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Posons
C. eC £ < |z] < c }
| Jp— z —_——
' # 14 ey 14+ a1
avec qg = 0. Soit f; la fonction definie par

1 sizedy

filz) = {0 sizgCh
On a alors f;(t) = b;. En effet

X(£:®) = filx(®) = {(1) :; ;ggg zrl)T

Dol x(fi(t)) = x{(b;) pour tout ¥ € Ap. Comme fi(t) est un idempotent
on a bz' = fz(t)

2fme ¢ as. Sia n'est pas inversible, on prend un A € o(a) et on fait le
raisonnement précédent avec a — Ae au lieu de a.
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Exactness of skew products with expanding fibre maps
by

THOMAS BOGENSCHUTZ (Essen)
and ZBIGNIEW 8 KOWALSKI (Wroclaw)

To the memory of Wiestaw Szlenk

Abstract. We give an elementary proof for the uniqueness of absolutely continu-
cus invariant measures for expanding random dynamical gysters and study their mixing
properties.

Introduction. Let § be a measure-preserving transformation of a Lebe-
sgue space ({2, F,P) and let ¢ = {p{w) : w € 2} be a family of nonsin-
gular transformations of (X, B, m) such that (w,z) — p(w)z is (F @ B, B)-
measurable. Then (w,z) — (fw,p(w)z) =: @(w,z) defines a nonsingular
transformation of the Lebesgue space (£2 x X, F ® B,P® m) which is called
a skew product with base transformation # and fibre maps ¢(w).

One also says that ¢ gives rise to a random dynemical sysiem with state
space X over the dynamical system. (2, F,P,6) by defining

o(n,w) = (@™ w)o...op(w) forn >0,

Note that ¢(n,w) describes the action of 8™ on X.

In this paper, we study the situation when the state space is a Rie-
mannian manifold M and all fibre maps are expanding. In their classical
paper [KS369]) Krzyiewski and Szlenk proved that for each expanding map
there is an invariant measure which is equivalent to the Riemannian vol-
ume. The fmdamental problem in the random case is to find a @-invariant
measure on §2 X M whose disintegrations are equivalent to the Riernan-
nian volume. This problem has been solved by Kifer [Kif92, Theorem B]
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using some statistical mechanics type of reasoning. We present a different
approach using the classical “dynamics of densities” viewpoint (Lasota and
Mackey [LM94]}. This approach allows us to obtain some further properties
of the measure under consideration. In particular, we prove that it is exact
provided the base transformation is exact.

The paper is organized as follows. In Section 1 we lay down some pre-
liminaries, while Section 2 is devoted to the concept of regularity. The latter
plays a crucial role in the proof of our main theorem, which we present in
Section 3.

1. Basic notations and preliminary resulis

The Frobenius—-Perron operator for skew products. Let T be a measurable
transformation of a Lebesgue space (X, B, m). If for all B € B with m(B) = 0
we have m(T~1B) = 0 then T is said to be nonsingular. Associated with
each nonsingular transformation 7' is the Frobenius—Perron operator Pr :
L (m) — L (m) which is uniquely determined by the equation

(1) {Prfdm= | fdm foalBeB.
B T-1B

For properties of Pr we generally refer to Lasota and Mackey [LM94]. In
particalar, we have that f is the density of a T-invariant measure which
is absolutely continuous with respect to m if and only if f is a fixed point
of PT

Now let ¢ be a measure-preserving transformation of a Iebesgue space
(2, FP), v = {p(w) : w € 2} a family of nonsingular transformations of
(X,B,m) such that (w z) — pw)s is (F ® B, B)-measurable, and © the
corresponding skew product on (£2 x X, F @ B,IP ® m).

11 LEMMA. For f € LM P& m) put (Bof)(w,z) = (P fo)(w) and
{ (,,f)(w z) = (P‘p(w)fw}(w) where fp 1= f(,z) € LY(P) and f, = Flw, 3]

€ L(m). Then Bof and PS‘J [ are measurable functions for each f €
L' (P®m), and

(2) Ps=PFy0 B,
Consequently,
{3) Pgmﬁ;oﬁ(n,) for all n € N,

Proof. Let f € L' (P@m). Let (Pn)nex be a sequence of finite partitions
of X satisfying Py, | &. Then
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Borf)® = (g7 | fuim)@
NIy

:nlﬂlg_o Z ].p(x) (P)wa wlw)~ -1p drm.
PEP,

Obv1oubly the measurability of (w,z) — @(w)z implies that of (w x)
Ly(y-1p(e), s0 B [ 18 measurable. The same argument applies to By f.

To prove equation (2) it suffices to check equation (1) for product sets
Fx B, FeF, BeB. For those sets we have

O(F x B, = {§)7F Lo,

otherwise,
where A, = {z: (w,z) € A} for A € F @ B. Hence

| rdeem)= | (§  flwe)dn)dw)

O-1{FxB) B-1F p(w)-'B

={( | (Pef)w,5) dPw)) dm(z)
B g-1F
by the definition of ﬁp and Fubini's theorem. By the definition of Py this
gives the desired result. m
1.2, Remark. We did not use the assurnption that # is measure-
preserving, so (2) holds whenever ¢ is nonsingular.

1.3. Remark. If #is an autormorphism, 1.e. a measure-preserving bijec-
tion with measurable inverse, then Ppg = g c 8~ for all g € L1(P). In this
case, thus, (3) reads

(PEf)(w, @) = (Po(np=ru) fo-ni)(®)  forall fel}(P@m), neN.

Absolutely continuous measures on product spaces. The ergodic theory of
random dynamical systems is concerned with ©-invariant measures u which
have marginal P on £2. The following says that this is not too much of a
restriction.

1.4. LeMma. (1) If ¢ s ergodic then any O-invariant measure b on 22X X
which s absolutely continuous with respect to P @ m has marginal PP on (2.

(ii) Viee versa: If there exists an ergodic @-invariant measure p on Ix X
which is equivalent to P @ m then 8 is necessarily ergodie.

Proof Write F = Toa M p is O-invariant then P is -invariant.

(i) p <« P ® m implies P« P, hence P = P by ergodicity {cf. Corol-
lary A.2).

(i) In this case P is ergodic and equivalent to P. Hence, since P is
f-invariant, again P = P.
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If X is a Polish space then any measure y on £2 x X with marginal [’ on
{2 is determined by an essentially unique family of conditicnal probabilities

{1} satistying du(w, z) = dp.(z) dP{w).
1.5. LEMMA. Let m be o Borel measure on a Polish space X and let

(2,7, P} be a probability space. Suppose p 15 a measure on 2 x X with
marginal P on 2. Then

pLPm & p, €mPas

Proof. <=: Let A € F® B with P® m(A) = 0. Then m(A4,) =0 P-as.,
hence by the assumption g, (A4, ) =0 P-a.s. Thus u{A) = {u,(A,) dP(w)} = 0.

=: Let g be the density of p with respect to P®m. For each F' € F and
each B € B we have

u(F x B) = | | g(w, ) dm(z) dP(w) = | . (B) dP(w).
FB F
For each B ¢ B, thus, we have

po(B) = { g(w,z) dm(z) P-as.
B
Since B is countably generated we can construct from this a set N € F with
P(N) = 0 such that g(w,-) is an m-density of y, for all w ¢ N. m

Ezpanding random dynamical systems. Let X = M be a compact con-
nected smooth manifold equipped with a Riemannian metric ||-||. A random
dynamical system ¢ on M is called ezpanding if each y(w) is a C*-mapping
and if there exists a constant v > 1 such that for all w € 2 the differential
Dyplw) of p(w) at z € M satisfies

1(Psp(wh )l Z 7|l for all v € T, M.
The following result has been proved by Kifer [Kif92, Theorem B],

THEOREM. Assume that @ is an expanding random dynamical system on
M over an automorphism 0. Then there exists a @-invariant probability u

with marginal P on 2 such that p,, is P-a.s. equivalent to the Riemannian
velume m on M.

In the proof u is constructed as the relative equilibrium state of the
function —log |det Dy¢p(w)|. For ergodic 6 this yields automatically ergod-
icity of p. So in view of Lemma 1.5, u is in fact the unique @-invariant
measure with z, < m P-as. (cf. Corollary A.2).

Our aim is to give an alternative proof of this result which also allows us
to deduce further mixing properties of y. Recently, Khanin and Kifer [KK94,
Theorem 3.2] have obtained results in this direction even for random dynam-
ical systems which are only expanding in average.
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2. Regularity. Let M be a compact connected smooth Riemannian
manifold and m the normalized Lebesgue measure on M. Further, let Lip(M)
denote the set of all nonnegative Lipschitz functions on M.

2.1. DEFINITION. The regularity of f € Lip(M) is given by
Reg(f) = sup{[f'(z)|/f(z) : = € M with f'(z) defined and f(z) > 0}.
Here f'(z) denotes the length of the gradient of f at .
[ is said to be regular if Reg(f) < oo.
We will apply the following result due to Lasota [Las80, Proposition 2].

2.2. PROPOSITION. If f € Lip(M) ds strictly positive with Vfdm =1
and Reg(f) < « then

e L f2) <™ and |f'(z)] L€ forallz e M,

where r = diam M.

2.3. Remark. Since obviously Reg(cf) = Reg(f) for any ¢ > 0 we
obtain

(4) e {fdm < fz) <e* {fdm forallowe M

for any strictly positive Lipschitz function with Reg(f) < « by simply ap-
plying the above to the normalized function f/§ f dm.

Let D= {f € L}{Pxm): f>0and { fdP ®m =1} be the set of all
densities in IL* (P x m). Further, let

Dp={feD:f, € Lip(M) P-as. and w > Reg(f,) € L (P)}
be the set of densities with essentially bounded regularity.
2.4. LeMMa. Dy is dense in D.

Proof. Let v be a partition of M given by an open cover of M by local
charts. Let B denote the set of all members £ of D which can be written in
the form

Fwz)= Y canla(w)lp(=)
Ao, BeP
where « iy & Buite partition of £2, 8 > v ia a finite partition of M on closed
sets such that m(dB) = 0 for all B € 8, and c4p are nonnegative coefficients
varying with the pairs (4, B) € @ x f.

Since F ig dense in [ the proof will be complete if we can approximate
each member of F by members of Dp. So let f € E and £ > O be given.

For each B € § we can choose a closed set C and an open set U with
CCUcCBand m(B\C) < e Further, we can choose functions fp which
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are C in local coordinates and satisfy ¢ < fp < 1 and

_fe forxzglU,
fﬂ(m)“{l for z € C.

Define
glw )= Y canla(w)fa(@).

Ao, Bep
Obviously, g/ {gdP ® m € Dg and

llg-flaPem=<2e Y canP(4),
Aca,Bef

which finishes the proof. =

3. The main result. From now on, we assume that ¢ is an expanding
random dynamical system with state space M over the dynamical system
(2,7, P,6), and let @ denote the corresponding skew product. We write
Ji{w)(z) := |det dy;(w)(z)], where 1;(w) are the inverse branches of ¢(w),
1 <i< n(w).

3.1. TuEoREM. Let @ be an expanding random dynemical system on M
over an endomorphism 0. Assume there exists K > 0 such that

|7 (w) (=)}
5 K(w) := sup ~+iviie < K P-g.s.
R W= T
(i) There exists a @-invariant probability p which is absolutely contin-
uous with respect to P ® m.
(il) If @ is ergodic this u is uniquely determined, equivalent to P @ m,
and ergodic. Moreover, for the density fo = du/dP @ m we have

n—1

1 — ,
limEZ;Péfmfo for all f € D.

00

(iii) If 0 is exact then the system (2 x M, F @ B, u, ©) is ezact, and we
have

. ne ‘
Tgingongq fo forall feD.

3.2. Remark Proofs of statement (i) and the first part of (ii) al-
ready exist under weaker assumptions than (5) (cf. Kifer [Kif92], Khanin
and Kifer [KK94]) using methods borrowed from statistical mechanics. Our
proof, which has been inspired by Lasota [Las80], is more elementary.

We also remark that Khanin and Kifer [KK94, Theorem 3.2} proved that
if § is a mixing automorphism then p is mixing. Our proof of statement (jii)
has been inspired by Morita [Mor85). :
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Proof. Following the argument in the proof of Theorem 3 of Las80]
for each w € {2 (outside a set of measure zero) separately we obtain
Reg( Py fo) < ;lf-Reg{ fu) + K(w). By induction, and in view of assump-
tion (5), this yields

L K
Reg(Pp(n,w)fw) < ;r? Reg(fw) + :YTI
Let & > K/(y — 1). For f € Dp, thus, there exists 7y & N such that
Reg(Popnw)fu) < a for all n > ng and P-a.a. w (because Reg(f,,) is essen-
tially bounded).

Applying (4) we see that P-a.s.

&""“Twa dm < (I’W(n,w)fw)(w) < em'wa dm for all n > ng, x € M.
With the notation f(w) = { f, dm this yields that P-a.s.

6) e (PR (W) < (PEfYw, ) < e (PPH(w) foralln>ng, ze M
by formula (3).

The Dunford-Pettis Theorem (cf. Diestel [Die84, p. 93]) allows us to
conclude from this that {P"é [+ n € N} is relatively weakly compact in
L* (P ® m), hence {n~* Ef;ol Pif :n € N} has a weak cluster point, say
Pgf. The mean ergodic theorem (cf. Krengel [Kre85, p. 72]) implies that in
fact

rn~1
. i ig. . pwor ' 1 _
(7 nlg{.lo ~ ; Pgf=Pgf in the strong L' (P ® m)-norm.

Obviously, P4 f is a fixed point of Pg, hence the density of a ©-invariant
measure absolutely continuous with respect to P @ m.

Now assurne that § is ergodic. Write Clw,z) = Y700 (PL ) {w,z).
By (6) we obtain

- 1 yLm i 1 1 n-—1 .
e (;?- > (P P)w) + :,;C'@’m)) < HZPQ (w, z)
L=ng i==()

for all n > ny. Since f is a density in L* (2, P) and 6 is ergodic the sequence
{P,;‘,;F} is Cesaro convergent to 1 (c¢f. Lasota and Mackey [LM94, Theo-
rem 4.4.1]); so letting n tend to infinity the above yields e™%" < Paf < e®”
for all f € Dp. Since Dy is dense in D (Lemma 2.4) the limit (7) exists for
all f & D and we obtain

e PEf<e forall feD.
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This means that every @-invariant measure absolutely continuous with re-
spect to P ® m is equivalent to P ® m, proving the assertions of (ii)
(cf. Corollary A.3).

It remains to prove (iii), so assume 8 is exact. This means, in particular,
that 6 is totally ergodic, i.e. ™ is ergodic for all n € N. Write ™ w) =
@(n,w). Since this gives an expanding random dynamical system over 6" we
may apply to ¢(™ what we have shown so far. As a result, we conclude that
the system (@, p) is totally ergodic.

Assume that @ is not exact, i.e. the o-algebra

[==]

(FOB)o=[) O "(F&B)

n=0
is nontrivial. Then, by total ergodicity, it is atomless, so there is a sequence
(Bi)sen C (F @ Bloo with P® m(Bg) > 0 and kimy_,e0 P & m(By) = 0.

Define .
fi = Bam(By) 1g,.

Clearly §{ fr dP®m =1 for all k € N. Also By = @~ "0" B, for all k,n € N
(since By € (F @ B)oo; cf. Rokhlin [Rho64]), hence f, = fi - lgrng, 0 O™
Therefore

l={fradP@m={fr lonp, 0O dPam

= | P3fedPom forallk,nel
6nB,
Applying (6) to an approximation of fi, by an element of Dp (cf. Leno-
ma 2.4) yields

imsup | PEfidP@m<elimsup | PPfidP®m forall ke N

n—og 67 B, n-—o0 On B,

By exactness of 6, Pg“ﬁc is strongly convergent to 1 (¢f. Lasota and Mackey
[L.M94, Theorem 4.4.1]), so the above yields
limsupP @ m{@"B;) = e™™ forallk € N.

N—o0

But limg—eo P ® m{@"By) = 0 for all n € N, i.e. we reached a contradic-
tion, m

3.3. Remark If # is positive nonsingular and ergodic, one can show
that fy € Dg. In this case, one can even prove that P-a.s.

|folw, @) = folw, ¥} < e* o(z,y),

where ¢ is the usual distance on M. This can be dene by applying the

second part of Proposition 2.2 in the same way as we did with the first part
to obtain (6) in the above proof.
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Appendix. The following result is well known, We add the proof for the
sake of completeness.

A.l. THEOREM. Let T be o measurable transformation of a Lebesgue
space (X, B,m). If there are two different T-invariant measures which are
absolutely continuous with respect to m, then there emist two singular
T-invariant measures which are absolutely continuous with respect to m.

Proof Let g and g be two different T-invariant measures with
ph1 € moand pe <€ . First, assume that both are ergodic. Since B is

countably generated, Birkhoff’s ergodic theorem yields a pi-nullset Ny and
a pg-mllset No such that

= S p(B) forallz g Ny
1}5%0 ;L- lB(Z T) = { Mz(B) for all ¢ Nz

im=()
for all B € B. Since p1(B) 5 uz(B) for some B € B we must have
Nf N§ =0, Hence p;(N) = 1, ie. gy L pg.
Now assume gy is not ergodic. Then thereisaset A € Bwith T-1A = 4
and py(A) & {0,1}. Put
1

#a(r) = mm(-‘l n-).

Clearly p4 is T-invariant and g € m. If go(A) = 0 we have ua L p2, and
it ua{A) = 1 we have pge L pe. If ua(A) & {0,1} we put

~ 1

ta(0) s et (A

H A( ) NZ(A) I“'Q( )
and find pge L jigq. w

Here are some easy consequences which we used in the main body of our
paper.

A.2. CoroLLARY. Let T be a measurable transformation of a Lebesgue
space (X, B,rm). If there exists an ergodic T-inveriant measure (4 which is
equivalent to 1, then p is the unigue T-invariont measure which is absolutely
continvous with respect to m. Moreoner,

1 [IRSN] .
lim o~ Z 1(1e) = w(B)  for m-a.q. =
Thon KX L At

[E=l]
forall B e B,

A3, CorotLary. Let T be o measurable transformation of a Lebesgue
space (X, B, ). If all T-invariont measures which are absolutely continuous
with respect to m are equivalent to m, then there exists at most one such
measure. This measure is necessarily ergodic.
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On approach regions for the conjugate Poisson integral
and singular integrals

by

5 FERRANDO {Mardel Plata), R. L. JONES (Chicage, IIl.)
and K. REINHOLD (Albany, N.Y.)

Abstract. Let i denote the conjugate Poisson integral of a function f € LP(R). We
give conditivns on & region §2 so that
lim e+ wv,e) = Hf(x),

(’"!EJ“"’(ILO)
(me)e 2

the Hilbert transform of f at ®, for a.e. @. We also consider more general Calderén—
Zyemund singular inbegrals and give conditions on a set {2 so that

BUP i S k{z + v — ) f(t) dt
{um,r}ed? e

is o hounded operator on L7, 1 < p < 00, and is weak (1,1).

Let f e LP(R?) and let u(z,y) denote the Poisson integral of f. Then
a classical theorem of Fatou [3] asserts that « has non-tangential limits a.e.
on R, In 1984, Nagel and Stein [5] considered more general convergence than
the classical non~-tangential convergence and gave necessary and sufficient
conditions for au approach region 2 so that convergence occurs if u(x,y)
approaches the boundary through the region £2.

In this paper we congider the associated problem for the conjugate Pois-
son integral of a function f, as well ag for more general Calderén-Zygmund
singuldar integrals,

Let k() be a Calderén Zygmund kernel on IR, that is, k(z) = w(z) /|24,
where:

1991 Mathematies Subjeet (lussification: Primary 42820, 42A50; Secondary 28D10.

Key words and plrases: cone condition, conjugate Polgson integral, singular integrals,
ergodic Hilbert trausform,
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