t fle)dg, weR®, £ 0,

ey
d > 1, where f is the Fourier transform of f € S(R") defined by

fl&)= | e7** f(z) da.

Tn
In the case d = 2, u{w,t) = (27)""(S2f)(z,t) is the formal solution of

the free Schrddinger equation Aw = ¢ %%, w(z, 0) = f(z). In order to obtain
optimal function spaces for which solutions exist a.e, on the boundary ¢ = 0,
one is led to the study of regularity of the corresponding (local) maximal op-
erabor (S3£)(2) = suppesey [(S2F){=, t)|, specifically one requires estimates
of the form
) i » 1/p
(1.2) { § 1snErd}" < Callfla,

|a|< 12
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where H, denote the Sobolev spaces defined by

~ 1/2
Ho={res®):|flm ={ @+ If@Pe} <o},
Rers
Here S'(R™) is the dual of the Schwartz space S(R™) ([14]).

Considerable literature is devoted to the study of the estimate (1.2) (cf,
[1]-[7], [10}~[12], [15] and the literature cited there). In fact, if s < 1/4,
p > 1, then (1.2) fails ([8], [15]), while in the case n = 1, the more general
estimate

1/4

(1.3 {Hssh@ltdz}t " <Clfla,
R

holds ([6]). Moreover, (1.3} is sharp in the sense that the L*norm on the
left cannot be replaced by an LP-norm for p # 4 {[13]). For n > 2, only
partial results regarding the estimate (1.2) are available (cf. [4], [8], [10],
[11], [13], [15]). However, if f is radial, n > 2, s = 1/4, then P. Sjslin ([11])
proved that (1.2) is satisfied with p = 4n/(2n — 1) and if p > 4n/(2n - 1),
s = 1/4, (1.2) fails. This result together with (1.3) might suggest that for
p=4n/(2n — 1), s = 1/4, the local estimate (1.2) is satisfied for non-radial
fon K", n > 3. That this is not the case follows from the following result:

THEOREM L.1. Ifn>3,p> 2, a >0, then

ay s [{ | SEN@PRdc}” ] = o

FES®) 7 aj<r
ford> 1.

Since §i, p [SEA(@IPdz 2 ge (5, g |(S1F)(@)[Plz|> da) it is clear
from (1.4) that (1.2) cannot hold for p > 2 and 5 = 1/4.

As alluded to in the abstract, we shall prove a corresponding result for
a more general maximal operator. Suppose Q is a real polynomial such that
deg@ > 1 and the leading coefficient of Q is positive. Let £2(¢) = QU
E€R", n>3and '

(52f)(z) = sup

S eim-EeitQ(g)l?{f) d,é',
0<itl

ere

THEOREM 1.2. [f n >3, p> 2, o > 0, then

a5 s [{] (SaA@PRd) 1], = oo

fes) M g |

As in the case of Theorem 1.1, it follows that for f€S(R™), n > 3, the
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estimate
. p o M7
(1.6) { 1 1sen@ra}” < Calflu,
|a|< R

fails for p > 2 and R > 0.

The proofs of Theorems 1.1 and 1.2 follow from a series of lemmas in-
volving properties and estimates of spherical harmonics. These results, some
of which are of independent interest, are given in the next section.

We conclude the introduction by listing some definitions and notations.

(i) A homogeneous harmenic polynomial in R™ ig a polynomial which
is homogencous and satisfies the Laplace equation in R™. The restriction of
a homogencous harmonic polynomial of order k to the unit sphere S* ! in
R™ is called a spherical harmonic of order k on S™~* (cf. [14, Ch. 4]).

(i) The Bessel function Jp, of order m > —1/2 is defined in integral
form by '

1
(T/Q)m S girs (1 . S2)(2m-1)/2 ds,
~1

1
Il = S Fim T 172)
where r > 0.
(iif} The well-known Stirling formula

Tim [T+ 1)/ [(r/e)" (V)] = 1

is required in the sequel, where the I'-function is defined by
o0
Iir) = S e de, r>0
0
(iv) The Legendre polynomials P, (z) of ordern, n = 0,1, 2, ..., are given
by

| 1 [ a
Pule) = 5o {E&T (s - 1)7;},

The potations for €, C§° and the Schwartz class S(R™) are standard.
Also, L¥(X,dp) are the Lebesgue spaces with norm || - [|zeex,aw = [l - lip-
[a,B]" are n copies of [a,b]. = means “defined by” and C are constants
(sometimes with subscripts) which may be different at different places.

2. Proofs. For the proof of Theorem 1.1, a number of technical lemmas
are required. The first lemma is an immediate consequence of {2.19) and
Theorem 3.10 of [14, Ch, 4]. :
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LEMMA 2.1. If ¥ is a spherical harmonic of order k, then

(21) | e *E Y () dalg)
gr—1
= (2m) 2R ETR J ka2 (8) Y ().

Here s >0, o', &' ¢ 8" ! and do denotes the surface measure on 5™,

Lemma 2.2. If Hg(}k), n > 3, is the vector space of spherical harmonics

Y of order k on S* and p > 2, then

(2.2) sup [[Vlp/[Y ]2 2 CRH/2I2,
ven

for some C > independent of k. The norms are the usual L¥-porms over

gr-l,

Proof. We prove (2.2) for n > 4 first. This is done by constructing a
particular spherical harmonic v e gk satisfying

(2.3) ¥ llo/ Y iz 2 CHO2H22,

The functions Y;, (6, @) = €% (sin 8)™! Pé\ml) (cost}, m = 0,41,2£2,...
., 1k, are spherical harmonics of order % on S? and form a bi-LHlb fox Hy {k )
where Py (z) is the Legendre polynomial of order k and P,S“( )= (z~ 2 ( Py (2 ))

(cf. [16, Theorem {6.7)]). Since 1—"(’!c (cos8) = Ch, a constant, it follows that
Yieu(0, 0) = Cr e?(sin )*. Let '

(2.4) Qu(z1, 22, 23) = (2} + 23 + 23)52¥} (6, )

be the homogeneous harmonic polynomial of order & associated with Yj K-
Then we define a homogeneous harmonic polynomial of order & in &® by
Qk(ml, --3Tn) = Q{21 z2,w3). The polar coordinates in R™ are given
by

X1 = TCO8 91,

x; == rsinfy singy .,

-8inf;_qcosby, 2<ji<n~1,

Tp = r8in by sinds ... sind, .,

where 0 € 6; <7, 1 <7< n—-2,0<L0, <21, 7> 0. Restricting éh

to S"~!, we obtain a spherical harmonic Yék) = YTEM (61,69,...,0,.1) of
order k.

We claim that
(2.5) %8| = Ci(sindy)*[1 — (sin8)° (sin 83)2]*/2.

Since r? =af +...+ 22 =1 and in R3, 2y = Rcosh, 2y = R'sinf cos g,
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w3 = Rainfsing, 0 <0< 7, 0< ¢ <27, R >0, we have
R* = 2% + o2 + o}
= (cos81)* + (sin 81)* (cos B)? + [(sin 61) (sin 6, (cos 63))?
=1 — [(sin 61 ){sin 6 ) (sin f4)]*
and cosf = 31 /R = (cos61)[1 — (sin 6, )?(sin 83 )% (sin 83)?]~ /2. Moreover,
$in 6 = [1 — (cos0)*]"/* = [1 — (cos b/ R)*]*? = [R? — (cos61)*1*/2/R
= (1/R)[1 — (sin81)*(sin 62)%(sin 63)% — (cos §;)2]*/2
= (1/R)(sin61)[L — (sinf3)?(sin #3)]*/?
and therefore from (2.4), '
Y, M| = RF C (sin6)* = Ci (sin1)*[1 — (sinb2)? (sin 63)2]*/2,

which proves (2.5). The spherical harmonic so constructed will be shown to
satisfy (2.3).
In fact, on S,

. ! 1/p
1Y ={ | ¥9060.65,....60 )P do}
Sn»l
T Y
= BYP [ J(sin 63)7++"2 ;|

“|

[1— (sin8y)?(sin 63)]P*/2 dy(B2, 93)] Y

(=T ]
O ey

where
2 .
B, = ! ( S (5in @y, —2 ) (sin On_z)?.. . (sinfs)" % dby.. .dﬂndz) a0, 1
4] [(},ﬂ-]nu-«j
andl

dju(By, 0g) = (sin @)™ (sin 83)"~* dBadbs.
By Hélder's inequality with index p/2, p > 2,

¥
{"ﬁ“ 1- smf)g q1n93)2]k du(92,93)}1/2
00

{11l

}1/2-1/?

b

7§ 1~ (smog) (sin 63) ]ﬂa'“/%z,w(a2 @3)} Y p{ | Sld,w(ez,ﬂg)
0 00 )

2 ey ]
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s0 that
(2.6) R > O [ (sin 6, )7+7=2 4, ] /¥
. “Y;-Ek)”2 e OV [Sg(singl)zk_i_n_z dé’l} 1/2
where Chp, = {Bn {5 {7 du(B2,03)}/P~/2, Since
Lo e o = T(a+1)/2)
é(smé) dd = /7 NCTEDE

a > 1 (cf. [9, p. 194]), it follows that the right side of (2.6) is equal to
I((pk+n—1)/2) ]”P
((pk +n~1)/2+1/2)
[ I((2k+n—1)/2) ]‘1/2
T{Rk+n—1)/2+1/2)

2.7 Cn,pﬂ(lfp—lm/z[r

But since

. Ix+1/2)
—_— = . . 203
there exists a constant C > 0 such that

I{(pk +n = 1)/2)

(2:8) Tk rn -T2 20K (k21
and
29 (RN NV

I'(2k+n—1)/2+41/2)
Substituting (2.8}, (2.9) into (2.7), we see that the right side of (2.6) is
greater than or equal to
Gﬂp[Cm1/P“1/2(k:—l/z)l/;ﬂ(k—lﬂ)—l/z - Cnp(C\/T—r)lfp—1/2k(1/2~1/p)/2’

which proves (2.3).

If n = 3, the spherical harmonics are simply Yix (8, @) = Cj e**¢ (gin §)*
and (2.5) becomes Cy(sin §)*. The rest of the argument is then almost the
same as in the case n > 4. We omit the details.

LeMMa 2.3. If m > 3/2 and r.> 1, then there exist constants Cons Con
and o bounded function ., such that

(2.10) T (r) = (Cone™ " ++ T e =42 4 O
where
|G| = |Com| = (2m) ™2 and [¥m ()] < O(2m)m+L,

Proof. The proof is essentially that of Leinma 3.11in [14, Ch. 4], except
that the bound of 4, was not given explicitly there. We give the argument
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here for completeness only. Since

1 m
Im(r) = I/ (2m+1)/2) /2™,

where I = Sl_l (1 — $)Pm—1)/2 45 ag in the proof of Lemma 3.11 of
(14, Ch. 4] we obtain I =Ij — I, where

00
II = S ez’?('fl'y»l)(yz + 27;y)m—-1/2 d‘l,
0.
and
0
I2 - \ 6‘Lr(’by'i"1)(y2 _ z,t:y)m—l,@ dy
{
Now

YRR 4 AR )y 0<y <,

2 4. Am=1/2
4= 24 = '
(y ) { g A2 4 BE(y) Pt 1<y < o0,

where
' |BEW)| < (m+1)3™ (1 <y <o),
In fact, ‘
02 e D \m=1/2 _ o me—1/27 1 6:im—1/2
- Y= & 24y)™ ¥ (£24)
‘A'l:’*?;(y) = ’( ym’+1/2
_ \ (y + 2i)m-—1/2 - (i,zz)'mﬂlm
Y
< sup [(m = 1/2)(y£2)™%) £ (mo )37
Y
and
IBJ:( B ‘ (,y:E = 21y)m.wl/2 _ ym-—~1/2(__h2,i)m-—1/2
i y) - y2m—1
(y = 20)™ Y2 — (£24)m—1/2
= TVE

< (14 4/y2)(mb/D/2 4 gm12 < (m o 1)3™,

Using (2.11) in I} and Iy, the argument is then identical to [14, Lemma 3.11,

Ch. 4]. The result follows.

The construction of the sequence of “bump functions” in the following
lemma. is similar to that of [15, Thm. 4]. :
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LEMMA 2.4. There exists a sequence {$p}oo. 1, Prm € C3°(R), such that

0< &, <1, suppPy, = [27,2™ + 27/,
(2.12) ™ om . om/2
B =1 on [am,bn] C [2™,2™ 4 2™/7],
where
= (2™ 4 221 6,1 = 6.m)],
m = (2™ + 2m/2_1)[1 + 61— bm)],
5771 - (1 + 2m/2—|—1)-—-1
and
(2.13) | i#,(r)dr =2
00
Proof If

(r) = {6‘1/", r >0,

i = 0, r <0,

then ¢ € C*°(R) and ¢'(r) > 0. Next, for a < b, define @, and 1, by
wap(r) = (p(r — a))lp(r —a) + @b — )] ™,
Pap(r) = (p(b—r)ip(r — a) + (b — )] 7.

Then @ap, Yo, € C°(R) and direct computations show that ¢y ,(r) > 0,
Ph(r) <0 and

0 ifr<a,
pualt) =1=vust ={} 755

Now for m € N, define
if —00 < 7 < G,

@2"ham(r)
dsm("") = 1 ifam £r=< brm
wbm’2m+2m/2 (T) if bm S_ T < 00.

Then (2.12) holds and since

) 2™ g™/
[ 1@nmdr=" | [#(n)lar
—00 2m
om 2™ o2
={o.(ndr—- | #dr=1+1=2
gm Ben

so does (2.13).
We are now in a position to prove the main results.

Proof of Theorem 1.1. Let f(£) = (|§])Y(k3(£ ), where ¥ (%) (¢)
is the spherical harmonic of order k constructed from Qk in Leroma 2.2 and
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Mazimal operetor associated with fhe Sehrédinger equation 175

{Pm Foween Is the sequence of C§° (R) functions constructed in Lemma 2.4. Let
R >0 be fixed and ro = min{R, (7/2)(d~1)"1},d > 1. Let rp/2 < |z < 7o,
and choose the integer m so large that

<~) = (al/d)(2™ + 27274 e (0,2),
m(EDY M),
e (€] Y O (&) ag

Since for f( ) ==
( n’f)(:r 7‘)

f?c’—af—\

i

,r,nw].djm(r)aitrd § girlel(z"+&")
gn-1
where o = |z]z’, £ = ré’, (2.1) of Lemma 2.1 shows that

(Saf)(z,t) = @m)/ 2 4a| O~y B (=) 1|z, 1)

YE(EN do () dr,

[=3 s

where
o w
I()z|, ) = _\ e B (1) o) o (r)2]) dr
: _
So in particular with ¢ = t{x),
(S30)(2) 2 @)™ 2Py E @) - 1], 4(z)].

By Lemma 2.3, there exist constants Cy, C, and a bounded function Fj
such that for ¢ > 1,
(2.14) { |Cx] = |G| = (2m)~1/2 and‘ |Fip(t)] < C(n + 2k)"T2%,
Jin+ak-2)72(t) = 720 e + Cy ™) + F(t)t~3/2.
Hence

>}
- S /2B (1) Tinsan—n) a(rie]) dr
0

I(]al, ()

o]
= Cplal3/2 | pn=1)/2giu(ar ~r o g (1) g
0

(=]
4 Oyl 72 | ple-D/2gisrle g, (7 g
0

o0
+ |:J;|"‘“3/2 S 'J*(““B)/ze“(“)"d@m(r) Fy{riz)) dr
0
2 Cylal Y20y + Cylz| Y20 + |2| 731,
respectively. Since %m < || < rp, the triangle inequality shows that

\2(|a, ()| = (2mro) Y 3| Iy| = (mrg) 2| ] ~ (2/70)*/*| Tal.
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‘We now prove that

2.15 L] > Ci2mi2, || < Coamin-1/2,
9 5] < Ca(n+ 2k)(nab)gm(n=2)/2,

where C; > 0, j =1,2,3, are independent of m, k and 2.
In Iy, let # = (2™ + 27™/2~1)5. Then

|I1| > 2m(n+1)/2| S s(n-—l)/zgim(@m +2m/2-1)8)ei7'm(3) ds
0

where 7im(s) = |z](2™ + 27/2V)[s¢/d — &], and if gm(s) = P, {(2™ +
2mM/23-1)4), then by (2.12),

0 < gm(s) €1, and with 6, = (1 + 2m/2+1)~.-1,’
(2.16) { SUPD G = (1 — b, 1 + 6,
gm(s) =1 i1 6m(l —6m) 6 S 1+ 8,(1 = bm)-

Since 7;,{1) = 0, Taylor’s formula shows that

’Tm(s) - Tm(l)l
= |3(s = 1)* 7 (1+0(s = 1))

= |3lel(@™ + 272 (s — 1* (@ - DL+ 8 - 1] (0 <o <1).

If m is large, then 1 — 6, < 8 < 14 84, and since 7p/2 < |2] < rg where
ro < (w/2)(d—1)71, we have

7 (8) =~ T (1)] < lel(d = 1)(2™ +2™/271)67,
< (w/2)(2™ + 22182 < /4.

Hence
JE.
|IlI > 2m(n+1)/2' S S(nml)/2gm(S)ei('rm(s)—-rm(l)) ds‘
1—bm .
1+5m(1"‘5m) 1_6:%(1"67)1) ]+6m
= zm(n+l)/2’ S + S + S
1—8m(1—6m) 1—6y, LB (T8 )
148 (1 bpm)
s ameenr| ) g
1=8m(1l—8m)
146 (1= 6pa)
sz(n—l—l)/EH . S S(n—l)/ﬁcos(q_m(s)_Tm(l))ds‘ "’“‘35?’1]
1=8, (L6 ‘
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> 22T /3/A)[1 = G (1 = 6,)) -1/ 2 (1 = 6m) — 362
> OQm(ﬂ.-|~l)/2 ) 2-—'m/2 > O2mn/2

which proves the first estimate of (2.15).
In Iy, let hup(r) = B (r)r "1/ 2[g(z)pd-1 4 \z|]71. Then

[T = | | r(n=Rpitedrtsrlal) g () ch"’

(ei(t(m)'prl_lnr}m\))hm(r) dr

=

i
S S B o 8

o0
Hltantrlal)p () dr’ < | 1)l dr
a

where we integrated by parts, But

hy(r) = [@,(ryr®=D2 4 3 (n — 1)r=32g, (r)] [t(2)dr® L 4 ]
b P (ryr =121 Ayt (z)r 2t (z)drt + |]] 2,
80
i ()] S (/)8 ()2 4 fn = 1)/ |y =907
it (1/]2[*) @ (r)t(z)d(d = 1)r(n—D/3Hd-2
< ClB(r)r 124 B (r)r (=902 4 2o, ()22

since ry/2 < |z| < ro.
Recalling the support of @,,, we obtain

2m+2m,”2
wl<o{( | i@ miar)eEn + e
2in
2711‘”]‘?7!1/2
- S [,,,,(mu_s)/z_}_ zm(lmg)r(n—1)/2+dmz] dr}
2"”,

< 0{2 \ 2(1’n.--|-'1.)(?’l.--~1)/2 -2 2?11.('?!.-—2)/2} < 02'”1’("’—1)/2,

Note that woe used (2.13).
Finally, by (2.14),
ot : 2m+2m,’2
[Is] < C S p B2 )| By (v dr € C(m - 2k)72F S r(n=3/2 gy
0 Zm

< O(?’b + 2k)ﬂﬂl‘2k2'm(n-—2)/2’

which proves the estimates of (2.15).
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Now let m = (n -+ 2k)"+2* in (2.15). Then

(S3£)(#) 2 CIY ® (&) |{(2mro) /|| = (wr) 2| 1a] = (2/r0)* U151}
> ClY-(k} ($:)|z(n/z)(n+2k)“+%_

Hence for p > 2 and o > 0,

e { | isin@rleas) 720 | 1P}

jel<R ro/2<|z]|<ro
> Ca(n/ A2y ik

Oz the other hand,

17, = { § 0+ Py R )

Bn
- { Trn_l(l +72)°| By (r) | dr}l/?“y’(k) I
0

2m+2m/2 1/2
cof | ety ®), < oy ),
2m

< gz(n/2+s*1/4)(n+2k)““”Hy(k)HQ,

and combining this with (2.17), we obfain

{1 (sn@Pera})” /1

|z|< R
> Ot/ 2™y () |/ y ()]}
> CE2-1D/2 o5 (B - 00)

if § = 1/4 and p > 2, where we applied Lemma 2.2. This completes the
proof of Theorem 1.1.

Proof of Theorem 1.2. Let @ be the polynomial of Theorem 1.2
and £(¢) = Q(¢)). I

(Saf)(z,t) = | = 2O F(¢) de
Rn.

and f(£) = ém(lf Y ("), where &, is the bump function of Lemma 2.4

and Y*) is the spherical harmonic ¥i¥ constructed from Q in Lemma 2.2,
we obtain
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(Saf)(z,1)
o0
— S Tn-—l@m(,r)eitQ(r} S eir[m|(m’-§’)y{k) (5,) dO’(E’) dr
1} gn—1
oo
= (20)™2%hY ) ()| B2 | oS (7) T pon-2y 2 (r]]) dr-
0

If r0/2 < |z| < 7o < R, where rg is 50 chosen that for rp = 27" + om/2—1
and 6, = (1+2™/241)~1 (¢f. Lemma 2.4),
(2.18) ToTm b, sup {rm@"(r)/Q (re)|} < 7/2.
Te[zm]gm_}_gm/z]
Let m be so large that #(z) = |2|/Q'(rm) € (0,1). Then
(Shf)(@) = sup |(Saf)(z,?)]
o<t<l

> ClY R ()|

[ r/2e80 6 (7) Tnpan—2ya(riz)) dT]-
8]

Using the asymptotic formula for the Bessel function (2.14) it follows as in
the proof of Theorem 1.1 that

(Saf)(e) 2 CRY O (i { (2mrg) 12| | om0/ AR TN, () dr
0
. (71"!"0)_1’/2‘ S T(n—1)/2ei(t(m}@(r)+r|m|)@m(r) d?"}
0

— (2/ro)*/? | 702 B Bilrla)dr }
0
= Oy ®) (&) [{(2mr0) M2 By — (wro)™/? By — (2/r0)*/* B}
respectively. As in the proof of Theorem 1.1, one shows that
(2.19) Bs < C(n + 2k)n2kgmin-2/2,
Next, we prove that
{(2.20) By > g2/,

On making the change of variable r = 7,8 in the integral, we obtain

o0
(221) By 2 2n (| [ 5005 () IR0 Q)]

0 .
Let gin(8) = Dm(rms) and op(s) = || [@(rm8)/ Q' (Pm) — Tms]. Then gm
satisfies (2.16) and by Taylor's expansion about ro = 1 and 1 - bm <5 <
L+ &,
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oml) = om()] = (2 )| LL20 (s 12, a0 € (1= 61+ ),

< (lzl/2)rhn sup {1Q"(rms)/Q (rm)} < w/4
sE[1—84,,1+8m]

where the last estimate follows from (2.18). Hence by (2.21) and (2.16),

L6

By > 2m(n+l>/2{ [ st 72 g (5) eflrm(e)om ds‘}

1
1B (1—6m)
> gm{n+1) /2 { S
16 (1—m)
Tbpe (1= )
> gm(n+1)/2 { S

1=6m (1=6m)

/2 g (6) gilom ()= m ()] ds‘ _ 353;}

SN2 cosfor(s) — oy (1)} ds| - 352}

Z O2mn/2

since |0, (8) — om(1)| € w/4. This proves (2.20).
Finally, we show that

(2.22) B, < ¢gomin-1)/2,
Write fin(r) = |z| 71+ Q'(r)/Q (rm)] ™ $um(r)r®1/2, Then integration
by parts yields
By = l | rrD/zgitQ g (1) dr’ - ' [ eitt@Qurial g1 (1) gl
0 0

But a straightforward calculation shows that
| f ()] < C{I@L () ir P02 o b (r)r =82 o @ ()02 20

where we used the fact that |Q"(r)/Q'(rm)] < Or;;t if r € [27, 2 4 27/2],
Hence

|Bal < § ifu(r)lar
0
2™ gm/2
SO{( S 1%(?””47‘) (2™ + gm/2)(n-1)/2
am
2™ 2m/
T N I TR dr}
am

< C2m(n—l)/2’

which proves (2.22).
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Choosing m = (n + 2k)"™2" and using the estimates (2.19), (2.20) and
(2.22), we get
(S25)(x) 2 OTY ¥ (o)) 2/ 22320

since 7o was defined by (2.18) and 70/2 < |2| < rp. Hence for p > 2, o > 0,

we have as in (2.17),
i/p
| san@rardal 20{ |
|a|< R ro/2< || <ry
> Ouy(k)“p2(n/2)(n+2k)"“’“_

Saf(e)paa} "

Now we proceed exactly as in the proof of Theorem 1.1 and the result
Tollows.

Remark. In[13], P. Sj6lin inforrmed me that he has proved Theorem 1.1
in the case d = 2, and « = 0. This special case was also proved in [17].
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The set of automorphisms of B(H)
is topologically reflexive in B{B(H))

by

LAJOS MOLNAR (Debrecen)

Abstract. The aim of this paper i3 to prove the statement announced in the title
which can be reformulated in the following way. Let 5 be a separable infinite-dimensional
Hilbert space and let ¢ : B(H) — B(H) be a continuous linear mapping with the prop-
erty that for every A € B(H) there exists a sequence (&) of antomorphisms of B{H)
(depending on A) such that $#{A) = limn $n{A4). Then @ is an automorphism. Moreover,
a similar statement holds for the set of all surjective isometries of B{H).

Introduction. If X is a Banach space, then we denote by L(X) and
B(X) the algebras of all linear and bounded linear operators on X, re-
spectively. F{X) and C(X) stand for the ideals of B(X) consisting of all
finite-rank and compact operators, respectively. A subset £ C B(X) is called
topologically [algebraically] reflexive if T € B(X) belongs to £ whenever
Tz € £z [Tx ¢ £z for all z € X. This concept has proved very useful in
the analysis of operator algebras.

The study of algebraic reflexivity of the subspace of derivations on op-
erator algebras has been begun by Kadison [Kad2] and Larson and Sourour
[LS] from a different point of view. Since then the problem of algebraic re-
flexivity of the sets of derivations and automorphisms has been investigated
in full detail and the preliminary results have been improved significantly
[Bre, BS1, BS2].

The notion of topological reflexivity is due to Loginov and Shul’man
[LoS], although they defined it only for the case of subspaces. Neverthe-
less, surprisingly enough, from the two fundamental concepts of derivations
and automorphisms, the problem of topological reflexivity has so far been
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Key words and phrases: reflexivity, automorphism, Jordan homomorphism, automatic
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