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(Hy, Lp)-type inequalities for the two-dimensional
dyadic derivative

by
FERENC WEISZ (Budapest)
Abstract. It i shown that the restricted maximal operator of the two-dimensional
dyadic derivative of the dyadic integral is bounded from the two-dimensional dyadic
Hardy-Lorentz space Hpg to Lpg (2/3 < p < 00, 0 < g € oo) and is of weak type

(L1, 4r). As 8 consequence we show that the dyadic integral of a two-dimensional func-
tion f & Ly 19 dyadically differentiable and its derivative is f a.e.

1. Introduction. It is known that

1 z-kh
flz) = }lﬂ})"ﬁ § f(8)ds a.e.

if f e Li[0,1). The dyadic analogue of this result can be formulated as
follows. Butzer and Wagner [5] introduced the dyadic derivative to be the
limit of

(@af)@) = S0 (f(e) — fla +277) (@ e 0,1)
FE

as n — oo where 4 denotes the dyadic addition (see e.g. Schipp, Wade,
Stmon and P4l [13]). The dyadic integral 1f is defined by the convolution of f
and the function W whose kth Walsh-Fourier coeficient is 1/k (k = 0). The
boundedness of T f == sup,,en [dn (TF)] from Lp[0,1) to Lp[0, 1) (1 < p < 00)
and the weak type (L1]0,1), L4[0, 1)) inequality

(1) supyA(papI'f > 1) S C[flls - (f € La[0,1))
acdt] nel

1691 Mr;thr*.ma.mlf:s Subfect (lasgification: Primary 42C10, 43A75; Secondary 80G42,
42130,

Key words and phrases: martingale Hardy spaces, p-atom, mterpolation, Walsh, func-
tions, dyadie derivative,
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272 ’ F. Weisz

are due to Schipp [9]. The dyadic analogue of the differentiation theorem
follows easily from the last weak type inequality:

ﬂl_ii:rolo d.(If)=f ae.

if f € Ly1[0,1) is of mean zero (see Schipp [9]).
The weak type inequality was extended by the author [15]. We proved
that

(2) 1T f[lp.e < Clifa,,
where H,, , denotes the one-dimensional dyadic Hardy-Lorentz space. Ag a
special case we obtain (1) from this by choosing p =1 and ¢ = 0.

The two-dimensional differentiation theorem

(1/2<p< oo, 0<g<o0)

z-ph y+k
(3) f(m’y)zh}fﬂoﬁi 5 fls,t)dsdt  ae

if f € Llog L{0,1)? can be found in Zygmund [18]. The dyadic analogue of
this result is

Jlim don(If)=F ae (f€LlogLld,1)%)

where If now denotes the convolution of f and W x W and, moreover,
n—1m—1

(4) (dn,mf)(m,'y) = Z E 2’i+j—2(f($’y) . f(w,y £ 2-*.?'—1)

=0 =0

~flz 27 L)+ flz+ 27y F 2797y
(see Schipp and Wade [12] and alsc Weisz [17]). Recently the author [15]
generalized this convergence result for f ¢ Hf D Llog L[0,1)? where H:’f is
the two-dimensional dyadic hybrid Hardy space.

In this paper the Hardy-Lorentz spaces H, , of dyadic martingales on
the unit square are introduced with the L, ; Lorentz norms of the maximal
function suppey |frnl- Of course, H, = H,, are the usual Hardy spaces
(0 < p < o).

We verify here the same results for the two-dimensional dyadic derivative
as we proved in [14] for Cesdro means of two-dimensional Walsh-Fourier
series. We denote the restricted maximal operator supj,_m <q [dom (X))
for any & > 0 by I}, f and prove inequality (2) for this operator (2/3 <
p <0, 0 < q< o0). The two-dimensional version of (1) follows from this
with p = 1 and ¢ = co. Note that the unrestricted maximal operator is
investigated in Weisz [17)].

It is known that if o™* < [A/k} < o for any & > 0 then (3) holds for all
f € L1]0,1)%. The dyadic analogue of this follows from the two-dimensional
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version of {1):

hm  dpm(1f) =f ae (feL[0,1)%).

Ty TR 0
frean| <o

This convergence is also proved by Gét [7] with another method.

2. Martingales and Hardy—Lorentz spaces. In this paper the unit
square [0, 1)2 and the Lebesgue meagure A are considered, By a dyadic inter-
val we mean one of the form [k277, (k+-1)2") forsome k,n € N, 0 < k < 27,
Given n ¢ W and @ € [0,1) let I, (2) denote the dyadic interval of length
27" which contaius @, If It and Iy are dyadic intervals and A(J1) = AMI2)
then the set

I I]_ b Iz
i a dyodic square. Clearly, the dyadic square of area 27%" containing (z,y) €
[0, 1)* is given by
Tan(®,y) = Ln(z) x In(y).

The o-nlgebra generated by the dyadic squares {I,n(z) : = € [0,1)%}

will be denoted by Frp (n € N), more precisely,

Fum = o {27, (k- 1)27") X 1277 (1 4+ 1)27™): 0< k< 2%, 0 <1 <27}

where o(H) denotes the o-algebra generated by an arbitrary set system
M. We will investigate martingales of the form f = (fyn.n € N} with
respect to (Fy, ., 7 € N). We briefly write L, instead of the real L, ({0, 1%, A)
space while the norm (or quasinorm) of this space is defined by ||f|lp :=
(o2 | £ 4017 (0 < p < 00).

The distribution function of a Borel-measurable function f is defined by

M{UF > Y = 2{e: [f@)] >} (r=20).

The weak Ly space L {0 < p < o) consists of all measurable functions f
for which

)y == sup YALIF] > A D]HP < co,
750

while we sot Ly, = L.
The spaces L are special cases of the more general Lorentz spaces Lyp,q.
In their definition another concept 1s used. For a measurable function f the
non-inereosing resrrangement is defined by
F(t) = ity : M({If > 1) <t
The Lorentz space Ly 4 18 defined as follows: for 0 <p < o0 and 0 < g < oo,
o0 1/4
~ dt
Il = ( § T )

0
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while for (0 < p < o0,
[1£llp,00 = suptl/Pf(t).
>0
Let

Lipg 1= Lpq([0, 12, = {f : |fllpy < oo}
One can show the following equalities:

Lyp =Ly, Lpeo=1L; (0<p<c0)
(see e.g. Bennett and Sharpley [1] or Bergh and Lofstrém [2]).
The mazimal function of a martingale f = (fy,n,n € N) is defined by
f* = sup |fn,'n|-
neN

It is easy to see that, in case f € L1, the maximal function can also be given
by

* = '—_—]'.'_‘_'
7@, y) = b sy

For 0 < p,q < oo the martingale Hardy-Lorentz space Hy , consists of
all martingales f = (f, n,n € N) for which

1, , o= 17"y, q < 00

Note that in case p = ¢ the usual definition of Hardy space Hy,, = H, is
obtained.

It is well known that for a martingale f = (f, n,n € N),

} i fdA’.

In,n (way)

(5) sup YA(f* > 7) < sup || fn,nll
>0 nEN

and
170 < 250l (1 <p < o0)

hence Hp, ~ L, whenever 1 < p < oo (see Neveu [8]), where ~ denotes the
equivalence of the norms and spaces. Moreover, it is proved in Weisz [16]
that

Hpg~Lpy, (1<p<goc, 0<qg<00)

A bounded measurable function a is a p-atom if a = 1 or there exists a
dyadic square @ such that

(1) fgadr =10,
(1) llafleo < A@Q)77,
(iii) {a # 0} C Q.

Using the atomic decomposition we verified the next theorem in [14].

Two-dimensional dyadic derivative 215

THEOREM A. Suppose that the operator T is sublinear and, for each
po < p £ 1, there exists a constant Cp > 0 such that
(6) | ITafrar<c,

[0,8)M\G
for every p-atom o where the support of a is contained in Q as in (i)-(iii).
If T' is bounded from Leg to Lo then for every pp <p <1,
”ITJ'”.P $ OJJ”-f”Hp (-f = H.'P A Ll)‘

The following interpolation result concerning Hardy-Lorentz spaces will

be used in this paper (sce Weisz [16]).

TasowreM B. If a sublincar operator T is bounded from Hy,, to Ly, and
Jromn Lo to Lo then it is also bounded from Hy 4 to Ly fpo < p < 00
and I} < ¢ < o0,

3. The two-dimensional dyadic derivative. First we introduce the
Walsh system. Every point ¢ € [0, 1) can be written in the following way:

Tk
;{:mzz—m, 0L, <2, wp €N

In case there are two different forms, we choose the one for which limy .00 Z#
= (0,
The functions
ro{z) = exp (rz,vV-1) (neN)
are called Rademacher functions. The product system generated by these
functions is the one-dimensional Walsh system:

W () 1= H i ()™
k=0

where no= e 2%, 0 S < 2 and oy, € N
The Kronecker product {uh,m;n,m € N) of two Walsh systems is said
10 be the two-dimensional Walsh system. Thus
wu,m(w: '.U) = wn(m)wmr(y)*
Recall that the Wulsh-Dirichlel herncls

-],

D'n e Z Wik
h=0

satisfy

_fon ifzel,2mm),
™ Dan(a) = {0 it z € 27", 1),
for n & N (see o.g. Schipp, Wade, Simon and P4l [13]).
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For each function f defined on [0,1)? Butzer and Engels [3] introduced
the concept of the two-dimensional dyadic derivative by (4). Then f is said
to be dyadically differentiable at z,y € [0,1) if (dn,mf)(z,y) converges as
n,m — oo. It was verified by Butzer and Wagner [4] that every Walsh
function is dvadically differentiable and :

Hm  dy w{w X wi){z, y) = kl{we x wi)(e,y)
main(n,m)—co
for all z,y € [0,1) and k,1 € N. Let W be the function whose Walsh-Fourier
coefficients satisfy

1 ifk=0,

1
W(k) :=(§)Wwd’\ = {1/19 ifheN, ks#o0.

The two-dimensional dyadic integral of f € Iy is introduced by

If(z,y) == f (W x W)(z,y) = \\ Flt,w)W (2 + )W (y + u) dt du.

O e
O bty =t

Notice that W € Ly C Ly, so I is well defined on L.
Set

o0
W =
n=2¥
and let us estimate d, W and d,,Wy. The following theorem can be proved
with the help of the ideas in Schipp, Wade, Simon and P4l [13] (pp. 272-275)
and in Weisz [15].

Wa

THEOREM 1. For all n, K € N we have

4 5
AW (z) +1| S CY Fi,(a) and |dWi(2)] S CY Fi ()
1=} i=1
where
1 n—1 n-1
Fin(@) = gpmor 9Ky 1 D03 (= )P Dy 279,
Je=0 g1
1 n~1 .
Fnl(e) = PEETSvE] > (n— )2 Dy (z),
t==0
-l
- Dz{($ + 2" i- 1)
FKn . 3—202‘722 v K-.zvl )
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o
4 — s Dzn I-k( )
Fff,n(m) . 22 2K n—k V1
kw=0)
and
b
Fie (i) == Doxc (@)L in> i3

4. Inequalities concerning the two-dimensional dyadic deriva-
tive. Before considering the operator

I:tf o HuP | n,'rn.(If)| (-f € Ll)

for any « = 0 let us nmdtfy .sllglnly the dyadic derivative. Set
11

67&,7:5.[(“5 '.U) = \ Sf(t,u)[an(m ‘i‘ t) -+

00

[dmW(y -+ ) + 1] dt du

and
Yol = sup  |6amf| (f €Ly
Jirr2| Lox
First we can prove that J7) is bounded from Hj, to Ly,

THEOREM 2. There exist constants Cp depending only on p and o such

that for cach 2/3 < p < 1,
1TeTlly < Collfllzr,  (F € Hy)
where I f will be defined for f € Hy\ Ly in the proof.

Proof First assume that f € H, 0 Ly. By Theorem A the proof of
Theorem 2 will be complete if we show that the operator J?, satisfies (6)
and is hounded from Dye t0 Loy

Since ||[Dgs by = 1, we can show that
(8) ” ‘}'g,vr,lil- <0 (% =Ll....4ne N)

From Abis it follows that [[d, W 4 1]|; £ C for all n € N, which verifies that
JE i bounded on L.

If 4 = 1 then the left hand side of (6) is zero. Let a # 1 be an arbitrary
peabonn with sapport ¢ == 1 x J and A(L) = A(J) = 27% (K € N). Without
loss of generality we can suppose that 1 = J = [0,27%). If k < 2% and
1< 2% then W, 18 congtant on @ and so

1
‘n 1wy (z 4 Dwy(y + ) didu = 0,
0

c‘_.———:—-

Since
dp (W gn) = kwignx (0 k<2 ineN)
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(see Schipp, Wade, Simon and P4l [13], p. 272) it is not hard to see that

a(t, ) [d W_r{(iﬂ-l-“f)( mW(y”i‘“u)+ 1)

O ey 2

1
S, ma(,y) = |
0

+ (dpW(z + 1) + 1)dn Wi (y + u)
— anK(I + t)deK (y + ’U.'.)] dt du.

By the fact that Ff, . < Fi, (i=1,...,4n,K € N) and by Theorem 1 we

obtain

o< sup  sup lo|*xFi, x By,
in—m|<a i=l,...,5
F=ld
i J
+ sup  sup l|a|* Fy, X Fr,,
[n—m|Za i=1,..,4
J= Ly
i 4
+ sup sup ‘(L\ * F}C,n X FK,m
|n—mi<a i=1,...,0
j=1,8
<2 sup sup l|a|* Fg, x F§,

In—m|<a i=1,...,5

J=1,...,4
) ' B ]
+2 sup  sup Ja|*xF5, X F o+ sup o[« Frp, X Fgq.
[n—m|<a i=1,...,4 ln—mn|<e
J=1,..,5

Now we investigate the first term, the integral of [Supj,..mj<q 6] * F}:(m e
F§ P over [0,1)2\Qforalli=1,....5and j=1,...,4

Step 1: Integrating over ([0,1}\ I) x .J. We proved in [15] that for all
nKeNandi=1,...,3,

©) | (sup | Fiale +0) ) do < G278
1o MENTY

~ where I := [0,1) \ I. Taking into account (8) and the definition of the
p-atom, we can establish that, forallé=1,...,5and j=1,...,4,

: . ; . p
(10) S g( sup H a(t, w)| Fi (@ 4 t)FG 0 (y -+ u) di du) da dy
jey mmENT T
< G 22If S S(.’:UPSFI{H :13-| t dt) d&:d’!f _<;. Op.
e g MENY
Step 2: Integrating over I x ([0,1)\ J). If j < K and = € I then
z + 2771 ¢ I. Hence, it follows from (7) that

| Dy(ztdo-iNdt=0
I
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whenover @ € I and 4 > 4. Using this and (7) we can calculate the integrals
b Ficfet)dtifoelandi=1,.

1 n-1 n—1 ’
Srftn(“[' + 1) dt = WZ Z n—4)29" “SD2-¢($+75+2 31y dt
I F=0 dmgjael
< 0 ifn< K,
=~ 10 ifn> K,
1 el
slqr& n( 'I’)(Mf 21‘;’ nvlz _‘?'2* nS-D?‘(w'I" )
1 irz()
< Je K ifn< K,
T tn>K,
=1, )
§FKH( kb dt = LQJZZ”*zx zVlS,Dm-(x—i—wr2“3‘1)dt
0 ifn< K,
C ifn>K,

Azl 1 - 1
[Fia@dnyde= 22 SRRV T S Danas(z -+ t) dt

7 swnl)
Fig A | o0
< Z gn—Kon-tk-K + Z ok
k=0 k(K ~n)V0
< ook ifn < K,
=1 ifn> K,
. . 0 fn<< K,

J Ffen(e 4 1) dt = Lins iy § Doxc (0 + t)db = { 1 ifg > K
! x -

Let v & N satisfy ¢ — 1 < a0 £ r and observe that

. Y 1 g
B l”! ® FJ& n X “l (iRT S sup |(I.‘ * Fﬁ',ﬂ X FO,m

|rema] ey [frem| S
S I

) i J
- sup I(L’ * ﬁ!ﬁ',n x FO,m
Tyt 2 I ey

st (Aig) + (Big).

forall 4 = 1,...,5 and § = 1,...,4. Of course, {A;;)(z,y) =0if4=1,3,5
and a € I. So suppose that ¢ = 2,4 and j = 1,...,4. It is easy to see that

(11) 2me I\F0¢n<FKm (’mSK;j"-—“l,...,ﬁL).
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Consequently,
(Aij)(z,y) = sup S S |a(t, w) | Fi (2 + ) (y +u) dt du
g v
nm<

gn—¥ S Fg,m(y +u)du
i P

< G2 /Pr gup o™ K S FY oy +u) du
m<K 7

< Cp2?%/P sup S Fi (y+u)du.
m2K !
Then the inequality
(12) flagraczc
1Je

can be proved as in (10) where 4 =1,...,5and j=1,...,4.

Since Fj,, = Fg, for m > K, (11} yields that
(13) FimS2FL,, m>2K-rj=1..4).
Then, for each ¢ =1,...,5and j=1,...,4,

, . P
(14) S S (B ;)P dA < OpzzKS S ( sup S2’"Fj’(,m(y + ) d‘u.) dedy < Cy
IJe 7ge m2K=T

as we have seen in (10).

Step 3: Integrating over ([0,1)\ I} x ([0,1) \ J). By (7) it is easy to
verify that, for & ¢ I,

(15) [ Dozt 42797 dt = 27Ky i1 goima gy (@)
Hfj<i< KI— 1,

(16) | Dyi(z + ) dt = 2 F1p-x 5-5y(3)

if i € N and I

(17) \Dai(z 4t 2797 1) dt = Lo gyt oy (@)
if i > K. '

Now we modify slightly the kernel functions Fj, (i = 1,
calculate their integrals like (9). By (15),

ooy 4y and

ne-l n-l
[(sup {223 3 (n— )" Dy(a 142797 dt)P do
fo KT §=0 = +1 '
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) n-1 n-1 P
= (sup Z (TL — ’E)Zj_n‘/22i_K1[2_3'._1’2—;;'—1_]_2—«:)(.TJ)) dx
fe SR il
n—1 n~1 . o)
- sz—f{p S (sup Z Z mz(t‘—n)/22i/2+j1[2mj_«1 2.»,_14_2-.-)(%)) dz.
re NSK T i 2 ’

Since the function f(n) := (n/2)2~"/? is decreasing for n > 3, we obtain

n—1 n—1

. . . P
(18} S (sup 82”/2 Z Z (n — )27 "Dy (e -t 4+ 27771) dt) dx
e Sy 50 imj 41
K—-1 K-—1 _ ]
< CPQ*KPS Z Z 2’“3’/2*'”1{2_1_1,2_3-_1.;,2_.‘)(z)d:c
Ie j==0 d=7+1
K—1 E-1
< Cp2—KP Z Z oipoi(p/2-1)
J=0 i=j+41
K-1
~K (3p/2—1 Kpj2—X
< Cp2 PZQJ(P/ )SCPZ »/
j=0

provided that 2/3 <p £ 1.
Using (16) we get

n—1
(19) | (sup [2¢2 3 (n — )2 Dyi(a 1) dt)p dz
7o mEK T i=0

n~—1 —i ) ) P
<G S (Sup Z n2 1'2(1—~n)/221/22z—-K1[0'2“i)(m)) dz

1e \nSK G
K—-1
s OPQ—KP Z 27:(313/2—1) S Opz'({p/2—K-
i=0

It follows from (15) and (17) that

n=-1 00 »
(20) | (sup 13 23 27Dy (w 4t 42797 dt) dz
1o MK T en
n-1 I -1

, , . r
< S (sup z 22 Z 2_2/221'_1{l[z-j—ziznj—l,x_g—a)(m)) dx
7o EK 0 isi

-1 o
+ ISC (52?{ sz___% oY ;Z_?c 2"1'/21[2_&.-_1,2—5-1_;.2-;()(m))p do
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< Z 9dr Z 9ip/2-1)9—Kp Z 24P Z g-ip/ig-K

J= dzmg 1

K-1
< CIPZ—K;U Z 2j(3p/2-—1) + Cp2--K2KpQ—Kp/2 < Op2Kp/2-—vK_
J=0

Similarly,

-1 -
(a1) g(supgzzs/ﬁzz— e

Ic WSKIj 0 i=n

n~1 K-1

< S(SUP 22.7/’2 Z 2—K21—K1[2_J -1,p=3~1}3~ a)( ))pd$

Ie n<KJ 0 g1

S(sup 223/222 1 g—i=1 g~i-1jg- K)(;E))

7o nEK Jj=0 i=K

K-1 K-1 K-1 o0

< ST ST gile-tg-2Ke 4§ gin/2 § ging-ke

K—1 )
< Cp2 2K Z oi(3p/2~1) | Cp2“K2KP/22"I‘p < Cpg—KPﬂZ"K
§=0
whenever p < 1. If p = 1 then

K-—-1 K-1

K-1
Z 2jj}/2 E 2'i(p-—1)2-2Kp — Z 2(3—-K)/2(K _j)2—3K/2 S 02”—3}'{/2
3=0 g1 =0

and (21) is true in this case, too.
Obviously, if z € I and ¢ > K then

(22) | Dy(zFt)dt =0.
I

This implies that

(23) S(sup 52”/222 * Donie (@ +t)dt) dz

g MSH 7 k=0
K—pn-1 ) »
S(sup Z y A e Kl[z K g-re-ky (2 )) dx
Io n< kK k=0

icm
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23n/21[2—n-«kﬂ1,2—n—-k)($)

K
+ 23(K—k-—-1)/21[2—K’2 K+1}($)) dx
k=0
K1 K—k=2 K-1
S Opz"-KjJ Z Z 211(31]/2-—-1)2—-—’(: 4+ sz—f{p 2 23KP/22—3FCIJ/22—K
k=0 n=0 k=0

K-1
< O 2--Kp Z 2(K k){3p/2- 1)2 _+_O 2Kp/2 - < O 2Kp/2 K
k=0

In the same way we conclude that

(24) S (sup S 2~ n/2 Z2"I”M dt) dz

9K —-n—k
nskK 7 k=0 V1

K—n—-1

— S(ﬁg?{ Z 9—n/2gn—Kgn-+k- K- K2_ﬂ_h)(m))
Ie k=0

Ie

K-1K~k-2

< 9—2Kp 5 (Z Z 23n/2+k1[2—n—k—1,2—n-")(@

It k=0 n=0
K-1

n Z 23(K—k"'1)/2+k1[2“K,2_K+1) (z))p dz
k=0

< Cp2 Kp/2-K

Now we are ready to deal with the integrals of (4;;)? over I° x J¢

(i=1,...,5;j = 1,...,4). We investigate only three terms, (A11), (As)
and (Ag 1), because the others are all similar. Applying (18) twice we
obtain

(25) | {(4r2)rax

] el

= S S( sup H|a(tu |2 Kz Z (n— )2 "Dy (z -+t 427771
g "I

Ju=0 g1

S

= 2" Dy +u+ 275 db ) dady
LR R
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n—1L n—1 1
< O e | S( sup {2725 N (n— )2 " Dyi(w bt + 27777 dt
B [e go mSK g §=0 i=j+1

m~-1 m-—1
SZ’"/22m"22 Z (m — )2~ ™ Dot (y + 4+ 2757 1)d’u,) dx dy
J k=0 li=k+1

< Cp22K-—pr2Kp/2—K2Kp/2-K — Op'
By (18) and (20),

(26) | {(A13)7
Ie Jjo

n—-1 n—1 .
= 1 §( sup §lattwi )" 3 (- )@ " Dy(e 4277
rege mﬂﬂf{ rr §=0 i=j+1
m—1 o0 \
x 3T 2¢ 3 0Dy (ydut 27t ) dedu) dody
k=0 {=m

n—1 n-1

< Cp2*KKp | 5( sup (223 S (n— )2 "Dyt + 27 dt

Ie Je 'nm<KI §=0i=j+1
m—1
S or/2 Z 2k Z 272 Doi(y 4 w + 2751 du) dz dy
J k=0 l=m

< OPZ2K—Kp2Kp/2—K2Kp/2—K — Cp-

Similarly, using (18) and (21) we can see that
@27y | {(As1)Pan

Ie Je

i Di(w ¢ 42791
ﬁ”( sup 551““\22122 zjf-—i\/l :

Ie Je 12“"“\ =rr j= i=n

me=1 -1

P
X3 > (m- l)2’““ngz('y—{'—u—I—Z“’““l)dtdu) da dy
k=0 I=k--1

< Opzﬁlfs s( sup 5223/222__%1324 (z + t'-i- g—jml)dt

K~
s Je nm<KIJ_0 2 vVl

i=n

m—1 m—1

SEEL

k=0 l=k+1
S Oszffz—Kp/?—K2Kp/2-K - Op-

m— 025" Dy (y +u+ 275 1)du) da dy
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Observe that (A5 ;)(z,y) =0 ( =
(13) and (9) imply that

(28) [V Busypar < oe2X | g( sup | Fie (zF) dt
Ie Je Ie Jo ﬂ,msz-rI

x\or (yiu du)p dwdy < C,
J

., 4) follows from the definition.

foreachi=1,...,5andj=1,...,4.
Notice that the terms |a) * FOn X FKm (t=1,...,47=1,...,5) can

be handled similarly. Finally, by (22), |a{ * F% o X FKm(m ¥) = 0 when
¢ € I° or y € J°. Combining this and (10), (12), (14) and (25)-(28) we can
establish that

| (rayrde <0,
[0,1)2\Q
which proves the theorem for f € H, N L;.

It fe Hy (2/3 <p<1)then frx € Ly and fyx — fin H, norm as
k — oo. We have

195535 = 32 Fillo S WT5 o = Fudllp < Collfys — Fkllr, — 0
as j,k — 0o. For f € H, we define J%f € L, by
Jof = lim I} fur  in L, norm,
k—oa
which finishes the proof of the theorem. m
The next corollary follows from (5) and from Theorems B and 2.
CoROLLARY 1. There are absolute constants Cq and Cp,q such that

1 Jatllp.g < Cpgllfllu,, (f € Hpg)

for every 2/3 < p < 00 and 0 < ¢ < 0o. In particular, J? is of weak type
(L1, L), t.e. if f € Ly then

195|100 = 21;157A(32f >9) £ O f e
= CrsupyA(f* > ) < G| f|lv
>0

Now we can state our main result.

COROLLARY 2. Suppose that for a martingole f = (fan,n €N) € Hy,
we have X; Frn(,y0) de = Sé Frn(zo,y)dy = 0 for each n € N and almost
euery To,yo € [0,1). Then

||I f“p,q < Gp.qw”f'—’p.q
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for every 2/3 < p < oo and 0 < g £ oc. In partzcular, I} is of weak type
(L1, L), te if f € Ly such that S flz,y0)de = S flzo,y)dy = 0 for
almost every zg,yo € [0,1) then

Supr(I’!;f > 7 £ Cilifla e < Cullflla

Proof By the proof of Theorem 2 it is enough to verify the corollary for

integrable functions. Let f € Ly such that S flz,yo) dz = S f(mo,y)dy =0
for almost every zq,% € [0,1). Then it is easy to see that

11
o (If) (2, %) (Hf Wz -+ )Wy + )dtdu)
00

11
= {1 7t wdaW (e + )dnW (y +u) dt du
00
On,

m (2, ).

Hence I* f = J* f and the result follows from Corollary 1. m

The next corollary follows from the weak type inequality in Corollary 2
and from the fact that the Walsh polynomials are dense in Lj.
COROLLARY 3. If o > 0 is arbitrary and if f € Ly is such that

1 1
Sf(w,yo)dm= Sf(xo,y)dym{]
0

0
for almost every xo,yo € [0,1) then
dpmIf)— f ae asn,m— oo and in—m| <o

We remark that this corollary is also proved by Gat [7].

Finally, we note that without the condition Sé Flz,yo) do = Sé Flzo,v) dy
= {) we can prove Corollary 2 only for p > 1; more exactly: i
THEOREM 3. There are absolute constants Cy and Cp 4 such that
Sl < Cull flmy, (F € Hy)

and

”I f”?;q P:quHHp,q (f € Hp,q)
foreveryl < p<ocand 0 <g<oo.

Proof We can apply only the second inequality of Theorem 1. That
is to say, we have to investigate the terms supi, <o | * F}(m x Fg .

icm

Two-dimensional dyadic derivative 287
(i, =1,...,5). If j # 5 then they are considered in the proof of Theorem 2.
If 7 == 5 then
] * Fiep, % F§ (@) = § | la(t, )| Fi (2 + ) B o (y + v) dt du
I
< 22K KV Fie (2t dt
I

where a is a l-atom with support Q@ =1 x J, I = J = [0,27%). Applying
(9), we get

sup  |a| * Fi,, X Fy,(z,y) do dy
fo je In—m|<a ’

<off S supSF}},n(:n-i-t) dtdr < C.
Ie nENI

We get the same result if we integrate over I° « J or I x J°. Hence the
condition (6) is verified for p = 1; this means that the first inequality in
Theorem 3 is proved. The second inequality follows by interpolation. m
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