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An open mapping theorem for analytic multifunctions
by

ZBIGNIEW SEODKOWSKI (Chicago, TiL)

Abstract. The paper gives sufficient conditions for projections of certain pseudocon-
cave sets to be open. More specifically, it is shown that the range of an analytic set-valued
function whose values are simply connected planar continua is open, provided there does
not exist a point which belongs to boundaries of all the fibers, The main tool is a theorem
an existence of analytic discs in certain polynomially convex hulls, obtained earlier by the
author.

Introduction and results. Analytic multifunctions are set-valued gen-
eralizations of analytic mappings (cf. [Ok], [S1]). They found applications
wostly in functional analysis: in spectral theory, the structure of the Gelfand
space of a uniform algebra and in the complex interpolation method for Ba-
nach spaces. However, they have also led to interesting new vistas in complex
analysis, in relation with polyncmially convex hulls and the corona prob-
lem. On the other hand, it is natural to ask which portions of the classical
function theory extend to analytic multifunctions. While this approach did
not always produce interesting questions, the problem of generalizing the
classical open mapping theorem, posed by Ransford [Ral], has proved to be
rather intricate. This paper is devoted to the above problem.

Recall that an upper semicontinuous compact-valued correspondence
(briefly, multifunction) z — K, : G — 25, G C C open, is called ana-
lytic if the set U = {(z,w): 2 € G, w & K.} is a pseudo-convex domain.

It is casy to sce that anaive generalization of the open mapping theorem
is false. Let I, be the closed segment joining z to 1, for z € I = {zeC:
2| < 1}. Then z — K, : D — 2° is an analytic multifunction but its range
is R(K) = | J{K, : z € D} = DU{1}, and is clearly not an open set. The
reason is that point 1 belongs to the boundaries of all the sets K,, 2 € [
These observations are due to Ransford who explored the problem initially
in [Ral] and modified it as follows.
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Suppose G C C is open and connected, and z — K, : G — 2C is an
analytic multifunction. Let B := {w € C:w € 8K, for z € G}. Must the
set R(K)\ E be open, where R(K) = |J{K,:z2€ G}?

Ransford gave an example showing that the answer is still negative if
the fibers K, are allowed to be multiply connected, and conjectured that
the assumption of simple connectedness of the fibers should suffice. To our
knowledge, this conjecture remains open. We now present a partial result in
this direction, under assumptions of the connectedness of the fibers.

TueoReM 0.1. Let G C C be open and connected and z — K, 1 G — 2¢
be an analytic multifunction. Define B = {w € C: w € 8K, for z € G}
and BR(K) = | J{K, : z € G}. Assume that all the fibers K,, z € G, are
connected and simply connected. Then R(K)\ B is an open set.

A special case of the this result, when all the fibers K, are convex sets,
was obtained by Baribou and Harbottle [Bala).

For the proof of Theorem 0.1 we need a result on polynomially convex

hulls and winding numbers which seems to be interesting in itself.

Let I} be any plane disc and X € 8D x C a compact set with nonempty
connected and simply connected fibers Xy = {w ¢ C: ({,w) € X}, for all
¢ € dD. Let a : 8D — C be a continuous function such that a(¢) ¢ X,
for { € 8D. Informally speaking, the winding number of X relative to a,
denoted by n(X, a), is n(f —a,0), the index of f —a with respect to 0, where
f:0D — Cis any continuous function which is sufficiently close to X. The
precise definition is given in Section 1.

We will denote by ALI_)) the algebra of analytic functions on D with
continuous extension to D.

THEOREM 0.2. Let X C 0D x C be a compact set with nonempty, con-
nected and simply connected fibers X, ¢ € 8D. Let g € A(D). Assume that
9(() & X¢ for ( € 8D, and that n{X, g|0D), the winding number of X rela-
tive to gloD, is zero. Then the analytic disc graph(g) = {(2,9(2)) : z € D}
is disjoint from the polynomiaal hull X of X.

The proof is based on our earlier result which we quote here for the
convenience of the reader.

THEOREM 0.3 [S¥2]. Let X be os in Theorem 0.2. Assume that X # X,
Then X \ X is the union of the graphs of o fomily of bounded anclytic
Junctions b € H®(D) such that h*(e'?), the nontangential boundary values,
belorig to Xpie, 6 € R. Furthermore, if wg € 6( ZU) the boundary of the

fiber of X over z, € D, ihen there is o umque h € H* with graph{h) X
and h(z) = woq.
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We discuss the winding number in Section 1 and prove Theorems 0.1
and 0.2 in Section 2.

1. Properties of the winding number. The following is a general-
ization, to a class of sets, of a classical lifting theorem for paths. ‘The proof,
analogous to the standard one, is a consequence of the fact that the inverse
image, under the map w — e : C — C\ {0}, of a connected and simply
connected compact subset X¢ of C\ {0}, is a union of simply connected
components, each homeomorphic to X, under the exponential map (the
monodromy theorem). The details can be found in [Ra2].

PropPOSITION 1.1. Let D = D(a,R} = {z € C: |z —a| < R}. Let
X C 0D xC be a compact set with nonempty connected and simply connected
fibers Xe, ( € 0D, Then

(a) therc ewist upper semicontinuous set-valued functions t — L(¢) :
[0,27] — 20Ot such that L(t) are nonempty, connected and simply con-
nected compact sets satisfying {e* 1 w € L(t)} = X1 peie, t € [0, 27];

(b) any two such L’s (lifts”) are either identical or mutually disjoint;

(c) there is @ unigque integer k = 0, ﬂ:l +2.... such that for every lift I,
L(2r) = k+ L(0).

DrriniTioN 1.2, Let X be as in Proposition 1.1.

(i) If 0 ¢ X, for ¢ € @D, define the winding number of X relative to
zero to be the imteger &k from (¢}, and write n(X, 0) = k; cf. Ransford [Ra2].

(i) If g : 8D - C is a continuous function such that g(¢) ¢ X, for
¢ € 8D, defiue n(X,g) = n(Y,0), where ¥ = | J.csp{Ct x ¥ and V¢ =
Xe = 9{Q)-

The next observation is an easy consequence of this definition and Propo-
sition 1.1.

COROLLARY 1.3. Let X,Y,Z < 0D x C be compact sets with nonempty,
conmected and simply connected fibers, and g : 8D — C be o continuous
function. Assume that XUY © Z and g({) & Z¢ for ( € 8D. Thenn(X, g) =
n{Z,g) =n(Y,g).

If ' ¢ Clis a compact set and r > 0, we define B{F,r) = {z € C:
dist(z, F) < r} and B(F,r) = {z € C: dist(z, F) < r}.

PROTOSITION 1.4. Let X € 8D x C be a compact set with nonempty,
conmected and simply connected fibers. Let g € C(8D) (= the class of all
continuous functions on D) satisfy g(¢) & X¢, ¢ € 8D. Then there is o
positive rg such that whenever h € C{0D) and sup¢csp d1st(h(§) X)=r
< 1o, then n{X, g) = n(h,g) := n{h —g.0).
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Proof. The infinite interval J = {r > 0 : there is { € 9D with g({) €

E(;(?, r)} (where F denotes the polynomially convex hull of F') must contain
rg = inf J, by the compactness argument. On the other hand, 0 & J for

Mg B(X¢,r) = X¢ # g(¢). Thus, ro > 0.
Assume now sup;esp dist(R((), X¢) = r <o, h € C(8D), and let ¥ =
graph(h) = {(¢,h(¢)) : ¢ € D} and Z = Uegpp{¢t % Z¢, where Z¢ =

ﬁ(&; r), ¢ € 8D. Then X, Y, Z are compact, have nonempty, connected
and simply commected fibers and satisfy X UY < Z and g(¢) ¢ Z¢ for
¢ € 8D. By Corollary 1.3, n(X, g) = n(Z,g) =n(¥,g) =n(h,g). »

Tn other words, the last proposition means that as long as h € C(0D)
satisfies dist(h((), X¢) < r < rq, then n{h, g) does not depend on the choice
of h. This offers an alternative way to define n(h, ¢) in view of the following,
well known fact.

PropoSITION 1.5. Let X © 8D xC be compact with nonempty, connected
and simply connected fibers X;, ( € 8D. Then, for every e > 0, there is
h € C(OD) such that dist{h((), X¢) <€ for ( € 6D.

2. Application of polynomial hulls

Proof of Theorem 0.2. Define M = {(z,¢(2)) : # € D}. The
statement is trivial when X = X. Consider now an arbitrary point zg =
(25, wp) € X \ X. We have to show that zo & M. By Theorem 0.3 there is
a function A € H*°(D) such that h(z) = wo, and for every { € D, X; D
Cl(h,{) (= the cluster of h at {). For s € (0,1}, let hy(z) = h{a + 5(z ~ a))
for z € D. Then h, € A(D) for s < 1. Clearly, there is 55 € (0,1) such
that for s € (s0,1), supeeap dist(hs((), X¢) = r < ro, where rp > 0 is as
in Proposition 1.4, constructed for the pair X, g|80D. By Proposition 1.4,
n(X, g) = n(hs, g), hence n(hy, g) = Ofor 5o < s < 1, thatis, hs(2)—g(z) #0
for z € D, 59 < 5 < 1. Since hy — g — h — g uniformly on compact subsets
of D, the Hurwitz theorem implies that either h—g = 0 (which is impossible
as Cl(h,¢) € X¢ F g(¢), ¢ € D), or h{z) —g(z) # 0 for all z € D. For
% = % this means that zg = (29, h(20)) € M. n

Proof of Theorem 0.1. We have to show that given values (b, )52,
CCand b€ Csuchthat b, —» band b, e C\ K, forallz€ G, n=1,2,...,
we have either b € C\ K, forall 2 € G or b € 8K, for all z € (. We will
prove a slightly more general fact.

ASSERTION. Let 7z — K, : G — 2C be an analytic multifunction with
connected and stmply connected fibers K,. Suppose that N, n = 1,2,...,
end N are manifolds of the form N, = {(z,gn(2)) : 2 € G}, n=1,2,...,
N ={(z,9(2)): 2 € G}, where gn, g : G — C ore analytic functions. Define
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U=¢G X.C\Uzec;{z} X K,. Assume that N, C U forn = 1,2,..., and
N, =+ N in.the sense that g, (z) — g(2) uniformly on compact subsets of G.
Then either N C U or N C|J, {2} x 8K, C 8U.

The desired conclusion about b will follow by setting in the Assertion
Ny =G x {b,} and N = G x {b}.

Suppose the Assertion fails. Then the set F := {z € G : g(2) € K.} =
{z € G : g(x) € OK,}, which is relatively closed in @, is nonempty and
different from G. Choose o € (0F)NG and 7 > 0 such that D(a,r) C G and

(2.1) there is (o € (AD)\ F, where D = D{a,r).

Let X = graph(K) N (8D x C) = Upcpp{C} x K¢ and My, = {(2,9n(2)) :
ze Dy, n=1,2,..., M ={(2,9(2)) : z€ D}, ie. My = N, (D x O),
n=12...,M=NN{DxC).

Observe now that X has an extension to D, namely z — K, : D — 25,
which is an upper semicontinuous multifunction with connected and simply
connected fibers disjoint from g,|D. Hence, it is clear that n(X,g,|0D)
=0, n=1,2,... {One can apply Propositicns 1.4 and 1.5 to prove this in
detail.) By Theorem 0.2,

(2.2) XaoM,=0, n=12,...

Define by = g(a). Then (a,by) € graph(Xi{D) C X, by [S11], and since
an(a) — g(a), bo € B(X) by (2.2). Using Theorem 0.3, we obtain a unique
function h € H*(D) such that k(a) = by and (2,h(2)) € X for z € D.In
view of (2.2), h(2)—gn(2) # 0 for all z € D. On the other hand, (h—gn)(a) =
by — gn(a) — 0. By the Hurwitz theorem, (h — g)(2) =0, Le. g(z) € a(X.)
for z € D. Hence, 9({o) € X= K¢,, which contradicts (2.1). m
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Weak type (1,1) multipliers on LCA groups
by

JOSE A. RAPOSO (Barcelona)

Abstract. In [ABB] Asmar, Berkson and Bourgain prove that for a sequence {¢;}721

of weak type (1,1) multipliers in R™ and a function k& € L*(R™) the weak type (1,1)
constant of the maximal operator associated with {k * ¢;}; is controlled by that of the
maximal operator associated with {¢;};. In [ABG] this theorem is extended to LCA groups
with an extra hypothesis: the multipliers must be contimuous. In this paper we prove a
more general version of this last reyult without assuming the continuity of the multipliers.
The proof ariges alier simplifying the one in [ABB] which becomes then extensible to LCA
groups.

1. Introduction. Let G be a locally compact Hausdorff abelian group
(LCA group) and I" the dual group of G. For each function ¢ € L®(I") we
denote by Ty the associated bounded operator in L*(G) given by m = ¢F.
We say that ¢ € L*®(I") is a weak type (1,1) multiplier in I' (and we write
¢ € M) if Ty is of weak type (1,1) on (L' N L2)(G). In this case
T, extends to a bounded operator from L}(G) into L1>°(G). If {¢;}; is a
sequence in M{™)(I") we denote by NI ({¢;};) the weak type (1,1) norm
(possibly co) of the maximal operator

(1.1) T* f = sup|Ty,fl, f€LYG).
J

Also we shall denote by (M(I"), ]| ) the Banach.space of complex regular
(necessarily finite) measures on I'. The main result in this paper (proved in
§2) is stated as follows.

Trsorum 1.2, Let € M(I) and {¢5}52, € M{™(I"). Then

{ux 5352, € MEUT)
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