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Weak type (1,1) multipliers on LCA groups
by

JOSE A. RAPOSO (Barcelona)

Abstract. In [ABB] Asmar, Berkson and Bourgain prove that for a sequence {¢;}721

of weak type (1,1) multipliers in R™ and a function k& € L*(R™) the weak type (1,1)
constant of the maximal operator associated with {k * ¢;}; is controlled by that of the
maximal operator associated with {¢;};. In [ABG] this theorem is extended to LCA groups
with an extra hypothesis: the multipliers must be contimuous. In this paper we prove a
more general version of this last reyult without assuming the continuity of the multipliers.
The proof ariges alier simplifying the one in [ABB] which becomes then extensible to LCA
groups.

1. Introduction. Let G be a locally compact Hausdorff abelian group
(LCA group) and I" the dual group of G. For each function ¢ € L®(I") we
denote by Ty the associated bounded operator in L*(G) given by m = ¢F.
We say that ¢ € L*®(I") is a weak type (1,1) multiplier in I' (and we write
¢ € M) if Ty is of weak type (1,1) on (L' N L2)(G). In this case
T, extends to a bounded operator from L}(G) into L1>°(G). If {¢;}; is a
sequence in M{™)(I") we denote by NI ({¢;};) the weak type (1,1) norm
(possibly co) of the maximal operator

(1.1) T* f = sup|Ty,fl, f€LYG).
J

Also we shall denote by (M(I"), ]| ) the Banach.space of complex regular
(necessarily finite) measures on I'. The main result in this paper (proved in
§2) is stated as follows.

Trsorum 1.2, Let € M(I) and {¢5}52, € M{™(I"). Then

{ux 5352, € MEUT)
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and olso,

N e 4:122) < Cllal N (1851520)
where C is ¢ universal constont.

The constant C will be defined by (2.10). If we consider L? multipliers
(1 € p < o) instead of weak type (1,1) ones this result is an easy conse-
quence of Minkowski’s inequality for integrals. In [ABB] this “convolution
theorem” is proved for the case G = R™ and p = k € L*(B™). The proof
given there is not directly applicable to the more general setting of LCA
groups and in fact the constant C in that proof depends on the dimension
n. In a more recent paper ([ABG]) the theorem is extended to LCA groups
with an additional hypothesis: the multipliers must be continuons functions.
A slight modification in the original argument in [ABB] allows us to obtain
the more general version as stated above.

The key ingredients in the proof are the next two known lemmas which
we state without proof. By combining them one can produce some weak
type inequalities. Simple proofs for that results can be found in [GR] and
for the best constants in Lemma 1.3 we refer to [Sz| and [Sk|.

Lemma 1.3 {Khinchin’s inequality). For each p € (0,00) there exist pos-
itive constants A, and B, such that for each finite sequence {c;}7., C C,

w(Eh) s (1 Senfe) " <n(Tie) "
=1 D7 =1 j=1

where D = {-1,1}, £ = (ey,. ..

b &7} € DY and de is the Haar measure on
D7 with tetal mass 1.

LemMMA 1.4 (Kolmogorov condition). For each p € (0,1) and f € L%(G),
£l zreo(y < sup{|E|®*~D/?|| #|| 15y : E C G compact, |E| > 0}
< (L= 0) 72| Fllzr.eo(ay

The remainder of this paper is organized as follows. In §2 we prove
Theorem 1.2 using the above two lemmas. In § 3 we give an [? vector-valued
extension of (1.2) and alsc an application to singular integral theory.

2. Proof of Theorem 1.2. As a substitute of what in R" is the Schwarte
class of functions we are going to use in G the class

SING) = {f € ING) : Fe LY},

It is easy to see that SL'{(G) is a dense subspace of L?(G) for all p € [1, c0)
and of (Co, |} - ||ce), where Cy is the class of functions vanishing at infinity.
Also, the Fourier transform is one-to-one from SL*(G) into SLY(I).
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Proof of Theorem 1.2, For f € (L' N L2)(Q) let
(2.1) T f(z) = sup | Ty, f(z)], - z € C.
3

We have to find a number C € (0, co0) such that

(2:2) 17 Fllzrssey < Ol N (s}5) | Flznioy

for all f € (L*NL*){G). By Fatow’s lemma we may suppose that the sequence
(¢4}, is finite: {¢;}/;. But in this case it is easy to see (using again Fatou
and other standard arguments) that we only need to prove (2.2) for all
f € 8LG). Then

(2.3) Twgy P2} = (0 0) @) ) ve(2) dy, @ €G,

r
where v, () denotes the action of the character y € I' on z € G. S0 Tyup; f
is in this case a well defined function and belongs to the class Co(G). Also
it follows from (2.3) that if pn, — p in M(I) then T, vy, F(2) = Tpeg, £(2)
forallz € Gand all § =1,,..,J. Thus by Fatow’s lemma and the regularity
of the measures in M(G) we may assume that supp u = K compact. Now
pick p € (0,1). In order to prove (2.2) we only need to show, by Lemma 1.4,
that
@4) T Flos < OB PPN (o) 20 e
for all compact scts B C G.

Note that

(2.5) Tyenty F(5) = | T, (v-2) (2) 7= (2) dpa(z).

r
We want to express the integral in (2.5) as a Riemann sum. To accomplish
this we make use of the following technical result to be proved later.

LEMMA 26. Forj=1,...,J andx € G let

Fjalz) = Ty, (-:0)@)°,  z€l
Then for coch n = 1,2,... there exists a finite famaly {Vi”}f;l of pairwise
disjoint meosurable sets in I" such that
S0 KU v,

(i) afa, =1, Iy and 21,20 € V* then |Fjo(z1) —
i=1,...,J amf neG.

Now consider the sets V" given by Lemma 2.6 and for each ¢ and n pick
Z' € V' Tt follows that if A” is the characteristic function of ¥, then

I

S T, (1o ) @) A7 (2

[N

Fia(z)! <1/n for

|T¢'j (rY—z.f) (w)|2
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forze K, € Gand j =1,...,J. Thus by the Cauchy-Schwarz inequality,
Fatou’s lemma and Khinchin’s inequality (1.3) we obtain from (2.5),

0.7) [T, F@ < ] § 1T, (ro2 D)) ()}

I,
< el st (3 IAVIT, (ep HE)

1/2 In 1/
f s Z : F ?
< H jli‘ hmnmf{ S \ |Ni(m'n)1/zT¢.i (7__z?_f)(w)s,; dE}
» DIn  i=]

= %Ijl;/_zli%inf{ ! ‘Tt;ba’ (i '“[(Wl)l/%ﬂ"z?f) (@) ‘P ds}l/p'
D i=1

Since [Ty,| can be majorized by T* (see (1.1)), it follows, by taking the
supremum over j on the left side of (2.7) and recalling the definition (2.1),
that

|T**f(m);<M.ll.ffnmmf{ i (T*(ilul(V”)me- ) @) 2}
T4 " Din =1 z e E}

Then by Fubini’s theorem and Jensen’s inequality one has for all compact
sets B C G,
(2.8) 1T flize(m)
lafl* . - P yp
< Ml * ny1/2 " .
B s |{ | (S0 ) )]

Din

Le(®)
{72

<
= Ap

liminf | l
n DI

Tf(imx(w")%w_zgf)|
i=1

Using again Lemma 1.4, Fubini and Khinchin (note that the best constant
By is 1} we have

(29) T Fllzagey < Cpdy|u* | BIA-PVENSD ((4,15)

de.
Lr(E)

In
x liminf { |f(2)] | 3 IV iy (m)\ ds de
& Din  dm]
In
< o [l 2 BN (51 | i ins (3 [l (v))

i=1

1/2

= Cp A, |l - | BIE-P/2 N (0.4 )£l
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where Cp = (1 — p)™*/%. Thus we obtain (2.4) with constant

- i — =1/ 41
(2.10) C= inf (1-p) /747" u
Proof of Lemma 2.6. Let B = max;<j<s ||¢j]lo. Note that
(2.11) Ty (v-21)(2) = { 65()F (2 + v)my (o) dy.
r

From this it follows that

[ Tss (v-2fYe) < BYflh, Veer
uniformly in j = 1,...,J and in z € G. Also (2.11) shows that

ITIP;' ('Y-Mf)(w) - T‘f’j (’Y“zgf)(wn b BH.?(ZI + ) - }:(z2 + )Hl
Since the map z — f(z + ) is uniformly continuous from I’ to L(I")
([Ru], 1.1.5), we deduce that z — Ty, (v-.f)(z) is uniformly continuous
“uniformly in § = 1,...,J and in z € G”. Thus the same is true for
Fio(2) = Ty, (v-=f)(2)|®. That is, for all ¢ > 0 there exists a neighbor-
hood V; of 0 € I' such that : )
zy — 2 € Ve = |Fypla) — Fip(ze) <e, Vi=1,...,J, Vz € G.
For all n € N let then Wy, U, < I'" be open neighborhoods of zero such that
W, ~ W, c U, and
on—mel,= |Fj,m(31) -~ F_’j,m(ZQN < 1/n, vi=1...,J, Vo e @

Cover K with a finite number of sets {y; + W, }{2,{y:}s € K. Then the
sets we are looking for are (after discarding the empty ones): Vi* =y + W,
and, for 4 = 2,- vy J'rnVin = (y’f + Wﬂ) \ ( ';;__11 an)' =

3. Purther results. The maximal function associated with a family
{T;}; of linear maps is in fact the ¢ = oo version of the more general
operators given by
1/q

T9f(z) = (Z Iij(w)\")
J

Lot ns introduce some notation, For each g € (0,00] and each family & =
{e5}35, © ME’”) (1" let Ty be the vector-valued operator given by

T¢f(iﬂ) == {Tq’?;,f(m)};il S CN: fe (LI N Lz)(G):
and let
T3f(m) = Tsfaa,
where for cach sequence a = {a;}; of complex numbers fallf, = 32, a;]9.
Also for & M{I'} we denote by s * & the family of weak type {1,1)
multipliers {p * ¢b;}; (see Thm. 1.2).
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In these terms what Theorem 1.2 says is that the weak type (1,1) bound-
edness of Tg° implies that of 7355 The next theorem tells us that this is
a special case (when ¢ = co) of an analogous statement which is valid for
every ¢ € (0, 00].

THEOREM 3.1. Let @ = {¢;}52; C Ml(w)(F) and u € M(I"). Suppose
that for some q € (0,00] there emsts o positive constant B such that
T35 100 < Bllfll, V5 € (L' NL*)(G).
Then
1T 2 f 100 < CBilRliflle,  Vf € LHG),
where C is the absolute constant in (2.10) if ¢ > 1 and

— ' _=L/p 41 I .
C Oér;gq(l B) A ifg < 1.

Proof. The proof is essentially the same as that of Theorem. 1.2. Ouly
small changes must be made. Once more we may assume that the family
{¢;}; is finite and f € SL(G). We proceed as before but we choose p € (0,1)
such that p < ¢. From (2.7) it follows using Minkowski’s inequality that

< D g § fra (S0 er-a s} ) )|
Din i=1

1172
=3 %Ilﬂhlﬂf”{ S tTmﬁJ()(m)lpdE}J_l j:/i
» Din =
1/2 7
< I ming (] W, (Nl )
vy Din
_ el

. 1
Aplmwﬂ(A;@LHMMHk)p.

From this again we obtain, by Fubini’s theorem and Jensen’s inequality,

74 (f}m(V;”)lfﬂm_z;-f)(-)i
f==]

The remainder of the proof is exactly as in Theorem 1.2 using the same
argument here for 7} as the one employed there for T*. m

de.
Lo(E)

ey *g':f“LP(E “'L” ——lim inf 31
" Din

As an application of Theorem 1.2 to the theor'y of singular integrals we
give a Hilbert transform perturbation theorem. We omit the proof which is
an easy application of (1.2) (and the obviously analogous result for strong
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type (p,p) multipliers, p > 1) to the theory of singular integrals (see for
example [GR]).

THBEOREM 3.2. Suppose that P is a locally integrable 2m-periodic function
on R such that its Fourier coefficients as a function on [, 7] satisfy

E |ﬁ(k)| < 00,
keZ
Then the mazimal operator

Hpf(2) = sup S %my—)-f(m—y)dy, z €R,

£>0 Y=E

is of weak type (1,1} and strong type (p,p), 1 < p < co. It follows also that
the limit

Hefw)=tm | 2% (e —y)ay
e—0 Y
y>e
exists for a.e. © € R for all f € IP(R),1 < p < 00, and the map Hp is of
weak type (1,1) and strong type (p,p), 1 <p < co.

Remark 3.3. (1) The above theorem is still valid if we put P = Ji for
a measure yu € M(R). In fact, the case considered corresponds to a totally
atomic . ‘

(2) Also we may substitute the one-dimensional Hilbert transform kernel
1/% by an n-dimensional standard kernel K (z) (see [GR]). Obviously P must
now be the Fourier transform of a complex measure on R™.

Also Theorem. 3.1 can be applied to known results to obtain new vec-

tor inequalities. As an example, we have the next theorem which follows
immediately from (3.1) and [GR, Theorem V.5.3].

THEOREM 3.4. Let k € LY(R™) be such that %(0) = 0 and assume that
for some a > 0,

|k(z) < Clz|™™™%, zeR",

and
{ Ik + ) — k(z)jde < C|AI%,  he R
For pe M(R") put
Ky(z) = 2"h2 I 0)(e), T ERY, jEL.
Then the operator
o\ M2
= (S« 1@P) T, zeR,
L=

is of weak type (1,1).
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Semi-Browder operators and perturbations
by

VLADIMIR RAKOCEVIC (Ni)

Abstract. An operator in a Banach space is called upper (resp. lower) semi-Browder
i it is upper (lower) semi-Fredholm and has a finite ascent (resp. descent). An operagor in
a Banach space is called semi-Browder if i is upper semi-Browder or lower semi-Browder.
We prove the stability of the semi-Browder operators under commuting Riesz operator
perturbations, As a corollary we get some results of Grabiner [6], Kaashoek and Lay (8],
Lay [11], Rakogevié [15] and Schechter [16].

Let X be an infinite-dimensional complex Banach space and denote the
set of bounded (resp. compact) linear operators on X by B(X') (resp. K (X)).
For T' in B{X) throughout this paper N(T') and R(T) will denote, respec-
tively, the null space and the range space of T. Set N>°(T) = |, N(T™),
R=(T) = (), RT™), (T) = dim N(T) and S(T) = dim X/R(T). Recall
that an operator T € B(X) is semi-Fredholm if R(T) is closed and at least
one of a(T) and B(T") is finite. For such an operator we define an indez (1)
by i(T) = a(T) — B(T). It is well known that the index is a continuous
function on the set of serni-Fredholm operators, Let &4.(X) (resp. $_(X))
denote the set of upper (resp. lower) semi-Fredholm operators, i.e., the set
of semi-Fredholm operators with o(T") < oo (resp. S(T) < oc). Tt is well
known that @, (X) and @_(X) are open semigroups in B(X) (see [1], [7]).
Recall that a(T) (resp. d(T))), the ascent {resp. descent) of T' € B(X), is
the smallest non-negative integer n such that N(T") = N (T*1) (resp.
R(T™) = R(T™)). If no such n exists, then a(T) = oo (resp. d(T) = o0).
An operator T is called upper semi-Browder if T e @,.(X) and a(T") < o0;
T is ealled lower semi-Browder if T € $_(X) and d(T) < o0 [7, Defini-
tion 7.9.1], Let B..(X) (resp. B..(X)) denote the set of upper (resp. lower)
semi-Browder operators. An operator in a Banach space is called semi-
Browder if it is upper semi-Browder or lower semi-Browder. Semi-Browder
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