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An uncertainty principle related to the
Poisson summation formula

by

K. GROCHENIG (Storrs, Conn.)

Abstract. We prove a class of uncertainty principles of the form
150 £liz < O(l=*F1p + [|* Flla),

where Sy f is the short time Fourier transform of f. We obtain a characterization of
the range of parameters a, b, p, ¢ for which such an uncertainty principle holds. Counter-
examples are constructed using Gabor expansions and unimodular polynomials. These
uncertainty principles relate the decay of f and ? to their behaviour in phase space. Two
applications are given: {a) If such an inequality holds, then the Poisson summation formula
is valid with ahbsolute convergence of both sums. (b) The validity of an uncertainty principle
implies sufficient conditions on a yymbol & such that the corresponding pseudodifferential
operator i of trace class.

1. Introduction. In its essence the mathematical uncertainty principle
states that a function cannot be well concentrated simultaneously with its
Fourier transform. This principle has found so many different expressions
that the context of diverse hooks and articles on the uncertainty principle
is almost disjoint, see for example [1, 2, 4, 5, 11, 20]. Our starting point is
the uncertainty principle in the form [11]

(1) 113 < e 13 + 18

where the Fourier transform is normalized as
Ffw) = flw) = | fla)e™" do.
e
Here the quantitios on the right hand side are related to the uncertainty of
position and momentum. This uncertainty principle is often expressed by
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88 K. Grochenig

saying that the smallest physically meaningful cell in phase space R? x Rd
has volume 1.

In this paper we investigate the question of how more stringent conditions
on the decay of f and f affect the lower bound in (1). For this we measure
the decay or the concentration of a function by the weighted LP-norms

) e = ( § 17701+ lal)da) "
Rd

In agreement with the physical intuition we want to bound | f|[p,. + ||qu,b
from below by a gquantity that measures the phase-space content of f. For
this we use the short time Fourier transform as an appropriate concept for
the phase-space density of f.

Fix a non-zero function g € &, a so-called window; then the short time
Fourier transform of f with respect to g is the continuous function on R% x R4

(3) Spf ()= | 3t — 2) e 2™ f () dt.
%

It is one of the fundamental problems of mathematical phase-space anal-
ysis to understand the interplay between the behaviour of f and J?and that
of Sy,f. If f is given, we bave no direct information on )?, and conversely,
f conveys no direct information on f. The short time Fourier transform is
a simultaneous phase-space representation of f that combines information
on the position ¢ and the momentum w. In engineering one speaks of time-
frequency analysis and Gabor theory, f providing information exclusively

about the temporal behaviour of a signal, and f only giving the frequency
spectrum of f.

Our main result is the following type of uncertainty principle.
THEOREM 1. (a) If

(a 1)(1; AN 11 11
——=J{=-= max| —, —,—, -
b p/\d ¢ pg 2p’2¢° 4 )’

then there exists a constant C, depending on a,b,p,q and g, such that the
uncertainty principle

§ 1 1Sef (3,0l dedy < O fllpa + [ Flloe)
R R4
holds for all f € LE N FL{.
(b) Conversely, if

(a 1)(1) 1)< 1 1 11
b p/\d ¢ pg’ 2’ 2¢°4 )"

such an inequality cannot hold for oll f € L2 N FIL.
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To see that Theorem 1 yields an improved lower bound, we note that

by Planchereys theorem S, fila = [|f]2/lgllz and obviously ||8yfllee <
| fll2/|gll2- This gives

@ 1f13llg13 = § E\S’gf(w,y)izdwdélsIEngIImSSIng(ﬁ,y)\dwdy
e Rt

< fll2llglls §§ 185 f(z.9)] d dy
R xR

and thus §po $pa 189S (2, 1) dw dy = || fll2]lg]l2- Hence, for fixed g € L?(RY),
Theorem 1 implies the uncertainty principle

(5) I£ll2 < CUlFlpa + 1l g.)-

This inequality ig simnilar in spirit to the generalized uncertainty principles
of Cowling and Price {2]. In a different direction Lieb has obtained rather
deep inequalities involving the short time Fourler transform [18].

In the sequel we will use another, purely mathematical interpretation of
Theorem 1, For this we consider the space Sy of all functions f € L*(R%)
such that Sy f is integrable on R? x R? with norm

(6) ”-fHSu = SS |ng($,y)| dz dy

R x R4

Then Theorem 1 describes optimal conditions such that LE N FL is em-
bedded in Sy. We refer to [6, 8, 10] for detailed information on this function
space. Since 8y is defined rather implicitly, the theorem gives easy sufficient
conditions for membership in Sp.

The conditions on the parameters a, b, p, g are greatly inspired by a beau-
tiful paper of J.-P. Kahane and P.-G. Lemarié-Rieusset [16], who find a
similar, but not identical, range of parameters in their investigation of the
Poisson summation formula. At first glance the uncertainty principle and
Poisson sunnnation formula are totally unxelated, but as a first application
of Theorem 1 we show that the uncertainty principle implies that the Pois-
son supumation formula holds in a strong sense. In this way we recover a part
of the results of Kahane and Lemarié with a completely different method.

A second application concerns pseudodifferential operators. In Section 5
we show that the uncertainty principle of Thecrem 1 translates into. easy
sufficient conditions on symbols to generate pseudodifferential operators of
trace class.

Acknowledgements. The author would like to thank P.-G. Lemarié,
C. Heil, and P. Topiwala for inspiring discussions and the early access to
their preprints on related material.
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2. The short time Fourier transfrom, S;(R¢), and Poisson sum-
mation formula. In this section we collect the necessary facts about the
short time Fourier transform and Sp.

Unless stated otherwise, we work in R%, As usual, ¢ w = fxl x;w; for
z,weRY and 22 =g - z.

We write LZ 1 FL](R?) for the Banach space of all functions f satisfying
feL?(R) and f e LI(R%). Since we deal with function spaces, it follows
from the closed graph theorem that an inclusion By C Bs implies a contin-
uous embedding B; — By with a norm inequality || fllz, < C|fl|s,. For
future reference we note the following embeddings, which are easily verified
using Holder’s inequality.

LemMMA 1. (a) LE(R®) < LY (R} if and only if a > d/p’, where p’ is the
conjugate index, i.e 1/p+ 1/p = 1.

(b) For p> 2, LE(RY) — L2(R?) if and only if ¢ < a+d/p — d/2.

Writing 7% f{t) = f(t — x) for translations, M, f(t) = e*™%¥*f(¢) for the

modulation operator, and f(t) = f{—t) for the inversion, the short time
Fourier transform (3) can also be expressed in the following forms:

(7) ng(mz y)*‘= <.fa Mmig> = 6: TyM—m§> = e_zm’byf * (Myg)N(m)
= F (M_o5)~(y) = =5, fly, —).

In this paper we are interested in what conditions on f and fimply the
integrability of S, f, in other words, embeddings into Sy = {f € L}R4) :
SRﬂ S]gd |ng(.’£, y)l dzdy = “f“-go < OO}

Although S is not so widely known, it is an important Banach space in
harmonic analysis. We refer to [6, 8, 10] for some background and details.
Now we summarize the properties of Sy which will be used in the sequel.

LevMa 2. (a) Sy(R?) is o Banach algebra under pointwise multiplico-
tion and convolution. Its definition is independent of the choiee of g € S.
Different windows g yield equivalent norms.

(b) Sg — L' LARY). :

(c) So is the minimal non-trivial Banach space contained in L' which is
tsometrically invariant under the operators M, z,veR%,

(d) FSo = 8o. (This follows from (7).)

Clearly, a function or distribution is uniquely determined by its short
time Hourier transform. As a consequence of the special properties of the
group generated by T, and M,,, an explicit inversion formula holds (14, 10].

LemmMa 3. Suppose that ||g|lz = 1. Then

(8) - f= 1 Sof(z,y) M Tegda dy.
Rd Rd )
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If f,g € L?, the truncated integral S|mst SM<R converges to f in L2, If
f,g € So, the integral is absolutely convergent in Sp.

Sy is a natural domain for the Poisson summation formula. We present
the argument briefly. For this we introduce Wiener’s algebra

@ WRY = { f continnous on RY :

max |f(z+ k)| < oo}.
hezd

zE[0,1]¢

LeMMA 4. If both f € W(RY) and fe W{R%), then the Poisson sum-
mation formulo

(10) Z fla+ k) = Z Flk)e?miks
ke kezd

holds for ll x & RY with absolule convergence of both sums.

This is clear, since the Fourier coéfﬁc{gnts of the periodic function on the
left hand side are exactly f(k). Since f, f € W, the Fourler series converges
absolutely and thus both sums must be equal.

According to Katznelson’s counter-example [17] it is not sufficient to
assume f, fbeing continuous and in L. A minimal assumption under which
the Poisson summation formula makes sense pointwise is f € W NFW.

ProposrrionN 1. So{R4) is embedded in W N FW.

Proof Writing x = x[o,1)4, the Wiener norm can be written as

filw = 3 15 Texlloo:

kezd
Now choose g € & non-negative and with compact support, such that x <
T.g for 2 € [0,1]%. Then we estimate

flw < S | IF Torusllodo = § 17 Tugloo dz

kekd [0,1]¢ Tt
< |V IFx M_5(v) dudy = || s0-
ek et

In the last step we have used the Riemann~Lebesgue lemma and (7);‘Sinoe
Sp i invariant wuder the Fourier transform, we alse have || filw < C ifils, <
Clf |l so-

COROLLARY 1. If f € So, the Poisson summation formula holds point-
wise with absolute convergence of both sums.

3. §y-uncertainty principles. In [16] J.-P. Kahane and P.-G. Lemarié-
Rieusset have characterized the range of pa.rameters. o, b, p,q suoh_tha,t I e
LENFL{ implies the validity of the Poisson summation formula. Since S¢ is
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in a sense the largest “nice” Banach space for which the Poisson summation
formula holds, it is natural to conjecture a relation between the Poisson
summation formula, uncertainty principles, and embeddings of L% N FL]
into Sp. In this section we prove the sufficient conditions of Theorem 1 for
the embedding of L2 N FLY into Sp.

TuroreMm 2. If

o IN(b_1)y_ (1111
d p)\d ¢ g’ 29" 2¢°4)°
then LE O\ FL{ is embedded in So{R%).

Proof. We first prove the theorem for 1 < p,g < 2, in which case a
more precise inequality can be derived.

PROPOSITION 2. Suppose that 1 < p,q < 2,

e 1N\/b_ 1y _ 1
d p)\d 7] pd
and f,g € LENFL]. Then -

(11) S S |ng($a y)|dzdy < C(p, Q’)(Ilf”p,angup,a + ||ﬂ‘q,b”§“q,b)-
R Re

Proof. For the proof we only use Hélder'’s and the Hausdorffi-Young
inequalities, and Minkowski’s inequality in the form

7 1/r L/r
@ ({Fey ] @) < (P d) ",
and the obvious submultiplicativity of the weights
(13) 1+ (=l + D)) < A+ =) + |yl

for s > 0,2,y € R%. We write F = S,f and F,(z) = F(z,y), if we consider
F a function of x only.

Step 1. For given r > 0 we partition R¥ x R? into A4, = {(z,y) €
R? »x RY: || > [y|*/"} and B, = {(z,y) € R x R%: |yl > |z|"}. Then
§ 15of1= T 171+ {17
R24 AL B,
The integral over A4, is estimated by

[irl=fdy | IR@IO+[a) 0+ al)*da

Ar R fzlzly|t/r
—ap' 1/9'
< PR (F @tlah) ™ ds) 7 ay
K¢ o] [/
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S(édllellﬁfady)l/p'(H § e a]” @)

RE oz |yt
In the latter integral we have Xlwlzly!””(l + [m|)—ﬂp' dz = O(Jy|(-er"+d)/n)
and thus the double integral is of order
@( { |y|((~ap'+d)/r>(p/p’)dy).
ly/z1

This is finite if and only if

M . .?i’ < ﬁd,
r p
that is, if and only if
a 1
E — 1“;; > E

Therefore we obtain
f‘/ 1/ i
(14 § 1F@yldwdy<o( | [ | 1Saf@y)r+la)@ds] “ay)
A, Rd RRd

If we replace (p, a,r) by {(g,b,1/r) and interchange z and y, the analogous
estimate

| 4'fa 1/¢
(18) | |F@y)idedy<c'( | []15f(@ I+ p)ody] “dz)
B R¢ R4
holds, provided that

So far we have shown that if

¢_ i) (2 _ l) -
d p/\d ¢/  pg
then §|S,f| is bounded by the two mixed norms in (14) and (15).

Step 2. We estimate the mixed norms by || f||5,e and |1l o5 Tespectively.
For this we use the following lemma, which will be proved later.

LEMMA 5. Suppose that f,9 € LP(R4) for 1< p <2 anda 2 0. Then

(11§ 18+ izh@ae]”” a)" < Gflnlslha
Ré R :
with a constant Cp depending only on p. N
With Lemma 5 we can finish the proof of Proposition 2 easily. The right
hand side of (14) is bounded by C|lglip,allflip,e; 2nd since |Sgf{z,9)| =
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|S§f(y, —x)|, Lemma 5 also applies to the right hand side of (15), to yield
the bound ||§||q,b|jﬂ{q,b. Combining these estimates proves (11). m

Proof of Lemma 5. Set
a o'/p
1) = (| [§ 1F@y)Pa+ el ds] " ay)
Ré TRA
Using Minkowski’s inequality (12) with r = p'/p > 1 yields

1/r
1) < | (| 1P@ )+ la)™ dy) " do
RE Rd

= ([ 1Pl @) @l an.
Rd Rd

Using (7), the inner integral is just ]if*(M_mﬁ)anu Since p < 2, this p’-norm
can be majorized with the Hausdorff-Young inequality by Cpl|f - T_o7|lp-
We continue as follows:

1(p) < 3 | (§1r@g(t+ )P ét) (1 + Jo)) da
=2 {1 (flo()P(+ Ju— )7 du) dt < CZIFIE alllEe

where we have used the submultiplicativity (13) in the last step. Thus the
lemma is proved. =

»/p

Finally we prove the remaining cases of Theorem 2, where Lemma 5 is
not applicable.

First assume that p > 2 and 1 < ¢ < 2. In this case we use the embedding
P — L2 for ¢ < a+d/p — d/2 (Lemma 1{b)). By what we have already
proved in Proposition 2, f € Sp(R?), provided that

L _(c_1 E_i)<(2_i)(9_1
2¢ \d 2)\d ¢/ \d pJ)\d &)

The case 1 < p £ 2,q > 2 is treated similarly.
If both p > 2 and ¢ > 2, then L? « L2 for ¢ < a +d/p — d/2 and
L — L?y for v < a+d/q — d/2. Again by Proposition 2, f € S, whenever

Lofe _W(x_ Iy _(a_L1y(b_1
4 d 2/\d 2 d 7 d ¢
Theorem. 2 is completely proved. m

Remarks. 1. If one is willing to accept greater generality and more
notation, the steps of the proof can be recast ag embeddings of certain func-
tion spaces. For this we define the modulation spaces which were introduced
by H. Feichtinger [8]. They are a tool to measure the time-frequency content
of a distribution f in terms of §,f. Fix g € S{R?) and let w be a positive
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weight function that satisfies w(z + wu,y + v) < C(1+ |u| + jv])*w(z, y) for
some constants C > 0, e > 0 and all u,v, 2,y € R?. The modulation spaces
M2:4(RY) are defined by the norms

a/p i/q
18) Uil = § [ § 18050 wlo,y)? o] " ay)
Ré R
Different windows g € § define the same space and yield equivalent norms.
In Step 1 of the proof we have essentially shown an embedding of the form

(17) MEP N FMDY — So(RY),

where wq(z, ) = (1+|2])* Similarly, with this notation Lemma, 5 expresses
the embedding

(18) LE(RY) s MEP  if1<p<2.
An alternative proof of Lemma 5 could be given by means of interpola-
tion of modulation spaces. One verifies that L} — ML™ and L? = M22.
Interpolating one obtains the lemma.

2. The Sg-uncertainty principle allows for many variations. One might
try other weight functions and obtain embeddings and uncertainty principles

respectively in this way. The following result seems of some interest because
it sheds some light on the case of the critical parameters in Theorem 1.

(a 1 b1y 1

d_ﬁ) (rf?) BT

wherel < p,q < 2, and thatow > 1/p and 8 > 1/q. If f(z)(log{1+]z|})* € LP
and f(w)(log(1 + |w|))® € LY, then f € So(R%).

We omit the proof, since it does not involve any new ideas and follows
exactly the same steps ag the proof of Theorem 2. '

3. Another interesting problem is how the “excess” decay measured by
(a/d—1/p") (b/d—1/¢'} —1/(pq) affects the phase-space concentration of f.
In this respect we can show the following result, whose proof is again similar
to that of Proposition 2.

IFl1<p.9<2 and
e 1N\N/b 1 a IN/B 1
(Ewp’)(EMQ’)>(E+E)<E+5)’
then

(19) § §1Sof (. 0)I(1 + e + [y))P dz dy < O flpoter + | Flaivrs)-
R el

4. A reasonable next project would be the study of more general embed-
dings of the type L2 N FL] — Mp*. It is not difficult to derive sufficient

Suppose that
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conditions for such embeddings, but in the light of the counter-examples in
the next section it could be quite challenging to find the optimal exponents.

4. Counter-examples. In this section we show that the conditions in
Theorem 1 are essentially sharp.

‘We can rely in part on the counter-examples to the Poisson summation
formula which have been given by Kahane and Lemarié [16], and which in
turn extend Katznelson’s construction [17].

Case 1: 1 <p,g<2and (a/d—1/p'}(b/d—1/q') < 1/(pg). In dimen-
sion d = 1, by [16], there exists a continuous function f € LZ N FL{(R) so
that 3 .z F(k) # ez Flk). According to Corollary 1 such an f cannot
be in Sp(R).

If d > 1, we choose an f & L} ;N FL],,(R) \ So(R) of one variable, and

we set F(z) = [[2., f{z.); then F € LE N FLI(RY), but F & Sp(R?).

Case 2: 1 <p<2 ¢g>2and (a/d—1/p")(b/d— 1/q") < 1/(2p). For
d = 1, there is a continuous function f € L% N FLI(R} such that f € W(R)
(cf. [16]). By Proposition 1, f cannot be in Sp(R). The extension to higher
dimensions is again done by tensor products.

The case 1 < ¢ < 2, p > 2 and (a/d — 1/9") (b/d — 1/¢") < 1/(2q) is
symmetrical. Thus we only have to consider afresh
Case 3. p,g> 2and (a/d—1/p") (/d—1/q¢') < 1/4. To treat this case,

we need some facts about norm estimates of Gabor sums and on unimodular
polynomials, which may be of independent interest.

LemMMA 6. Suppose f € So(R?). Then there exists an B > 0 and C =
C(R, f) so that for r > R,
> C Z |ak;|

H > o Mir T f1f

klezs k,icZd

Proof. Set f, = Ek,zezd gt My Tir . Given € >0, there exists an R > 0
such that

Iy 18f )l dedy <e.
le|>R/2 iyl > R/2
Note that

Sofrlz,y) = Z a'kzemrirk-(y—rl)sgf(m —rk,y—ri).

k€74

By periodizing the- mtegral § Jgza over a cube G, = [—r/2,7/2]?¢, we can
write

icm
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I£ellso = §§ 18080 (2, y)| de dy

= Z SS* Z akl€2wirk~(&'+rﬂ—rl)3gf(m+7.(m_k)’y_'_,r_(n_l)) da dy.
m,n€Zd Cr kiIcZd

Therefore

1705 2 > {V lamnl 195£(2, y)| dex dy

™m,1 O

S S tawl - [Sef(e 4 r(m— k),y+ r(n— )| du dy

My Cp (kyD)F#(m,n)
> 3 Jaml (1§1Sef(z9) dody —e),
mneZd Cr

which proves the lemma for £ small enough and r > R. =
A related staternent can be found in {19].

LemMMA 7. Let g € 8, (o) C C be o sequence of complez numbers and
P.(z) be o sequence of functions of period 1. Then we have, for every integer
R >0,

[e.o]

| b Trug@)]| < ome( S ez + )
k=1 ' k=1

where naturally || Pg||? = X[o R4 4 | Pr(z)|P dz.

Proof Let f(z)=3 po; @ Pe(R2)Treg(z) and {5,
We obtain

FlEa= | 3|3 orbu(Bo+ R)g(z+ Rin—E)P(L+ |+ Rnl) |do
[0,B]E neZd K

Majorizing SUPg 0, R] «(1+|z + Rn}) by C{1+ |Rn|), we see that for fixed z
the integrand is just the discrete £8-norm ||¢; * dg || ,, where ¢; and d, are
the sequences ¢, (k) = ap Py (R(z +n)) = ap Py (Rz) and dy(k) = g{z + Rk),
ke 7% Since ||co * dsllp.a < ||lesllp,a [|dall1,a; we obtain the desired estimate

from the fact that {|f||} , is bounded by
¢ | (3 lowl|Pu(RR)P(L+ |Rk|>ﬂ?)(z|g (2+ RE)|(1+ | RE])?) "do
[0,R]¢ %

< d k 1 R.IC r P pl Rk u}J
< CR (QES[E%PZIQ(QH—R )|(1 4 | RE|) ) Zlakl I PellE(1 + Rlk[)*F. w

=) ineas SRn-i—[U,R}"'

Furthermore, we assume the existence of trigonometric polynomials p,
on R, so-called unimodular polynomials, with the following properties:
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(20) Palt) =3 are®™*  with Jay| = 1
and
(21) [2nllee < Cv/n

with a constant C independent of the degree n. The best kmown examples are
the Rudin—Shapiro polynomials. We refer to Kahane’s fundamental paper
[15] for further information and references on unimodular polynomials.

We can now provide a counter-example for the remaining Case 3.

PROPOSITION 3. If p,q > 2 and (a/d — 1/9')(b/d — 1/q) < 1/4, there
exists a sequence f, € So(Rd) such that
IFe s/ (1fnllpe + | Faligp) > Cne
for some e > 0. Consequently, LE N FLY is not embedded in S;.

Proof Let g € S,(R?) be arbitrary and choose an integer B > 0 so
that the assertion of Lemma 6 holds. We choose a sequence of ummodular
polynomials p,, satisfying (20) and (21) and set P,(z) = H 1 Pn(Rz;).

Then Pu(z) = 3, . are’™ %, where the summation is over all integer
vectors in the cube Cp, = {x e R : 0 < z; < n}. Furthermore,

[Palle = [lpnll% < Cn¥®

and |agx| = 1for k€ €, NZ9, and P, = >0, @kbrs is a discrete measure.
Set k = [n®] + 1, with 5 > 0 to be chosen later, and define

(22)  fa=P-(Paxg)= Y a0mMuTrng =P Z amTmrg.

1eCy,
meC,
By Lemnma 86,
(23) fullsy 2 C Z lag| - jam| = Ckin? > Onls+Dd,
1eCy .
meECH

On the other hand, using Lemma 7 we obtain

e < 1Pello 3 lompP(1+ Eimfyr) ™

meC,
which is easily seen to be of the order
(24) || Fallp.a = Ok 2no+4/p) — O (ndle/2+a/d+1/p)),

A similar argument applied to f,, = D, « (Pn-9) = Yy aiPul( — RAD)Trig
yields

(25) 1 allap = Okt andi?) = O(pd/2+dsd/d+1/a))
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Combining (23)-(25), we obtain

i!fn“So > n(8+1)d
lloe + 1 Follog) = (ndCr241%78177) | nd( /oG 3172748

This expression dominates Cn® if and only if
s a 1 1 b 1
S+1>§+1+E_g7 and s+1> '2"**5(&"—&7)—5-8
if and only if
a 1 s b 1 1
9 el - - =
(26) 7 p’<2 andd <23
Since (a/d—1/p')(b/d—1/¢") < 1/4 we can choose such an s and the result
follows. m
Remark. Since clearly L3, N FLE (RY) — W(R?), Proposition 3
shows that Sp(R?) is a proper subspace of W(R?) N FW(R?). This was
already proved by Losert [19].

Qur previous considerations still leave open the critical case

a_Iyfb_1y_ (1 1 11
d o)\d ¢/ pg'2p° 20’ 4 )"

We conjecture that in this case LZ N FL{ is not embedded into Sp. Here
is a partial result in this direction. It also improves the considerations of
Kahane and Lemarié.

ProrosiTiON 4. If g =2, 3/2 < p < 2 and (afd - 1/0)(b/d~ 1/2} <
1/(2p), then there exists a continuous f € L2 N FLL which is not in Sy and
for which the Poisson summation formula fails.

Proof. Again it is sufficient to prove the statement in dimension d = 1.
Forif f Lp/d(R) Nz /d(]R) \ So(R), then f(z1)... f(za) € LENFLI(R) \
Sp(R?). Thus assume that o — 1/p' = v/p and b — 1/2 = 1/(2r) for some

r> 0.
Let Dn(z) = 3 ,cn €™ be the Dirichlet kernel. Choose ay =

(k*t11log k)~ and set
oo K]

(27) Z Dy (z)g(z — k) = Z o, Z M;Trg(z

Then
oo o0
= Z Z akM..kTJg (W)= Z#’_’[ w)rjg(w

Lzl
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By Lemma 7,
”ﬂl%,b <Oy NslBa+ 1™
b

In our case 2b =1+ 1/r and

oC
IillE= S K+ logk| ™2 < Clogj) 221"
bzjt
Therefore
”-ﬂ@,b < CZ(],ogj)_zj—2—l/'r‘jl+l/r < 0.
i
Again by Lemma 7 we estimate the p-norm of f as

oo
I£1B. < ok [|DpryllB (1 + K]
k=1
If p < 2, then |Dy|2 < C(logn)* PnP~!, and since ap = r +p + 1 we
estimate

oa
1F15.0 < D kP (log k)P (log kT)~Ph7 (P~ Dgr et

pa —
k=1

<CY (logk)X0-Pgp=2,
k=1
Therefore f & L% if and only if 2(1 ~p) < ~1,ie.p>3/2. Forp> 2, f is
always in L% by a similar estimate using || D|[2 < CnP~t.)
Now we specify g. Let g be of the form g = ¢ * ¢~ for some 1% > 0 in
& with compact support. Then f as in (27} is continuous, since the sum is
locally finite, and
Fln) =Y (k" logk) ™ Dyry(n)g(n — k) >
=]

nlogn 9(0)
and thus . f(n) = co. We have therefore constructed a continucus func-
tion f € LE N LE(R), but f & So and f & W(R). =

5. Pseudodifferential operators of trace class. In this section we
give an application of the previcus results to pseudodifferential operators.
We refer to {11, 21] for an exposition of the general theory and we will adhere
to the conventions used in Folland {11].

For our purpose a pseudodifferential operator o(D,X) with a symbol
o(p,q), (p,q) € RExR, is just a superposition of translation and modulation
operators M;T_,. In the Weyl correspondence the operator is defined as
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(28) a(D,X)= | | 5(p,q)e™ M, T, dpdyq
e pe

or pointwise as
o(D, X)f(t) = {|5(p, q)e™™P9e>™ 0 f(¢ 4 p) dpdg
={je (f, “’—gﬁ) TV fly) dyde.

We are only interested in symbols o € Sy, therefore the integral converges
absolutely and defines a bounded operator on any L, p > 1.

‘The importance of Sp in this context stems from the following theorem,
which seems to be due to H. Feichtinger {9]. Since a published proof is not
available, we sketch a simple one.

'THEOREM 3. If o € Sp(R* x R?), then o(D, X) is o trace-class operator
on LA{R4).

The proof follows easily from a calculation with “elementary” pseudo-
differential operators and the inversion formula for the short time Fourier
transform.

LEMMA 8. Set &(p,q) = e~ +4°)/2 p 4 e RE, b(t) = et ¢ ¢ RY,
and write z = (x1,32) € R* xR andy = (y1,y2) € RExRL. Let I, , be the
pseudodifferential operator corresponding to the symbol F (M, Ty ®). Then

(29) H‘H,yf = ezﬂmzlyz <f’ M“ylhm2/2T—y2+m1/2¢>M—y1+mz/2T—'yz—m1/2¢=

in other words, Il , is a rank one operator.

Proof. Formula (29) seems to be implicit in many arguments on pseudo-
differential operators. It follows from [11], pp. 31-33, and is also explicit in
[13]. For completeness we give an elementary proof without fancy arguments,
using only the formula

(30) (7™M w) = 2972 for ¢ € RY,

With the assumption f € I* N L?, all integrals are absolutely integrable
and we can integrate in any order. In (28) only & = M, T, ¢ occurs, and
thus after separating the parts depending on p and ¢, we obtain the explicit
expression

My £(2) = {fexp(@mi(p - y1 + ¢ - 1)

X exp (__g[(p _ m1)2 + (q _ m2)2]) ein‘p-qemriq.tf(t "E-p) dp dq



102 K. Grochenig

~ S(S exp (——g(q - m2)2) exp (2m'q (t tur+ s )) dq)
x GXP(”g’(P - m1)2> exp(2mip - y1) f (¢ + p) dp.

The inner integral is the Fourier transform of a Gaussian at ¢+y2 +p/2 and
with (30) it is

2
2¢/2 exp (—211' (t + o -+ g) ) exp (271-@':32 . (t +yq + %)) .

Now we set u = ¢ -+ p in the remaining integral and obtain

I, f(t) = 9d/2 S exp( 27r(y2 -+ -——é_t—t> — g(u i 331)2)

R

X exp(2m' [(yz + uT—M) o+ (u—1) -lef(u) du.

After sorting out terms depending on ¢ and on u and completing some
squares, we arrive after some book-keeping at formula (29). w

Proof of Theorem 3. Since the translation and modulation oper-
ators are isometries on L?, we have

(31) ltr Doy < ||@)3  for all z,y € R* x R34,
Given a symbol ¢ € $5(R??), and hence also & € Sp(R?¢), we write
o= S S Seo(z,y) MyTp$dz dy
R2d R2d
by means of the inversion formula in Lemma 3. Therefore
oD, X) = SS S5 (x,y) Iy dx dy.

This integral is absolutely convergent and thus

(32)  |ro(D,X) < | 1566 (x, )| - |t oy | dz dy < (13155, =

Réd

-Combining the theorem with the embeddings proved earlier, we obtain
sufficient conditions for the trace class of pseudodifferential operators that
are perhaps more usefil than the main theorem itself.

COROLLARY 2. Suppose that o € LE N FLI(R*)} and that -

(383 m(did!
24 p)\2d ¢ pe'2p'2¢°4)

Then (D, X) is of trace class.
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Remarks. 1. Theorem 3 and Corollary 2 extend the results by
Daubechies [3] and Heil, Ramanathan, and Topiwala [13] to general p and g,
but the range of parameters does not seem to be sharp even for p =g = 2.

2. In view of Lemma 8 it ig trivial that every pseudodifferential operator
o(D, X ) with a symbol of the form

(33) F=Y ;M T, & with » |c;| < oo
J i

and (z;,y;) € R* is of trace class. Following standard procedures one might
consider the Banach space B of all symbols o with a representation (33)
and an appropriate norm. This space would furnish a natural but rather
cumbersome symbol class for frace-class operators. However, an important
theorem of Feichtinger [8] asserts that every o € Sp has such a representation
(33) with £'-coefficients. Thus the abstract extension B coincides with So
and Theorem 3 and Corollary 2 provide a more explicit and user-friendly
description of trace-class symbols. This discrete representation also implies
that every pseudodifferential operator with a symbol o € S is a nuclear
operator on LF.

3. Using modulation spaces and their mterpola.tlon properties, one can
easily obtain sufficient conditions for a pseudodifferential operator to be in
the p-Schatten ideal I,,. The map ¢ — o(D, X) maps Sp = MY (with trivial
weight) into the trace—cla.ss ideal I and L? = M>? onto the Hilbert-Schmidt
operators I5. By interpolation every symbol ¢ € MP? gives an operator in
Ipforl <p<2.

4, Theorem 3 carries over to the Kohn-Nirenberg correspondence, where
the operator

(34) oxn(D, X) ={{5(p,q) M,T_, dpdq

is associated to a symbol o. Comparing (28) with (34), we see that we can
switch between the two definitions by a simple multiplication with "¢,
Thus if 'T‘(p q) = P95, then 7 (D, X) = o(D, X). Since it can be shown
that Sp is invariant under the multiplication with the “chirp” €™ (cf. [6,
10]), Theorem 3 also holds for the Kohn-Nirenberg correspondence.
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