\[(H_p, L_p)\text{-type inequalities for the two-dimensional dyadic derivative}\]

by

FÉRFENC WEISZ (Budapest)

Abstract. It is shown that the restricted maximal operator of the two-dimensional dyadic derivative of the dyadic integral is bounded from the two-dimensional dyadic Hardy–Lorentz space \(H_{p,q}\) to \(L_{p,q}\) \((2/3 < p < \infty, 0 < q \leq \infty)\) and is of weak type \((L_1, L_1)\). As a consequence we show that the dyadic integral of a two-dimensional function \(f \in L_1\) is dyadically differentiable and its derivative is \(f\) a.e.

1. Introduction. It is known that
\[
f(x) = \lim_{n \to \infty} \frac{1}{n+h} \int_{\frac{x}{h}}^{\frac{x+h}{h}} f(s) \, ds \quad \text{a.e.}
\]

if \(f \in L_1[0,1]\). The dyadic analogue of this result can be formulated as follows. Butzer and Wagner [5] introduced the dyadic derivative to be the limit of
\[
(d_n f)(x) := \sum_{j=0}^{n-1} 2^{j-1} (f(x) - f(2^{-j}x)) \quad (x \in [0,1])
\]
as \(n \to \infty\) where \(+\) denotes the dyadic addition (see e.g. Schipp, Wade, Simon and Pál [13]). The dyadic integral \(I_f\) is defined by the convolution of \(f\) and the function \(W\) whose \(k\)th Walsh–Fourier coefficient is \(1/k\) (\(k \neq 0\)). The boundedness of \(I_f = \sup_{n \in \mathbb{N}} |d_n f|\) from \(L_p[0,1]\) to \(L_p[0,1]\) \((1 < p \leq \infty)\) and the weak type \((L_1, L_1)\) inequality
\[
\sup_{\gamma > 0} \gamma \lambda(\sup_{n \in \mathbb{N}} \gamma \lambda(I_f > \gamma)) \leq C \|f\|_1 \quad (f \in L_1[0,1])
\]

1991 Mathematics Subject Classification: Primary 42C10, 43A75; Secondary 60G42, 42B30.

Key words and phrases: martingale Hardy spaces, \(p\)-atom, interpolation, Walsh functions, dyadic derivative.

This research was partly supported by the Hungarian Scientific Research Funds (OTKA) No. F010656.
are due to Schipp [9]. The dyadic analogue of the differentiation theorem follows easily from the last weak type inequality:

\[
\lim_{n \to \infty} d_n(If) = f \quad \text{a.e.}
\]

if \(f \in L_1[0,1] \) is of mean zero (see Schipp [9]).

The weak type inequality was extended by the author [15]. We proved that

\[
\|\Gamma f\|_{p,q} \leq C\|f\|_{H,p} \quad (1/2 < p < \infty, \ 0 < q \leq \infty)
\]

where \(H_{p,q} \) denotes the one-dimensional dyadic Hardy–Lorentz space. As a special case we obtain (1) from this by choosing \(p = 1 \) and \(q = \infty \).

The two-dimensional differentiation theorem

\[
f(x,y) = \lim_{h \to 0} \frac{1}{h^2} \int_{a}^{a+h} \int_{y}^{y+k} f(s,t) \, ds \, dt \quad \text{a.e.}
\]

if \(f \in L_1 \log L(0,1)^2 \) can be found in Zygmund [18]. The dyadic analogue of this result is

\[
\lim_{n,m \to \infty} d_{n,m}(If) = f \quad \text{a.e.} \quad (f \in L_1 \log L(0,1)^2)
\]

where \(If \) now denotes the convolution of \(f \) and \(W \times W \) and, moreover,

\[
(d_{n,m}f)(x,y) := \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} 2^{i+j-2} f(x,y) - f(x,y + 2^{-i-1}) - f(x + 2^{-i-1}, y) + f(x + 2^{-i-1}, y + 2^{-j-1})
\]

(see Schipp and Wale [12] and also Weiss [17]). Recently the author [15] generalized this convergence result for \(f \in H_1^2 \supset L_1(0,1)^2 \) where \(H_1^2 \) is the two-dimensional dyadic hybrid Hardy space.

In this paper the Hardy–Lorentz spaces \(H_{p,q} \) of dyadic martingales on the unit square are introduced with the \(L_{p,q} \) Lorentz norms of the maximal function \(\sup_{n \in \mathbb{N}} |f_n| \). Of course, \(H_p = H_{p,p} \) are the usual Hardy spaces \((0 < p \leq \infty)\).

We verify here the same results for the two-dimensional dyadic derivative as we proved in [14] for Cesàro means of two-dimensional Walsh–Fourier series. We denote the restricted maximal operator \(\sup_{n-m \leq \alpha} |d_{n,m}(If)| \) for any \(\alpha \geq 0 \) by \(L^\alpha f \) and prove inequality (2) for this operator \((2/3 < p < \infty, 0 < q \leq \infty)\). The two-dimensional version of (1) follows from this with \(p = 1 \) and \(q = \infty \). Note that the unrestricted maximal operator is investigated in Weiss [17].

It is known that if \(\alpha^{-1} \leq |h/k| \leq \alpha \) for any \(\alpha > 0 \) then (3) holds for all \(f \in L_1(0,1)^2 \). The dyadic analogue of this follows from the two-dimensional version of (1):

\[
\lim_{n,m \to \infty} d_{n,m}(If) = f \quad \text{a.e.} \quad (f \in L_1(0,1)^2).
\]

This convergence is also proved by Gát [7] with another method.

2. Martingales and Hardy–Lorentz spaces. In this paper the unit square \([0,1]^2\) and the Lebesgue measure \(\lambda \) are considered. By a dyadic interval we mean one of the form \([k2^{-n}, (k+1)2^{-n})\) for some \(k, n \in \mathbb{N}, 0 \leq k < 2^n \).

Given \(n \in \mathbb{N} \) and \(x \in [0,1) \) let \(I_n(x) \) denote the dyadic interval of length \(2^{-n} \) which contains \(x \). If \(I_1 \) and \(I_2 \) are dyadic intervals and \(\lambda(I_1) = \lambda(I_2) \) then the set

\[
I := I_1 \times I_2
\]

is a dyadic square. Clearly, the dyadic square of area \(2^{-2n} \) containing \((x,y) \in [0,1]^2\) is given by

\[
I_{n,x}(x,y) := I_n(x) \times I_n(y).
\]

The \(\sigma \)-algebra generated by the dyadic squares \(\{I_{n,x} : x \in [0,1]^2\} \) will be denoted by \(F_{n,x} \) (\(n \in \mathbb{N} \)), more precisely,

\[
F_{n,x} = \sigma(\{k2^{-n}, (k+1)2^{-n}) \times [l2^{-n}, (l+1)2^{-n}) : 0 \leq k < 2^n, \ 0 \leq l < 2^n\}
\]

where \(\sigma(H) \) denotes the \(\sigma \)-algebra generated by an arbitrary set \(H \). We will investigate martingales of the form \(f = (f_n, n \in \mathbb{N}) \) with respect to \((F_{n,x}, n \in \mathbb{N})\). We briefly write \(L_p \) instead of the real \(L_p([0,1]^2, \lambda) \) space while the norm (or quasi-norm) of this space is defined by \(\|f\|_p := (\int_{[0,1]^2} |f|^p \, d\lambda)^{1/p} \) \((0 < p \leq \infty)\).

The distribution function of a Borel-measurable function \(f \) is defined by

\[
\lambda(\{ f > \gamma \}) := \lambda(\{ x : |f(x)| > \gamma \}) \quad (\gamma \geq 0).
\]

The weak \(L_p \) space \(L^*_p \) \((0 < p < \infty)\) consists of all measurable functions \(f \) for which

\[
\|f\|_{L^*_p} := \sup_{\gamma > 0} \lambda(\{ |f| > \gamma \})^{1/p} \leq \infty,
\]

while we set \(L^*_\infty = L_\infty \).

The spaces \(L^*_p \) are special cases of the more general Lorentz spaces \(L_{p,q} \).

In their definition another concept is used. For a measurable function \(f \) the non-increasing rearrangement is defined by

\[
\check{f}(t) := \inf(\gamma : \lambda(\{ |f| > \gamma \}) \leq t).
\]

The Lorentz space \(L_{p,q} \) is defined as follows: for \(0 < p < \infty \) and \(0 < q < \infty \),

\[
\|f\|_{p,q} := \left(\int_0^\infty (\int_t^\infty \check{f}(s)^q \, ds)^{p/q} \, dt^{1/q} \right)^{1/q},
\]
while for $0 < p \leq \infty$,
\[\|f\|_{p,\infty} := \sup_{t > 0} t^{1/p} \tilde{f}(t). \]

Let
\[L_{p,q} := L_{p,q}([0,1)^d, \lambda) := \{ f : \|f\|_{p,q} < \infty \}. \]

One can show the following equalities:
\[L_{p,p} = L_p, \quad L_{p,\infty} = L_p^\ast \quad (0 < p \leq \infty) \]
(see e.g. Bennett and Sharpley [1] or Bergh and Lőrström [2]).

The maximal function of a martingale $f = (f_{n,n}, n \in \mathbb{N})$ is defined by
\[f^\ast := \sup_{n \in \mathbb{N}} |f_{n,n}|. \]

It is easy to see that, in case $f \in L_1$, the maximal function can also be given by
\[f^\ast(x,y) = \sup_{n \in \mathbb{N}} \frac{1}{\lambda(I_{n,n}(x,y))} \int_{I_{n,n}(x,y)} f \, d\lambda. \]

For $0 < p, q \leq \infty$ the martingale Hardy–Lorentz space $H_{p,q}$ consists of all martingales $f = (f_{n,n}, n \in \mathbb{N})$ for which
\[\|f\|_{H_{p,q}} := \|f^\ast\|_{p,q} < \infty. \]

Note that in case $p = q$ the usual definition of Hardy space $H_{p,p} = H_p$ is obtained.

It is well known that for a martingale $f = (f_{n,n}, n \in \mathbb{N})$,
\[\sup_{\gamma > 0} \gamma \lambda(f^\ast > \gamma) \leq \sup_{n \in \mathbb{N}} \|f_{n,n}\|_1 \]
and
\[\|f^\ast\|_p \leq \frac{p}{p-1} \|f\|_p \quad (1 < p \leq \infty), \]
hence $H_p \sim L_p$ whenever $1 < p \leq \infty$ (see Neveu [8]), where \sim denotes the equivalence of the norms and spaces. Moreover, it is proved in Weisz [16] that
\[H_{p,q} \sim L_{p,q} \quad (1 < p \leq \infty, 0 < q \leq \infty). \]

A bounded measurable function a is a p-atom if $a = 1$ or there exists a dyadic square Q such that
(i) $\int_Q a \, d\lambda = 0$,
(ii) $\|a\|_\infty \leq \lambda(Q)^{-1/p}$,
(iii) $\{a \neq 0\} \subset Q$.

Using the atomic decomposition we verified the next theorem in [14].

Theorem A. Suppose that the operator T is sublinear and, for each $p_0 \leq p \leq 1$, there exists a constant $C_p > 0$ such that
\[\int_{Q} |Ta|^p \, d\lambda \leq C_p \]
for every p-atom a where the support of a is contained in Q as in (i)–(iii). If T is bounded from L_∞ to L_∞ then for every $p_0 \leq p \leq 1$,
\[\|Tf\|_p \leq C_p \|f\|_{H_p} \quad (f \in H_p \cap L_1). \]

The following interpolation result concerning Hardy–Lorentz spaces will be used in this paper (see Weisz [16]).

Theorem B. If a sublinear operator T is bounded from H_{p_0} to L_{p_0} and from L_{∞} to L_{∞} then it is also bounded from $H_{p,q}$ to $L_{p,q}$ if $p_0 < p < \infty$ and $0 < q \leq \infty$.

3. The two-dimensional dyadic derivative. First we introduce the Walsh system. Every point $x \in [0,1)$ can be written in the following way:
\[x = \sum_{k=0}^{\infty} \frac{x_k}{2^{k+1}}, \quad 0 \leq x_k < 2, \quad x_k \in \mathbb{N}. \]

In case there are two different forms, we choose the one for which $\lim_{k \to \infty} x_k = 0$.

The functions
\[r_n(x) := \exp(\pi x_n \sqrt{-1}) \quad (n \in \mathbb{N}) \]
are called Rademacher functions. The product system generated by these functions is the one-dimensional Walsh system:
\[w_n(x) := \prod_{k=0}^{\infty} r_k(x)^{n_k} \]
where $n = \sum_{k=0}^{\infty} n_k 2^k$, $0 \leq n_k < 2$ and $n_k \in \mathbb{N}$.

The Kronecker product $(w_{n,m}; n, m \in \mathbb{N})$ of two Walsh systems is said to be the two-dimensional Walsh system. Thus
\[w_{n,m}(x,y) := w_n(x)w_m(y). \]

Recall that the Walsh Dirichlet kernels
\[D_n := \sum_{k=0}^{n-1} w_k \]
satisfy
\[D_{2^n}(x) = \begin{cases} 2^n & \text{if } x \in [0, 2^{-n}), \\
0 & \text{if } x \in [2^{-n}, 1), \end{cases} \]
for $n \in \mathbb{N}$ (see e.g. Schipp, Wade, Simon and Pál [13]).
For each function \(f \) defined on \([0, 1]^2\) Butzer and Engels [3] introduced the concept of the two-dimensional dyadic derivative by (4). Then \(f \) is said to be \textit{dyadically differentiable} at \(x, y \in [0, 1] \) if \((d_{n,m} f)(x, y) \) converges as \(n, m \to \infty \). It was verified by Butzer and Wagner [4] that every Walsh function is dyadically differentiable and

\[
\lim_{n, m \to \infty} d_{n,m}(w_k \times w_l)(x, y) = kl(w_k \times w_l)(x, y)
\]

for all \(x, y \in [0, 1] \) and \(k, l \in \mathbb{N} \). Let \(W \) be the function whose Walsh-Fourier coefficients satisfy

\[
\overline{W}(k) := \int_0^1 W w_k \, d\lambda := \begin{cases} 1 & \text{if } k = 0, \\
1/k & \text{if } k \in \mathbb{N}, \ k \neq 0.
\end{cases}
\]

The two-dimensional dyadic integral of \(f \in L_1 \) is introduced by

\[
I_f(x, y) := f \ast (W \times W)(x, y) := \int_0^1 \int_0^1 f(t, u)W(x + t)W(y + u) \, dt \, du.
\]

Notice that \(W \in L_2 \subset L_1 \), so \(I \) is well defined on \(L_1 \).

Set

\[
W_k := \sum_{n=2^k}^{\infty} w_n/n
\]

and let us estimate \(d_nW \) and \(d_nW_K \). The following theorem can be proved with the help of the ideas in Schipp, Wade, Simon and Pál [13] (pp. 272–275) and in Weiss [16].

Theorem 1. For all \(n, K \in \mathbb{N} \) we have

\[
|d_nW(x) + 1| \leq C \sum_{i=1}^4 F_{0,n}^i(x) \quad \text{and} \quad |d_nW_K(x)| \leq C \sum_{i=1}^5 F_{K,n}^i(x)
\]

where

\[
F_{K,n}^1(x) := \frac{1}{2^{K-n} \sqrt{1}} \sum_{j=0}^{n-1} \sum_{i=j+1}^{n-1} (n-i)2^{j-n}D_{2^j}(x + 2^{-j-i-1}),
\]

\[
F_{K,n}^2(x) := \frac{1}{2^{K-n} \sqrt{1}} \sum_{j=0}^{n-1} (n-i)2^{i-n}D_{2^i}(x),
\]

\[
F_{K,n}^3(x) := \sum_{j=0}^{n-1} 2^j \sum_{i=n}^{\infty} 2^{-i}D_{2^i}(x + 2^{-j-i-1}) \frac{1}{2^{K-n} \sqrt{1}},
\]

\[
F_{K,n}^0(x) := \sum_{k=0}^{\infty} 2^{-k}D_{2^{k+n}}(x) \frac{1}{2^{K-n} \sqrt{1}}.
\]

4. **Inequalities concerning the two-dimensional dyadic derivative.** Before considering the operator

\[
I_{\alpha, f} := \sup_{|n-m| \leq \alpha} |d_{n,m}(I f)| \quad (f \in L_1)
\]

for any \(\alpha \geq 0 \) let us modify slightly the dyadic derivative. Set

\[
\delta_{n,m} f(x, y) := \int_0^1 \int_0^1 f(t, u)[d_nW(x + t) + 1][d_mW(y + u) + 1] \, dt \, du
\]

and

\[
J_{\alpha} f := \sup_{|n-m| \leq \alpha} |\delta_{n,m} f| \quad (f \in L_1).
\]

First we can prove that \(J_{\alpha} f \) is bounded from \(H_p \) to \(L_p \).

Theorem 2. There exist constants \(C_p \) depending only on \(p \) and \(\alpha \) such that for each \(2/3 < p \leq 1 \),

\[
\|J_{\alpha} f\|_p \leq C_p \|f\|_{H_p} \quad (f \in H_p)
\]

where \(J_{\alpha} f \) will be defined for \(f \in H_p \setminus L_1 \) in the proof.

Proof. First assume that \(f \in H_p \cap L_1 \). By Theorem A the proof of Theorem 2 will be complete if we show that the operator \(J_{\alpha} f \) satisfies (6) and is bounded from \(L_{\infty} \) to \(L_1 \).

Since \(\|D_{2^n}\|_1 = 1 \), we can show that

\[
\|F_{0,0}\|_1 \leq C \quad (i = 1, \ldots, 4; \ n \in \mathbb{N}).
\]

From this it follows that \(\|d_nW + 1\|_1 \leq C \) for all \(n \in \mathbb{N} \), which verifies that \(J_{\alpha} f \) is bounded on \(L_{\infty} \).

If \(n = 1 \) then the left hand side of (6) is zero. Let \(\alpha \neq 1 \) be an arbitrary \(\alpha \)-atom with support \(Q = J \times J \) and \(\lambda(J) = \lambda(J) = 2^{-2J} \) \(\lambda \in \mathbb{N} \). Without loss of generality we can suppose that \(f = f = [0, 2^{-2J}] \). If \(k < 2^K \) and \(I < 2^K \) then \(w_{n, i} \) is constant on \(Q \) and so

\[
\int_0^1 \int_0^1 a(t, u)w_k(x + t)w_l(y + u) \, dt \, du = 0.
\]

Since

\[
d_n(w_{2^{2n} + k}) = k w_{2^{2n} + k} \quad (0 \leq k < 2^n; \ n \in \mathbb{N})
\]
(see Schipp, Wade, Simon and Pál [13], p. 272) it is not hard to see that
\[
\epsilon_{n,m} a(x, y) = \int_0^1 \int_0^1 a(t, u)[d_n W_K(x + t)(d_m W(y + u) + 1) + (d_n W(x + t) + 1)d_m W_K(y + u) - d_n W_K(x + t)d_m W_K(y + u)] dt du.
\]

By the fact that \(F_{i,n}^1 \leq F_{0,n}^i (i = 1, \ldots, 4; n, K \in \mathbb{N})\) and by Theorem 1 we obtain
\[
J_{a}^* \leq \sup_{|n-m| \leq \alpha} \sup_{|n-m| \leq \alpha} |a| * F_{i,n}^1 \times F_{0,m}^i
\]
\[
+ \sup_{|n-m| \leq \alpha} \sup_{|n-m| \leq \alpha} |a| * F_{i,n}^1 \times F_{K,m}^i
\]
\[
+ \sup_{|n-m| \leq \alpha} \sup_{|n-m| \leq \alpha} |a| * F_{K,n}^i \times F_{i,m}^1
\]
\[
\leq 2 \sup_{|n-m| \leq \alpha} \sup_{|n-m| \leq \alpha} |a| * F_{0,n}^i \times F_{0,m}^i
\]
\[
+ 2 \sup_{|n-m| \leq \alpha} \sup_{|n-m| \leq \alpha} |a| * F_{i,n}^1 \times F_{K,m}^i + \sup_{|n-m| \leq \alpha} |a| * F_{K,n}^i \times F_{K,m}^i.
\]

Now we investigate the first term, the integral of \(|\sup_{|n-m| \leq \alpha} |a| * F_{K,n}^i \times F_{0,m}^i| \) over \([0, 1)^2 \setminus Q\) for all \(i = 1, \ldots, 5\) and \(j = 1, \ldots, 4\).

Step 1: Integrating over \(((0, 1) \setminus I) \times J\). We proved in [15] that for all \(n, K \in \mathbb{N}\) and \(i = 1, \ldots, 5,\)
\[
(9) \quad \left(\sup_{j \in J} \left(\int_{m \in \mathbb{N}} F_{K,n}^i(x + t) dt \right)^p \right) \leq C_p 2^{-K}
\]
where \(I^c := [0, 1) \setminus I\). Taking into account (8) and the definition of the \(p\)-atom, we can establish that, for all \(i = 1, \ldots, 5\) and \(j = 1, \ldots, 4,\)
\[
(10) \quad \int_{J \times J} \left(\sup_{j \in J} \left(\int_{m \in \mathbb{N}} F_{K,n}^i(x + t) F_{i,m}^j(y + u) dt du \right)^p \right) dx dy
\]
\[
\leq C_p 2^{2K} \int_{J \times J} \left(\sup_{j \in J} \left(\int_{m \in \mathbb{N}} F_{K,n}^i(x + t) dt \right)^p \right) dx dy \leq C_p.
\]

Step 2: Integrating over \(I \times ((0, 1) \setminus J)\). If \(j < K\) and \(x \in I\) then \(x + 2^{j-1} \notin I\). Hence, it follows from (7) that
\[
\int_I D_2(x + t + 2^{j-1}) dt = 0
\]
whenever \(x \in I\) and \(j \geq j\). Using this and (7) we can calculate the integrals
\[
\int_I F_{K,n}^i(x + t) dt = \frac{1}{2^{K-n}} \int_I \left(\sum_{j=0}^{n-1} \sum_{\alpha=0}^{n-1} (n-i) 2^{j-\alpha} \right) D_2(x + t + 2^{j-1}) dt
\]
\[
\leq \left\{ \begin{array}{ll}
0 & \text{if } n \leq K, \\
C & \text{if } n > K,
\end{array} \right.
\]
\[
\leq \left\{ \begin{array}{ll}
C 2^{n-K} & \text{if } n \leq K, \\
C & \text{if } n > K,
\end{array} \right.
\]
\[
\int_I F_{K,n}^i(x + t) dt = \frac{1}{2^{K-n}} \int_I \sum_{j=0}^{n-1} \sum_{\alpha=0}^{n-1} (n-i) 2^{j-\alpha} D_2(x + t + 2^{j-1}) dt
\]
\[
\leq \left\{ \begin{array}{ll}
0 & \text{if } n \leq K, \\
C & \text{if } n > K,
\end{array} \right.
\]
Let \(r \in \mathbb{N}\) satisfy \(r - 1 < \alpha \leq r\) and observe that
\[
\sup_{|n-m| \leq \alpha} |a| * F_{K,n}^i \times F_{0,m}^j \leq \sup_{|n-m| \leq \alpha} |a| * F_{K,n}^i \times F_{0,m}^j
\]
\[
+ \sup_{n,m \geq K-r} |a| * F_{K,n}^i \times F_{0,m}^j =: (A_{i,j}) + (B_{i,j}).
\]
for all \(i = 1, \ldots, 5\) and \(j = 1, \ldots, 4\). Of course, \((A_{i,j})(x,y) = 0\) if \(i = 1, 3, 5\) and \(x \in I\). So suppose that \(i = 2, 4\) and \(j = 1, \ldots, 4\). It is easy to see that
\[
2^{m-K} F_{0,m}^j \leq F_{K,m}^j \quad (m \leq K; \ j = 1, \ldots, 4).
\]
Consequently,
\[
(A_{i,j})(x, y) = \sup_{|n-m| \leq r} \int \int |a(t, u)| F_{K, n}(x + t) F_{m, n}(y + u) \, dt \, du
\leq C_p 2^{2K/p} \sup_{|n-m| \leq r} 2^{n-K} \int F_{m, n}(y + u) \, du
\leq C_p 2^{2K/p} \sup_{m \leq K} 2^{m-K} \int F_{m, n}(y + u) \, du
\leq C_p 2^{2K/p} \sup_{m \leq K} \int F_{m, n}(y + u) \, du.
\]

Then the inequality
\[
\left(\int \int (A_{i,j})^p \, d\lambda \right)^{1/p} \leq C_p
\]
can be proved as in (10) where \(i = 1, \ldots, 5 \) and \(j = 1, \ldots, 4 \).

Since \(F_{m, n} = F_{n, m} \) for \(m > K \), (11) yields that
\[
F_{i, j} \leq 2^{n-i} F_{K, n} \quad (m \geq K - r; \ j = 1, \ldots, 4).
\]
Then, for each \(i = 1, \ldots, 5 \) and \(j = 1, \ldots, 4 \),
\[
\int \int (B_{i,j})^p \, d\lambda \leq C_p 2^{2K/p} \int \int \left(\sup_{|n-m| \leq r} 2^{n-K} \int F_{m, n}(y + u) \, du \right)^p \, dx \, du \leq C_p
\]
as we have seen in (10).

Step 3: Integrating over \((0, 1) \setminus I \times (0, 1) \setminus J\). By (7) it is easy to verify that, for \(x \not\in I \),
\[
\int D_{2^i}(x + t + 2^{-j-1}) \, dt = 2^{n-K} 1_{[2^{-j-1} + 2^{-j-1} - 1]}(x)
\]
if \(j < i \leq K - 1 \),
\[
\int D_{2^i}(x + t) \, dt = 2^{n-K} 1_{[2^{-j-1} + 2^{-j-1} - 1]}(x)
\]
if \(i \in \mathbb{N} \) and
\[
\int D_{2^i}(x + t + 2^{j-1}) \, dt = 2^{n-K} 1_{[2^{j-1} - 2^{j-1} - 1]}(x)
\]
if \(i \geq K \).

Now we modify slightly the kernel functions \(F_{K, m} \) \((i = 1, \ldots, 4)\) and calculate their integrals like (9). By (15),
\[
\left(\sup_{|n-m| \leq r} \int 2^{n/2} \sum_{i=0}^{n-1} \sum_{i=j+1}^{n-1} (n-i)2^{j-n} D_{2^i}(x + t + 2^{-j-1}) \, dt \right)^p \, dx
\]
\[
= C_p 2^{-Kp} \int \left(\sum_{i=0}^{n-1} \sum_{i=j+1}^{n-1} \frac{(n-i)2^{j-n}2^{i-K}}{2} 1_{[2^{-j-1} + 2^{-j-1} - 1]}(x) \right)^p \, dx
\]
\[
\leq C_p 2^{-Kp} \sum_{i=0}^{n-1} \sum_{i=j+1}^{n-1} \left(\sum_{i=0}^{n-1} \sum_{i=j+1}^{n-1} \frac{(n-i)2^{j-n}2^{i-K}}{2} 1_{[2^{-j-1} + 2^{-j-1} - 1]}(x) \right)^p \, dx.
\]

Since the function \(f(n) = (n/2)^{2-n/2} \) is decreasing for \(n \geq 3 \), we obtain
\[
\left(\sup_{|n-m| \leq r} 2^{n/2} \int \sum_{i=0}^{n-1} \sum_{i=j+1}^{n-1} (n-i)2^{j-n} D_{2^i}(x + t + 2^{-j-1}) \, dt \right)^p \, dx
\]
\[
\leq C_p 2^{-Kp} \sum_{i=0}^{n-1} \sum_{i=j+1}^{n-1} \left(\sum_{i=0}^{n-1} \sum_{i=j+1}^{n-1} \frac{(n-i)2^{j-n}2^{i-K}}{2} 1_{[2^{-j-1} + 2^{-j-1} - 1]}(x) \right)^p \, dx
\]
\[
\leq C_p 2^{-Kp} \sum_{i=0}^{n-1} \sum_{i=j+1}^{n-1} 2^{n/2} \int \sum_{i=0}^{n-1} \sum_{i=j+1}^{n-1} \left(\sum_{i=0}^{n-1} \sum_{i=j+1}^{n-1} \frac{(n-i)2^{j-n}2^{i-K}}{2} 1_{[2^{-j-1} + 2^{-j-1} - 1]}(x) \right)^p \, dx.
\]

Provided that \(2/3 < p \leq 1 \).

Using (16) we get
\[
\int \int (B_{i,j})^p \, d\lambda \leq C_p 2^{2K/p} \int \int \left(\sup_{|n-m| \leq r} 2^{n-K} 1_{[2^{-j-1} + 2^{-j-1} - 1]}(x) \right)^p \, dx \, du
\]
\[
\leq C_p 2^{-Kp} \sum_{i=0}^{n-1} \sum_{i=j+1}^{n-1} 2^{n/2} \int \sum_{i=0}^{n-1} \sum_{i=j+1}^{n-1} \left(\sum_{i=0}^{n-1} \sum_{i=j+1}^{n-1} \frac{(n-i)2^{j-n}2^{i-K}}{2} 1_{[2^{-j-1} + 2^{-j-1} - 1]}(x) \right)^p \, dx.
\]

It follows from (15) and (17) that
\[
\int \int (A_{i,j})^p \, d\lambda \leq C_p 2^{2K/p} \int \int \left(\sup_{|n-m| \leq r} 2^{n-K} 1_{[2^{-j-1} + 2^{-j-1} - 1]}(x) \right)^p \, dx \, du
\]
\[
\leq C_p 2^{-Kp} \sum_{i=0}^{n-1} \sum_{i=j+1}^{n-1} 2^{n/2} \int \sum_{i=0}^{n-1} \sum_{i=j+1}^{n-1} \left(\sum_{i=0}^{n-1} \sum_{i=j+1}^{n-1} \frac{(n-i)2^{j-n}2^{i-K}}{2} 1_{[2^{-j-1} + 2^{-j-1} - 1]}(x) \right)^p \, dx.
\]
\[\leq \sum_{j=0}^{K-1} 2^{jp} \sum_{i=0}^{K-1} 2^{(p/2-1)j-Kp} + \sum_{i=0}^{K-1} 2^{jp} \sum_{i=K}^{\infty} 2^{-ip/2-K} \]
\[\leq C_p 2^{Kp} \sum_{j=0}^{K-1} 2^{3(p/2-1)} + C_p 2^{Kp} 2^{Kp} 2^{-Kp/2} \leq C_p 2^{Kp}/2 - K. \]

Similarly,
\[\left(\sup_{I \subset \alpha \leq K} \left(\sum_{\substack{n \leq K \ \text{even} \ \text{or} \ \text{odd}}} \sum_{j=0}^{n-1} 2^{n/2} \sum_{i=0}^{\infty} 2^{-i-K} \int_0^1 \frac{d^2t}{2^{K-i} \sqrt{1}} \right)^p \right) dx \]
\[\leq \left(\sup_{I \subset \alpha \leq K} \left(\sum_{\substack{n \leq K \ \text{even} \ \text{or} \ \text{odd}}} \sum_{j=0}^{n-1} 2^{n/2} \sum_{i=0}^{\infty} 2^{-i-K} \int_0^1 \frac{d^2t}{2^{K-i} \sqrt{1}} \right)^p \right) dx \]
\[+ \left(\sup_{I \subset \alpha \leq K} \left(\sum_{\substack{n \leq K \ \text{even} \ \text{or} \ \text{odd}}} \sum_{j=0}^{n-1} 2^{n/2} \sum_{i=0}^{\infty} 2^{-i} \int_0^1 \frac{d^2t}{2^{K-i} \sqrt{1}} \right)^p \right) dx \]
\[\leq C_p 2^{Kp} \sum_{j=0}^{K-1} 2^{3(p/2-1)} + C_p 2^{Kp} 2^{Kp} 2^{-Kp/2} \leq C_p 2^{Kp}/2 - K \]

whenever \(p < 1 \). If \(p = 1 \) then
\[\sum_{j=0}^{K-1} 2^{jp/2} - Kp = \sum_{j=0}^{K-1} 2^{(j-K)/2} (K-j)2^{-3K/2} \leq C 2^{2-K} \]
and (21) is true in this case, too.

Obviously, if \(x \notin I \) and \(i \geq K \) then
\[\int_I D_{2^i}(x + t) dt = 0. \]

This implies that
\[\int_I \left(\sup_{n \leq K} \left(\sum_{k=0}^{K-n-1} 2^{n/2} 2^{-(k+1)} 2^{K-n+1} K \int_0^1 \frac{d^2t}{2^{K-i} \sqrt{1}} \right)^p \right) dx \]
\[= \int_I \left(\sup_{n \leq K} \left(\sum_{k=0}^{K-n-1} 2^{n/2} 2^{-K-n+1} \int_0^1 \frac{d^2t}{2^{K-i} \sqrt{1}} \right)^p \right) dx \]
\[\times \sum_{k=0}^{n-1} \sum_{m=1}^{n-1} (m-l)2^{-m} D_{2^l}(y + u + 2^{-l-1}) dt du \]
\[= 2^{-Kp} \int_I \left(\sum_{k=0}^{K-n-1} \sum_{m=1}^{n-1} 2^{3K-n-1} \int_0^1 \frac{d^2t}{2^{K-i} \sqrt{1}} \right)^p dx \]
\[+ \sum_{k=0}^{K-n-1} \sum_{m=1}^{n-1} 2^{3(3K-n-1)} \int_0^1 \frac{d^2t}{2^{K-i} \sqrt{1}} \right)^p dx \]
\[\leq C_p 2^{2-K} \sum_{k=0}^{K-n-1} \sum_{m=1}^{n-1} 2^{n(3K-n-1)2^{-k}} + C_p 2^{2-K} \sum_{k=0}^{K-n-1} \sum_{m=1}^{n-1} 2^{3K-n-1} 2^{3K-n-1} 2^{-Kp/2} \leq C_p 2^{Kp}/2 - K. \]

In the same way we conclude that
\[\int I \left(\sup_{n \leq K} \left(\sum_{k=0}^{K-n-1} 2^{n/2} 2^{-(k+1)} 2^{K-n+1} K \int_0^1 \frac{d^2t}{2^{K-i} \sqrt{1}} \right)^p \right) dx \]
\[= \int_I \left(\sup_{n \leq K} \left(\sum_{k=0}^{K-n-1} 2^{n/2} 2^{-K-n+1} \int_0^1 \frac{d^2t}{2^{K-i} \sqrt{1}} \right)^p \right) dx \]
\[\leq C_p 2^{2-K} \sum_{k=0}^{K-n-1} \sum_{m=1}^{n-1} 2^{n(3K-n-1)2^{-k}} + C_p 2^{2-K} \sum_{k=0}^{K-n-1} \sum_{m=1}^{n-1} 2^{3K-n-1} 2^{3K-n-1} 2^{-Kp/2} \leq C_p 2^{Kp}/2 - K. \]

Now we are ready to deal with the integrals of \((A_{1,1})^p\) over \(I \times J\)
\((i = 1, \ldots, 5; j = 1, \ldots, 4)\). We investigate only three terms, \((A_{1,1}), (A_{1,2}), \text{and} (A_{3,1}),\) because the others are all similar. Applying (18) twice we obtain
\[\int_{I \times J} (A_{1,1})^p d\lambda \]
\[= \int_I \left(\sup_{n \leq K} \left(\sum_{k=0}^{n-n-1} \sum_{m=1}^{n-1} \int_0^1 \frac{d^2t}{2^{K-i} \sqrt{1}} \right)^p \right) dx \]
\[\times \sum_{k=0}^{m-1} \sum_{m=1}^{n-1} (m-l)2^{n-m} D_{2^l}(y + u + 2^{-l-1}) dt du \]
\[= 2^{-Kp} \int_I \left(\sum_{k=0}^{K-n-1} \sum_{m=1}^{n-1} 2^{3K-n-1} \int_0^1 \frac{d^2t}{2^{K-i} \sqrt{1}} \right)^p dx \]
\[+ \sum_{k=0}^{K-n-1} \sum_{m=1}^{n-1} 2^{3(3K-n-1)} \int_0^1 \frac{d^2t}{2^{K-i} \sqrt{1}} \right)^p dx \]
\[\leq C_p 2^{2-K} \sum_{k=0}^{K-n-1} \sum_{m=1}^{n-1} 2^{n(3K-n-1)2^{-k}} + C_p 2^{2-K} \sum_{k=0}^{K-n-1} \sum_{m=1}^{n-1} 2^{3K-n-1} 2^{3K-n-1} 2^{-Kp/2} \leq C_p 2^{Kp}/2 - K. \]
Two-dimensional dyadic derivative

Observe that \((A_{k,j})(x, y) = 0 \) (\(j = 1, \ldots, 4\)) follows from the definition.

(13) and (9) imply that

\[
\int_{j_1} \int_{j_2} (B_{i,j})^p \, d\lambda
\leq C_p \int_{j_1} \int_{j_2} \left(\sup_{n, m \leq K_i} \sum_{n, m \leq K_i} -1 \sum_{j=0}^{n-2} \sum_{j=0}^{m-2} (m - l) 2^{j-1} \ldots \right) dt \, dx \, dy
\]

\[
\times \left(\sum_{k=0}^{m-1} \sum_{l=0}^{m-1} (m - l) 2^{j-1} \ldots \right) dy
\]

\[
\leq C_p \frac{2^{K_1} \cdot 2^{K_2} \cdot 2^{K_3}}{2^{K_1} \cdot 2^{K_2} \cdot 2^{K_3}} = C_p.
\]

By (18) and (20),

\[
\int_{j_1} \int_{j_2} (A_{k,j})^p \, d\lambda
= \int_{j_1} \int_{j_2} \left(\sup_{n, m \leq K_i} \sum_{n, m \leq K_i} (m - l) 2^{j-1} \ldots \right) dt \, dx \, dy
\]

\[
\times \left(\sum_{k=0}^{m-1} \sum_{l=0}^{m-1} (m - l) 2^{j-1} \ldots \right) dy
\]

\[
= C_p \frac{2^{K_1} \cdot 2^{K_2} \cdot 2^{K_3}}{2^{K_1} \cdot 2^{K_2} \cdot 2^{K_3}} = C_p.
\]

Similarly, using (18) and (21) we can see that

\[
\int_{j_1} \int_{j_2} (A_{k,j})^p \, d\lambda
= \int_{j_1} \int_{j_2} \left(\sup_{n, m \leq K_i} \sum_{n, m \leq K_i} (m - l) 2^{j-1} \ldots \right) dt \, dx \, dy
\]

\[
\times \left(\sum_{k=0}^{m-1} \sum_{l=0}^{m-1} (m - l) 2^{j-1} \ldots \right) dy
\]

\[
\leq C_p \frac{2^{K_1} \cdot 2^{K_2} \cdot 2^{K_3}}{2^{K_1} \cdot 2^{K_2} \cdot 2^{K_3}} = C_p.
\]

The next corollary follows from (5) and from Theorems B and 2.

COROLLARY 1. There are absolute constants \(C_1\) and \(C_{p,q}\) such that

\[
\|J_\alpha F\|_{p,q} \leq C_{p,q} \|f\|_{H_{p,q}} \quad (f \in H_{p,q})
\]

for every \(2/3 < p < \infty\) and \(0 < q \leq \infty\). In particular, \(J_\alpha F\) is of weak type \((L_1, L_1)\), i.e. if \(f \in L_1\) then

\[
\|J_\alpha F\|_{1,\infty} = \sup_{\gamma > 0} \gamma \lambda_{(J_\alpha F) > \gamma} \leq C_1 \|f\|_{H_{1,\infty}}
\]

\[
= C_1 \sup_{\gamma > 0} \gamma \lambda(f > \gamma) \leq C_1 \|f\|_{1,\infty}.
\]

Now we can state our main result.

COROLLARY 2. Suppose that for a martingale \(f = (f_{n,n}, n \in \mathbb{N}) \in H_{p,q}\) we have \(\int_0^1 f_{n,n} (x, y) \, dx \, dy = \int_0^1 f_{n,n} (x_0, y) \, dy = 0\) for each \(n \in \mathbb{N}\) and almost every \(x_0, y \in [0, 1]\). Then

\[
\|J_\alpha f\|_{p,q} \leq C_{p,q} \|f\|_{H_{p,q}}
\]
for every $2/3 < p < \infty$ and $0 < q \leq \infty$. In particular, \mathbf{I}_p^* is of weak type (L_1, L_1), i.e. if $f \in L_1$ such that $\int_0^1 f(x, y_0) \, dx = \int_0^1 f(x_0, y) \, dy = 0$ for almost every $x_0, y_0 \in [0, 1]$ then

$$\sup_{\gamma > 0} \gamma \lambda(\mathbf{I}_p^* f > \gamma) \leq C_1 \|f\|_{L_1} \leq C_1 \|f\|_p.$$

Proof. By the proof of Theorem 2 it is enough to verify the corollary for integrable functions. Let $f \in L_1$ such that $\int_0^1 f(x, y_0) \, dx = \int_0^1 f(x_0, y) \, dy = 0$ for almost every $x_0, y_0 \in [0, 1]$. Then it is easy to see that

$$d_{n,m}(f)(x, y) = d_{n,m} \left(\int_0^1 f(t, u) W(x + t) W(y + u) \, dt \, du \right)$$

$$= \int_0^1 \int_0^1 f(t, u) d_n W(x + t) d_m W(y + u) \, dt \, du$$

$$= \delta_{n,m}(x, y).$$

Hence $\mathbf{I}_p^* f = J_p^* f$ and the result follows from Corollary 1.

The next corollary follows from the weak type inequality in Corollary 2 and from the fact that the Walsh polynomials are dense in L_1.

Corollary 3. If $\alpha \geq 0$ is arbitrary and if $f \in L_1$ is such that

$$\int_0^1 f(x, y_0) \, dx = \int_0^1 f(x_0, y) \, dy = 0$$

for almost every $x_0, y_0 \in [0, 1]$ then

$$d_{n,m}(f) \rightharpoonup f \quad \text{a.e. as } n, m \to \infty \text{ and } |n - m| \leq \alpha.$$

We remark that this corollary is also proved by Gáv [7].

Finally, we note that without the condition $\int_0^1 f(x, y_0) \, dx = \int_0^1 f(x_0, y) \, dy = 0$ we can prove Corollary 2 only for $p \geq 1$; more exactly:

Theorem 3. There are absolute constants C_1 and $C_{p,q}$ such that

$$\|\mathbf{I}_p^* f\|_1 \leq C_1 \|f\|_{H_1} \quad (f \in H_1)$$

and

$$\|\mathbf{I}_p^* f\|_{p,q} \leq C_{p,q} \|f\|_{H_{p,q}} \quad (f \in H_{p,q})$$

for every $1 < p < \infty$ and $0 < q \leq \infty$.

Proof. We can apply only the second inequality of Theorem 1. That is to say, we have to investigate the terms $\sup_{|n - m| \leq \alpha} |a| \ast F_{K,n} \times F_{0,m}$

$(i, j = 1, \ldots, 5).$ If $j \neq 5$ then they are considered in the proof of Theorem 2. If $j = 5$ then

$$|a| \ast F_{K,n} \times F_{0,m}(x, y) = \int \int |a(t, u)| F_{K,n}(x + t) F_{0,m}(y + u) \, dt \, du$$

$$\leq 2^{2K} 2^{-K} \int F_{K,n}(x + t) \, dt$$

where a is a 1-atom with support $Q = I \times J$, $I = J = [0, 2^{-K})$. Applying (9), we get

$$\int \int \sup_{|n - m| \leq \alpha} |a| \ast F_{K,n} \times F_{0,m}(x, y) \, dx \, dy$$

$$\leq 2^K \int \int \sup_{n \in \mathbb{N}} F_{K,n}(x + t) \, dt \, dz \leq C.$$

We get the same result if we integrate over $I^c \times J$ or $I \times J^c$. Hence the condition (6) is verified for $p = 1$; this means that the first inequality in Theorem 3 is proved. The second inequality follows by interpolation.

References

Department of Numerical Analysis
Eötvös L. University
Mátrum krt. 6-8
H-1088 Budapest, Hungary
E-mail: weiss@ludens.elte.hu

Received January 18, 1996
(3632)
Revised version April 16, 1996

STUDIA MATHEMATICA 120 (3) (1996)

Index of Volumes 111–120

Allan, G. R.

Alvarez, T.

Antonevich, A. B.

Appell, J.

Aristov, O. Yu.

Balder, E. J.
(with M. Girardi, V. Jajiby) From weak to strong types of L^1-convergence by the Bocce criterion; 111 (1994), 241–262.

Banakh, T.

Barnes, B. A.
Convergence in the generalised sense relative to Banach algebras of operators and in LMC-algebras; 115 (1995), 87–103.

Beckhoff, E.
Topologies of compact families on the ideal space of a Banach algebra; 118 (1996), 63–75.

Buhreños, E.

Békolá, D.

Barsotti, M.
Idempotents dans les algèbres de Banach; 120 (1996), 155–158.