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Abstract. We prove that in separable Hilbert spaces, in £p(N) for p an even integer,
and in Ly[0, 1] for p an even infeger, every equivalent norm can be approximated uniformly
on bounded sets by analytic norms. In £,(N) and in Lp[0,1] for p ¢ N {resp. for p an
odd integer), every equivalent norm can be approximated uriformly on bounded sets by
C*Pl.smooth norms (resp. by O ~'-smooth norms).

Introduction. It is well known that in separable Banach spaces, or more
generally in weakly countably determined Banach spaces, the existence of a
CP-Fréchet differentiable bump function implies the possibility of uniform
approximation of continuous functions by C*-smooth functions (see for in-
stance [DGZ, Theorem VIII-3-2]}. Similarly, the existence of a separating
polynomial implies the possibility of analytic approximations, as shown in
Ku2].

Hewever, the more subtle question of uniform approximation on bounded
sets of an arbitrary equivalent norm on s Banach space by a C*-smooth
norm-—assuming the existence of some equivalent C*-smooth norm on the
space—seems to be of a different nature, and until now there have been no
examples available of infinite-dimensional spaces with this property if & > 1.

In [DFH], we gave a positive answer to this question in separable poly-
hedral Banach spaces.

‘We show here that separable Hilbert spaces, 4, spaces for p an even
integer, and Ly[0, 1] for p an even integer allow approximations by analytic
normd. This result should be compared with [D] where it is proved that
every Banach space with an equivalent C°°-smooth norm (bump) contains
an isoworphic copy of ¢ or £,, with p an even integer.
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We further show that spaces with Schauder basis that admit a C k_smooth
equivalent norm such that all its derivatives of order less than or equal to
k are bounded on bounded sets, also admit approximations by C*-smooth
norms {in general without bounded derivatives). We will comment on the
boundedness condition later on.

Thus, in £,(N} and in L,[0,1] for p & N (resp. for p an odd integer),
every equivalent norm can be approximated uniformly on bounded sets by
C'-smooth norms (resp. by C?~'-smooth norms). This is optimal, since by
[Kul], for p not an even integer, £, does not admit a C* equivalent norm if
k> p.

Since there is a natural correspondence betwacn closed, convex aund
bounded sets in a normed space, containing 0 as an interior point, and
their Minkowski functionals, the previous statements can be reformulated
in the language of convex sets.

The proof of the above statements is done in two steps.

First it is shown that an arbitrary closed, convex and bounded set 51,
0 € int Sy, can be arbitrarily well approximated by another closed, convex
and bounded set S> = {z € X : fi(z) < 1,4 € N}, where {f:}:cn are k-
smooth convex functions, satisfying some other technical conditions. Above
all, for every = € 89; there exists an ¢ € N such that fi(z) = 1. (In case J;
are linear they form the so-called boundary of the set Sy.)

Then the general Theorem 1.3 is applied. This theorem can be viewed asg
a nonlinear generalization of Theorem 1 from [DFH]. This theorem shows
that the body S; = {2 € X : fi(z) < 1, ¢ € N} can be arbitrarily well
approximated by a body S3 = {z € X : f(z) < 1}, where f is a C*-smooth
convex function.

The uniform boundedness conditions on the derivatives of {f;}ien in
Theorem 1.3 axe local. Yet some global boundedness condition on the deriva-
tives of an equivalent norm on X seems to be necessary in the first step of
the construction, in order to obtain {f;}icn that meet the local conditions.

Related to this is an example in [NS] of an equivalent norm on £ not al-
lowing approximations by C?-smooth norms whose second derivative is tni-
formly continuous. More recently, Petr Habala and Petr Héjek [HH] proved
that if P is a polynomial on £, endowed with its natural norm, then there
exists an infinite-dimensional subspace Z of £, such that P is essentially
constant on the unit sphere of Z.

Throughout the paper we use the standard notation and terminology
of Banach space theory. By saying that a homogeneous function is of some
class of smoothness we always mean that it is so away from the origin. A
Minkowski functional is -always meant to correspond to a closed, convex and
bounded set; containing § as an interior point. By saying that a closed, convex
and bounded set S; in (X, |- ||) with 0 € int Sy is arbitrarily apprommable
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by closed, convex and bounded sets from some class C, we mean that for
every € > 0 there exists Sy € C such that (1 ~£)S, € 5; C (1 + &)Ss. This

is equivalent to the uniform approximation of the corresponding Minkowski
functional on bounded sets.

1. Smooth approximation in spaces with countable generalized
boundary. Let (X, | - [) be a Banach space, D be a closed, convex and
bounded set in X with 0 € int D, Let {f: }ien be a sequence of homogeneous,
coutinuous and convex functions on X such that D = {z : fi(x) £ 1, i € N}.

DEFINITION 1.1. We say that {f;};en as above forms a countable gener-
alized boundary of D if for every z € D there exists some i € N such that

Ji(z) = 1.

Examrre. If K is a countable compact set and §, denotes the Dirac
measure at « € K, then the set B = {£§, : z € K} is a countable linear
boundary of the unit ball of C(K). This fact was used in [DFH] to prove
that there exists on the space C(K) of real-valued continuous functions on
K an equivalent analytic norm.

Now, let 1 < p < +4oo and (£2,B,1) be a measure space. Denote
by C(K,L?) the space of continuous functions from K into LP(£2, 15, u)
equipped with its natural norm |[¢l] = sup{||le(z)||, : ¢ € K}. For 2 € K,
let fi be the convex continuous function on G(K, LP) defined by f, () =
lo(z) |5, The set B = {f, : # € K} is a generalized countable boundary
of the wnit ball of C(K, L?). Observe that each f, has the same order of
smoothness as the norm of LP. We shall see below (Corollary 1.5) how this
can be used to construct an equivalent norm on C(X, LP) with the same
order of smoothness as the norm of L”.

The following facts on complex spaces and functions can be found in
[Ku2] and references therein. Given (X, [|-{) a real normed (Banach) space,
we can pass to its complexification (X, | - [ x-) which, considered as a real
nonned (Banach) space, is 1hOH101pl’llC to X @ X with the norm |||(z, y}||| =
l]| = [lyll. For P a k-homogeneous polynomial on X, we denote by
Ap(xy,..., &) the corresponding symmetric k-linear form, The extension
of Ap to the complexification is defined by multilinearity and is stil] denoted
by Ap. We then define the complexified polynomial P¢ of P on X¢ by

Pi((z,y)) = Ap(z-+iy, z + 4y, ..., 2+ iy).
Then
k L EF
1241l < 2%)14p |l < 25 (1P
For the last inequality see [N, p. 7).



64 R. Deville ef al.

It follows from Stirling’s formula that for some K’ > 0,
k:k
m
Find K > 0 such that K||| - ||| = |- || xc- Then
[P < K'(2Ke)*|1P.
Thus whenever f is a real analytic function at x &€ X with the radiuy Q't'
convergence r, we can pass to its holomorphic complexification f¢ at (x,0)
with the |- || .-radius of convergence at least r/(2Ke).

DeFINITION 1.2, Let &k € NU {+oo} U {w}. We say that a sequence
{#:}sen of convex and continuous functions defined on (X, || - ||) satisfies the
condition (k) if the following hold:

(i) If k € N, then fi|o are C*-Fréchet differentiable and for every I < &
and every 0 # x € X, there exists a neighbourhood O of = such that
|D! fil| o are uniformly bounded.

(i) If k¥ = -+oo, then f;|p are C'°-Fréchet differentiable and for every
€ Nand 0 # z € X, there exists a neighbourhood O of = such that
| D' fill lo are uniformly bounded

(iii) If k = w, then f; are real analytic on X S {0}, and {fi}tiew satisfios
the following equicontinuity property: for every 0 # « € X and § > 0 there
exists an 7 > 0 such that

1£8(2) < |f5(z)f +68  for [z — (2,0)|,. <7andjeN,
TueoreM 1.3. Let (X, |- ||) be a separable Banach space, D C X be o
closed conwez and bounded set, 0 € int D. Suppose {fi}ien s a countable
generalized boundary of D satisfying the condition (k), where k € NU{-+o0}

(resp. satisfying condition (w)). Then the Minkowski functional of D can
be appromimated by C*-smooth (resp. analytic) Minkowsks functionals.

< K'.¢® foreverykeN

A first application of Theorem 1.3 concerns cp-sums of smooth spaces. It
is proved in [FPWZ] that the real Banach space ¢o(N) admits an equivalent
analytic norm. We extend this result here ag follows:

Corortary 1.4. Let (X, |- 1l:) be a sequence of Banach spa,ccssg and let
X be the co-sum of the X5, te. X = {(z;) : 21 € X ol = 0},
endowed with its usual norm ||z|| = sup; ||z:|:. Assume that r‘ha norms |||
are analytic on X; \ {0} and that they satisfy the condition that for every
0+# 2= (zn) and 6 > 0 there exists an v > 0 such that
2§l <llzlli +6  for |z = (2,0)fxc <7 andi€ N,
Then there exists on X an equivalent analytic norm.

Note that in the above corollary, ||-|| ;. denotes the norm of the complex-
ification X© of X, while || - ||{ is the holomorphic complexification of || - ||;.

icm

Analytic and C* approzimations 65

The hypothesis on the X;’s is satisfied when the spaces X; are all equal to
some space LF, with p an even integer.

Proof of Corollary 14. For z = (x;) € X, put fi(z) = ||z
The sequence {f;} is a countable generalized boundary of the unit ball of
X satisfying the condition (w)}. Consequently, the norm of X can be ap-
proximated, uniformly on bounded sets, by a sequence (¢, )nen of analytic
Minkowski functionals. The function

) +ea(-x)
Ny = 220 T A0
is an equivalent analytic norm on X,

In [H1], R. Haydon proved that if K is a countable compact set, then
there exists on the space C(K) of real-valued continuous functions on K an
equivalent C°°-smooth norm. In [DFH], we proved that if K is a countable
compact set, then there exists on the space C{K) an equivalent analytic
norm. The following result is a vector-valued extension of this result. Asser-
tions (1i) and (iii) below also follow from the work of R. Haydon [H2].

CoroLLARY 1.5, Let K be a countable compact set, 1 < p < 400 and
(12,8, 1) be a measure space.

(1) If p is an even integer, there exists on C(K, L?) an equivalent ana-
Iytic norm.
(i) If p is an odd integer, there exists on C(K,LP) an equivalent CP~1-
Fréchet differentiable norm. :
(i} If p is not an integer, there exists on C(K, L?) an equivalent C™)-
Fréchet differentiable norm.

Proof For ,r' € K, let f, bethe convex continuous function on C(K, LP)
defined by fa{p) = |e{z)]5. We already noticed at the beginning of the
section that { fm}le K isa countable generalized boundary of the unit ball
of C(K, L?). Let us now check condition (k).

Tt is well known (see for instance [DGZ]) that the pth power of the
normn on IP is OP~L.Fréchet differentiable with derivatives of order I <
p - 1 hounded on bounded sets if p is an odd integer, and el Fréchet
differentiable with derivatives of order { < [p] bounded on bounded sets
il p iy vot an integer, Consequently, {fs}rere 18 & countable generalized
boundary satisfying the condition (k) where & = p—1if p is an odd integer
amcd k== [p| if p is not an integer,

When p is an even integer, the pth power of the norm on L is a polyno-
mial, hence it is analytic and its holomorphic extension N to the complexi-
fied space is uniformly continuous on bounded sets. Let ¢ € C(K, LF), and
let 1 in the complexified space C(X, LP((12, B, 1), C)) satisfy |l — 4| < r.
The set { p(x) : & € K} is bounded in L? and, for all o € K, fo(4) — fulp) =
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N(3(z)) — N{(z)). Therefore, condition (w) follows from the uniform con-
tinuity of N on bounded sets of LF,
The result follows now by applying Theorem 1.3.

Proof of Theorem 1.3. Choose g; ™, 0. Put f: =(1-+eg)f; It is
standard to check that {fi};en again satisfies the condition (%), Morcover,
{f:}ien forms a countable generalized boundary of the set

D={z:fi(z) <1, i N}
Also, for every z € 8D there exists an i € N such that

. . . s ¥ ——-—-1 »{-E.-l-l
(1) j>1 implies f;(z) € i ;

< L
Letting &1 — 0 gives us arbitrarily good approximation of D by D. Therefore
it is enough to prove our result for D.

Define 1h(z) = e~'e®, z € R. Put hy = v o f;. It is again standard
to check that {A;}iew satisfies the condition (k), the h; are nonnegative,
D ={x: hi(z) <1, i € N} and, moreover, from (1), there exists a sequence
8; ™\, 0 such that for every & € D there exists i(z) € N and a neighbourhood
O(z) C X of = such that

(2) j>i(z) implies hj(y) <1—68y forye Ox).

In case k = w, it follows from condition (w) that for some neighbourhood
0O° ¢ X€ of (z,0) where O°N X = O there exist § > 0 and ¢ &€ N such that

(3) |Rf(2)] <1—6 forze€O°andj>i.

Let {pi}icn be an increasing sequence of even integers. It follows from (2}
that

Qlz) =) (ha(2))"
i=1
is a well-defined function in a neighbourhood of D. Let
A={ze X G(z) <1}

Clearly, A C D. On the other hand, let us fix &€ > 0. We want to show
that if py is large enough, then (1 -~ £)D C A. Indeed, the functions f
being homogeneous, one has f;(0) = 0, hence hi(0) = 1/e for all ¢ & N,
Since the functions h; are convex, if @ € (1 — ¢)D, then hi(z) < 1/e -+
(1-1/e){(1—¢) = a < 1. Hence G(z) < Ef:;m ot < 1if py is large enough.
Consequently, (1—¢)D C A C D. This proves that the Minkowski functional

of A approximates (in the topology of uniform convergence on bounded sets)
the Minkowski functional of D.
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We will prove that if the sequence {p; }ien grows fast enough, the func-
tion G has the same smoothness properties as the functions h; in a neigh-
bourhood of D \ {§}. We shall then deduce from this that the Minkowski
functional of A has the same smoothness properties. This will finish the
proof of Theorem 1.3.

Proof in the case k € NU {+oo}. Using the Lindeldf property of
(X, |]) and condition (2), choose a sequence {O;};en of open subsets of
X and a sequence {i(j)}jen of integers such that

(i) D C. U.,"GN Oj

(ii) For t € N, 1 < k, || D*h;(+)|] are uniformly bounded on O;.

(iii} For every n > i(§) and for every y € Oj, ha(y) < 1 — bigjy-

Now let {(km, Im) tmen denote an enumeration of N x N if & = oo, and
an enumeration of N x {0,1,...,k}if bk € N

By induction on m € N, we construct a system {Pmn Jnen of increasing
sequences of even integers such that {pm+1,n tney C {Pm,n tnen and for every
m € N and every subsequence {gn }nen Of {Pmntnen the function G{z) =
Soio (hi(x))d= restricted to O, is Im times continuously differentiable.

Put {p\’),n}neN = {zn}nEN-

Induction step from m to m + 1. According to the generalized chain
rule (see [Fe, p. 222] for the notation), we compute the Gth differential of
a composition of a S-differentiable real function f on X with £, p an even
integer, at o € X as follows:

(4)  DP(fla))?
=Y DRe((f(a))P) o (D f(@)™ ©... © (D*f(a))™)

ol

3

@eS(8)

where S(8) is the set of all S-termed sequences o of nonnegative integers
such that fol icy; = f. Notice that (4) is a formula with a fixed number
of terms on. the right hand side, regardless of the value of p.

If |f(a)] < 1, we obtain |[DZ*((f(a))?}| — 0 as p — +oo for every
a & §(8). Consequently, || 0P (f{a))?| — 0 as well,

The induction step is as follows: We put P41, = Pm,n for n < iK1 )-
For n > i(kmt1) W put Pm1,n to be an element from {Pm.,n}nen 50 large
that || D9 (hy, (y))Pmree]| < 277 for all y € Oy, and all 8 < lppr.

Setting {Pn}nen 10 be {Dantnen, the function G(x) = 207, (h(z)) is
Ck-smooth on the open set ey Oj. The Minkowski functional of the set
A € ;en Oy 18 the function ¢ given by G(z/p(z)) = 1. The convexity of
G and the fact that G(0) < 1 imply that G'(z).z # O for all  such that
G(z) = 1. Consequently, G'(z).z # 0 whenever G(z) =1. Set F(z,A) =
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G{z/A) — 1. We have 2£(z,)) = —A"2G'(z/A).x # 0 whenever G(z) = 1.
The implicit function theorem ([Dieu, p. 261]} applied to the function /7
shows that the function ¢ is C*-smooth and

o —p(@)G (5] 0())
o) = e e

Proof in the analytic case. Let us fix k an even integer greater
then or equal to p1. As {hi}ien satisfy condition (3), the complex series
Go(z) = 302 (h$(2))?* is uniformly convergent on some neighbotrhood of
every point (z,0) € X°, where z € D. According to the uniform convergenge
theorem for holomorphic functions, G°(z) is holomorphic as well, The im-
plicit function theorem for holomorphic functions ([Dieu, p. 261]) theu shows
that the function ¢° defined by G°(z/w°(z)) = 1 is holomorphic, hence an-
alytic ([M, p. 62]), and its real part ¢ is real analytic and is the Minkowski
functional of the set A = {z € X : G(z) = 10 (hi(2))¥*+* < 1}

2. Smooth approximation in Hilbert spaces. The goal of this scc-
tiorn. is to prove:

‘TREOREM 2.1. Let (H,|| - |} be o separable Hilbert spoce. Then every
Minkowski functional on H can be approzimated by analytic Minkowshi Sune-
tionals.

COROLLARY 2.2, Let (H,| - ||) be a separable Hilbert space. Then cuery
equivalent norm on H can be approzimated by analytic equivalent norms,

Proof. Let [{| - || be an equivalent norm on H and & > 0. According
to Theorem 2.1, there exist an analytic Minkowski functional w such that
(1 = e)llizll < w(z) < (1 + &)|[z]ll. The function N defined hy N(z) =
(v(z) + ¢(~2))/2 is an equivalent analytic norm on H which also satisfies
(1 —e)lllzlil < N(z) < (1 + )|l

Proof of T_l}eorem 2.1. Let W be a closed, convex and hounded
subset of X with 0 € int W, Without loss of generality, we can assume that
W is contained in the unit ball B of H. Qur goal is to approximate W by
a convex body S which admits a countable generalized bowndary {fx}ren
satisfying the condition (w), and then to apply Theorem 1.3,

Denote by W® the polar of W, by {en} an orthonormal hasis of I aund
by Z<N the space of finite sequences of integers. Fix 0 < ¢ < ] /2. Denote
by F' the weak closure of the set W° N { X anyen<s(e/2%) e, } and by ¢
its closed convex hull,

Cramm 1. (1 -2 )W° C € C W° and, for each n, the set en(F) =
{(en,2) 1 © € F} is finite,
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Proof, e,(F) is finite because it is a bounded subset of the real line
included in (g/2™)Z. Clearly, ¢ C W°. Let us now pick 2 € (1 — g)We.
There exist scalars b, such that z = Ele bre,. For each n, choose a,, € Z
such that b, — (£/2")a,| € &/2". We have

oo

£
2= granen

=l

o«

<>

ne==l

<£
=3

)
by, — Eﬁaﬂn

Therefore, there exists N such that, if we set a = Eﬁ;l(s /2 am ey, then
la = al < e So,a € (1—e)We+eB C W°, and consequently, o € C and
@ € C'-- 3. This proves that (1 - £)B < (1 —&)W®° C C'+¢B. In particular,
(1~ 2e)B C C. Finally, we obtain (1 — 2e)(1 — e)W® ¢ (1 - 2e)(C +€eB) C
(1 —&)C, whence the result.

Let us now denote by [A,] the subspace of H generated by the ¢;, i > n.

CrLaim 2. There exist a sequence {hy} of poinis in the set F, a sequence
{ni} of integers with ny — oo, and o decreasing sequence {F,} of weakly
closed subsets of F' such that

(1) Uy (o + M, ) N Fie) = F.
(if) diam((hy -+ My, ) N Fy) < €.

Proot Tor every € > 0, F can be covered by countably many balls of
radius €, hence, by the Baire Category Theorem, there exist a point g € F
and a weak neighbourhood & of g such that GNF # ) and diam(GNF) < e.
Because of the structure of the set F, the sets (h+M,)NF, he F,ne N,
form a base of the weak topology on F and each such set is both closed and
open in (F,weak}, On the other hand, the family & = {h+ M, : h € F,
n € N} contains countably many (different) sets and obviously each weakly
compact subset of F has the same structure as F.

For cach ordinal v, we define by transfinite induction sets F, and (hq +
M) as follows: Fy = F, Fap1 = Fo\(hatMnp(a)), where (ho-+My o)) € S
such that (he + Mywy) N Fo 5% 0 and diam((ha + Mao)) N Fa) <e I o is
a limit ordinal, then we put Fy, == ﬂﬁ cq £ Since the family S is countable
and each sot F, I8 wealdy compact there exists a countable ordinal 7 such
that £y ¢ 0 and Fypq = T is clear that

U ((hw. -t Mn(u)) N F‘a) = I

asn
Let uy rewrite the countable family {ho + M) tagy a8 {hy -+ My, 152,
Since for each integer ¢ there exist only finitely many members b + A, of
the family & such that n < ¢, it follows that np — o0 as k —» co. Claim 2 is
proved.
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We are now ready to construct the convex body § which admits a count-
able generalized boundary {fx }ren satisfying the condition (w). Denote by
Py the orthogonal projection from H onto the subspace My, . Define

(5) fu{z) = hi(2) + e[ Prlz)]
and
(6) S={ze€H: fi(z)<1lforal ke N}

Cratm 3. § is a good approzimation of W.

Proof. According to Claim 1, W € C° ¢ (L~ 2&)™'W.

Let & € S. This implies that for each k, hy(z) < 1, so x & C° This
proves that S C (1- 25)_1W. Conversely, let z € W. Then 2 € C°, so
for each &, hi(z) < 1. It follows from the proof of Claim 1 that C° ¢
(1-2¢) 7" B. So filz) < ha{z) +elz| < (1—-&)(1~2e)"L, This proves that
W (1—g)(1-2e)718.

CLAM 4. {fi}ren sotisfies condition {w).

Proof. Indeed, the f; are homogeneous convex continuous functions.
Since the square of the norm of a Hitbert space is a polynomial, the norn of
H is real analytic on H'\{0}. Consequently, the functions fj, are real analytic
on H\{0}. A holomorphic extension of fy is given by

Filx +iy) = hi(2) + () + e/ Po()[|2 = [ Pely) [ + 2i(Pilz), Pu(y)),

where v/ is the determination of the square root on C\iR". The sequence
{hx} is bounded in H and the projections Py are Lipschitz continuous with
constant 1. Hence, the functicns f are uniformly continnous in a neigh-
bourhood of (z, (), uniformly in k. This implies condition (w).

CrLAIM 5. {fx}ren is a generalized boundary of S.

Proof Define 5 = | J,cy{hr +€u 1 u € My, {lul| £ 1}. Observe that
S={zx e X :h(z) <1forall h € 5%}, and, according to Claim 2, F C §*.

We first prove that §* is weakly closed. Indeed, let {g.,} be a sequence
in 5%, weakly converging to g, € X*. If there exists k such that infinitely
many of the g., are in the weakly closed set {hy +eu:u € My, |ul] <1},
then of course goo is in this set, hence also in S*. Otherwise, there oxists
km — oo such that gm = hy,, +Etm, With um € My, , |[u] < 1. Consequently,
Uy, weakly converges to 0 and hy,, lies in the weakly closed set J7, hence
(weak)-lim g, = (weak)-limhy,_ € F C S*.

We now prove Claim &. Let £ € 85, Since S§* is weakly closed, there
exists 2 € 5* such that h(x) = 1 = max{g(z) : g € §*}. There exists k such
that b = hy+eu, with u € M,,, |Juj| < 1. Consequently, 1 = g (z) +eu(z) <
he(z) + || Pe(2)]| = fe(z) <1, so (f) forms a generalized boundary of S.

icm

Analytic and CF approrimations 71

We now conclude the proof of Theorem 2.1. By Claim 3, W can be ap-
proximated by S. Using Claim 4, Claim 5 and Theorem 1.3, the Minkowski
functional of S can be approximated by analytic Minkowski functionals.
Consequently, the Minkowski functional of W can be arbitrarily well ap-
proximated by analytic Minkowski functionals.

3. Smooth approximation in smooth spaces with basis. The proof
of Theorem 2.1 can be extended to a more general setting that we present
now. Let us recall that {2;}iew is a Schauder basis of the Banach space X
if for overy » € X, there i a unique sequence of scalars {a;}iey such that
@y G4

THEOREM 3.1. Let (X, |||} be a separable Banach space, and let {z:}ien
be a Schauder basis of X, Let k € NU {+o0}, | - || be C*-smooth, and

D || be bounded on By for 1 € N, 1 < k. Then every Minkowski functional
(resp. equivalent norm) on X can be approzimated by CF-smooth Minkowski

Junctionals (resp. equivalent norms).

CoROLLARY 3.2. On spaces Lp[0,1], £,, where 1 < p < +c0, p € N,
every equivalent norm con be approzimated by C¥l-Fréchet smooth norms.
On spaces Lp0,1), £y, where p is odd, every equivalent norm can be approz-
irnated by OP~Y-Fréchet smooth norms.

Proof It is well known that these spaces have a Schauder basis. Let
k = [p] if p is not an integer, and k = p — 1 if p is an odd integer. The
explicit caleulation of the derivatives of its canonical norm, carried out e.g.
in [DGZ, p. 184], shows that the norm of the spaces LP(2) is C*-smooth,
and that D*|| - || are bounded on Bx for [ é N, | < k.

It should be noted that this is the best possible result because, as shown
in [DGZ, p. 222], these spaces do not admit equivalent norms of higher order
of Fréchet smoothness than the ones used for the approximation.

Proof of Theorem 3.1. For k = 1 the above result is known--see
[DGZ, p. 53]. Obsorve that in this case, the assumption of the existence of
a Schauder bagls on X i not needed.

Denote by {@!}ien the biorthogonal system of {;}ign. For k > 1, the
space X is superreflexive [DGZ, p. 203], so the linear span of {z}}ien is
dense in X*.

Suppose W is a closed, convex and bounded subset of X with § € int W,
Our goal is to approximate W by a convex body S which admits a countable
generalized boundary { fi }ren satisfying the condition (k), and then to apply
Theorem. 1.3

The following lemma is an extension of Claims 1 and 2 of Section 2. It
swmnmarizes Lemmas 3.7 and 3.8 of {DFH], where its proof is given, and is
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close to some results of [Zp]. Before stating it, let us recall that a biorthogo-
nal system {x;, } }ien is an M-basis of the Banach space X if the sequence
{x;} is total in X and z; separates points of X, i.e. for every = € X\{0},
there exists ¢ € N such that z}(z) # 0.

LEMMA 3.3. Let X be a Banach space with separable dual X* and let
{2:}ien C Sx be an M-basis of X such that the linear span of the Worthog-
onal system {z*}ien is dense in X*. Let W < X be a closed conves hody
such that 0 € intW ond 0 < & < 1/2. Then there emists a w™-compact
subset F' C W*° such that

(i) (1+4€)"'W° C w*-cleco F C (1 +¢)7tWe.
(ii) For each integer i the set z;(F') is finile.
In addition, for arbitrary e > 0 there exists o sequence {gy} of points in the

set I, a sequence {ny} of integers with ny ~ oo, and o decreasing sequence
{F} of w*-closed subsets of F' such thot

(i) Upen((gr + Mn, ) N 1) = F.
(iv) diam((gr + Mp,) N Fy) <e.

Here M, = [z}, ne N,
Using the notations of Lemma 3.3, we obtain

L (o +eBx- N My,) D F.
kel

Define
§* = | (on + P} (Bx-)),
keN
where P, are the linear projections on X defined by

o0 oo
Pk (ZCMG‘L‘{) = Z Qi
=1 i=npLl
From Lemma 3.3(i) and the fact that the norms of Py, and P} are uniforwly
bounded, we deduce that w*-cleo §* approximates W arbitrarily well.

We claim that §* is w*-closed. Indeed, let {h,,} be a sequence in 8™
converging to ko, € X, If there exists k such that infinitely many of the A,
are in the weak”-closed set gy + e Py (Bx~), then of course he 1 in this set,
hence also in 5*. Otherwise, there exists by, — 0o such that by, = gp, -+,
with uy, € Py (Bx-). Consequently, u,, weak*-converges to 0 and gy, lies
in the weak*-closed set F, hence limu,, =limg, € F C 8*

Put

(7) S={x e X :h(z)<1foral he S}
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and

(8)  fule) = sup{y(z) : y € gp + e P (Bx+)} = gu(@) + e\ Pr(2)]|.

We claim that {f }ren forms a generalized boundary of S. Indeed, let z €
08S. Bince 5* is weak*-closed, there exists h € 9* such that A{z) = 1 =

max{y{z) : ¢ € S*}. There exists k such that h = gx+eu with u € P} (Bx-).
Clonsequently,

1= gk (2) + eu(e) < gn(2) e Pulo)]| = fule) < 1,

s0 {fx} ’['()1?1"11.‘1' a gencralized boundary of S. It follows from (8) and the chain
ride that {fi}ren satisfies the condition (%). By Theorem 1.3 we have thus
finished the proof of Theorem 3.1.

TusoneM 3.4. Let (X, [ ]|]) de a separable Banach space with Schauder
basis {2 bien. Assume that there exist an even p € N and o convex ho-
mogencous p-polynomial P(+) on X such that || - || = P(~)1/ ¥, Then every
Minkowski functional (resp. equivalent norm) on X can be approzimated by
analytic Minkowski functionals (resp. equivalent norms).

Proof The construction of {fi brewn is exactly the same as in Theorem
3.1. Iu order to verify that {fi}ren satisfy the condition (w), it is enough
to realize, as in the proof of Claim 4 in Section 2, that

i = g+ e(PE(POYP,
where ¢f, ¢ are uniformly continuous on a neighbourhood of (m,ﬁ) and
P is uniformly continuous on every bounded set. As, for z € X, we have
.28 ({, O)) | — O for & — +oc and gx lie in the polar of D, we are done.

COROLLARY 3.5. On spaces Lpl0,1], €p, where p is an even integer,
every Minkowski functional (resp. equivalent norm) can be approzimated by
analytic Minkowski functionals {resp. analytic norms).
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Polynomial selections and separation by polynomials
by

SZYMON WASOWICZ (Bielsko-Biata)

Abstract. . Nikodem and the preseat author proved in [3] a theorem concerning
separation by affine functions. Our purpose is to generalize that result for polynomials.
As a consequence we oblain two theorems on separation of an n-convex function from
an n-coucave function by a polynomial of degree at most n and a stability result of
Hyers-Ulam type for polynomials,

1. Introduction. We denote by B, N the sets of all reals and positive
integers, respectively. Let I C R be an interval. In this paper we present a
necessary and sufficient condition under which two functions f,g: I — R
can be separated by a polynomial of degree at most n, where n € N is a
fxed mumber, Qur main result is a generalization of the theorem concerning
separation by affine functions obtained recently by K. Nikodem and the
present author in [3]. To get it we use Behrends and Nikodem’s abstract
selection theorem (cf. [1, Theorem 1}). It is a variation of Helly’s theorem
(ct. [7, Theorem 6.1]).

We denote by cc{R) the family of all non-empty compact real intervals.
Recall that if F': I — ce{R) is a set~valued function then a function f : I —»
R is called a selaction of F iff f(z) € F(x) for every z € 1.

Behrends and Nikodem's theorem states that if W is an n-dimensional
gpace of functions mapping [ into R then a set-valued function F' : I —
ce{lR) has a selection belonging to W if and only if for any 7 + 1 points
Bl inyy € 1 there exists f € W such that flz;) € Flz;) for § =
Looyn L

et us start with the notation used in this paper. Let n € N, If @y, . .., @n
¢ I are distinet then for ¢ =1,...,n we define

1001 Mathernabies Subject Classificotion: Primary 26A51, 26E25, 39872, 54C65; Sec-
ondary 26007, H2A55.

Key words and phrases: separation theorerm, get-valued function, selection, n-convex
funetion, n-eoncave Funcion, affine function, Helty’s theorem, Lagrange interpolating
polynomial.
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