On the ergodic theorems (II)
(Ergodic theory of continued fractions)
by
C. RYLL-NARDZEWSKI (Wroctaw).
1. Introduction.

In this paper?!) we apply the individual ergodic theorem to the
so-called metric theory of continued fractions.

Let x4 be a o-measure defined in a o-field M of subsets of an
abstract space X such that u(X)=1. A transformation ¢ of X into
itself preserves u (or else is w-invariant with respect to @), if p—EBe M
and p(p~'E)=u(E) for each HEeM. A set EeM is imvariant with
respect to p it B=¢'E. We call ¢ indecomposable if each invariant
set has the measure 0 or 1.

The individual ergodic theorem states that for each real-valued
and p-integrable function f defined on X and for each ¢ which is
indecomposable and preserves x we have

%z{f(mH—f(lP(w))+~--‘|‘f(‘pn_l(w))>‘>xf e

almost everywhere in X.

In the sequel we denote by X the set of the irrational numbers

of the interval <0,1> and by |E| the Lebesgue measure of the set X.

In order to apply the ergodic theorem to the theory of conti-

nued fractions, E. MARCZEWSKI has defined the transformation
! i

6(5+-ﬂ+3—+...) = ﬂ+

101 Cy iC3 N E’—z— ‘03 )

s =——[1],

i x
and proposed the study of its ergodic properties.

ey

or else

) Presented to the Polish Mathematical Society, Wroclaw Section, on
March 31, 1950. Cf. [2].
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As the transformation 8 does not preserve the Lebesgue mea-
sure, we define another neasure » (see the formula (*), p. 76), which
is invariant with respect fo d. This definition is based upon an idea
of Gauss?). Knopp has proved a theorem which, expressed in the
language of the ergodic theory, states that 6 is indecomposable
with respect to the Lebesgue measure ®). It follows from the proper-
ties of the measure v that & is indecomposable with respect to » too.

Therefore we can apply the individual ergodic theorem and
then we obtain the main theorems on the measure-theoretic pro-
perties of continued fractions, namely those of KHINTCHINE and
LEvY (Theorem 3, and Corollaries 1 and 2).

In this manner the arithmetical methods usually applied in the
metric theory of continued fractions are reduced to the application
of Knopp’s theorem formulated below.

It is worth noticing that applying the mean ergodic theorem
instead of the individual one, we may obtain theorems for the mean
convergence analogous to our theorems.

2. Indecomposability of the transformation &.

Theorem 1 (Knopp). The transformation 8 is indecomposable
with respect to the Lebesgue measure.

Proof. Let E be a set invariant with respect to 6, i.e, such
that xeE if and only if é(x)eE. We suppose |E|=d<1, and we
shall prove d=0. Let y(x) denote the characteristic function of .

We choose a £eX, and write

We fix a positive integer n and denote by p/q and p’/¢’ the
(2n—1)-th and 2n-th approximants of £ Then, denoting by y the

number
1 ) Fod e = e
( ) Y 16y ‘0211 !-‘E‘}_C‘Zn-y‘—l ‘Z‘B+Q

we have §"*1(y)=r, whence

2) . x(f)=x(

SRE I YN S 8

pa+p’
qu+q’
%) Cf. Lévy [7], p. 298, [8], and Kuzmin [6].
%) Kunopp [5].

) for zeX.
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Putting
crzg, and T= pri —I—p
q 4+Q
we have
— 1
3) N 3 .

¢+a) ¢la+a)
We shall estimate the density of E in the interval {o,7).
By applying (3), (1) and (2) we get
B0y m]

T—0

¢ (g+q") fy ydy= q(q+q)f (WH— ) &

gw+q' | (qu+g')?

(a+1) f (@)
=q L) Ty
; B gy
Since the function 1/(gz--¢')? is decreasing, the right-side mem-

ber of the last equality is (for fixed d) maximal, if #=(0,d>. Con-
sequently, since 0<¢<¢/,

B <o,

o

T—

d
dx 1—d 1—d
<qute [0 = 0Dy 1
0

(gz+¢')* gd+q 144
If £ runs over X and n runs over the set of all natural numbers,

the intervals (o, form a covering, in the sense of Vitali, of the
set X. In virtue of the Lebesgue’s density theorem, d=04).

3. Invariant measure.

We define a o-additive measure » in the field of all Lebesgue

measurable subsets of X by putting

1 dw
(%) V(B)=r— | o
log2 g 1+=

Theorem 2. The measure v has the following properties:

(a) v is invariant with respect to 9,

(b) the class of all sets of measure zero and that of integrable func-
tions are the same for v and for the Lebesgue measure.

Proof. In order to prove the property (a) it suffices to verify
the equality »(6-1E)=v(E) for intervals of the form E= 0,a).

4 Cf. e.g. Saks [9], p. 117, Theorem (6.1).
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Since

5T EB= 2(

A=l n+a n

it remains only to verify the 1dent1ty

14}"}; Zfl

The property (b) follows from the obvious inequalities

() sogs FISPB)< 1o5 Bl

It is worth noticing that the measure » is the unique measure

which is finite, invariant with respect to &, and absolutely eonti-
nuous with respect to Lebesgue measure (i.e. of the form f flx)dz).
E

This is an easy consequence of the individual ergodic theorem.

4. Ergodic theorems on continued fractions.

It follows from Theorem 1 and 2 that 6 is indecomposable with
respect to the measure ». Consequently, on account of Theorem 2,
we may apply the individual ergodic theorem to the transforma-
tion § and the measure », and we obtain the following proposition:

@+ @)+ (@) > fidr ] for oL

Returning to the Lebesgue measure we obtain in virtue of the
definition of » and Theorem 2 the following _

Theorem 335). For each Lebesgue integrable f we have almost
everywhere

1 f(w

0 g [ £

(@) (000 +

S. HARTMAN has remarked that this theorem remains true
for non-negative functions with infinite integral.

5) This theorem contains an analogous theorem of Khintechine
[4], p. 279.
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To get some applications let us write for each xeX
L

o (@) ley(x)

Applying Theorem 3 for the characteristic function f of the
set of all xeX such that ¢ (x)=p, we obtain

Corollary 1 (P. LEVY®). For almost all xeX and each natural
(p+1)°

log2 " p(p4-2)

p, the frequency of p in the sequence {c,(z)} is

In fact
1
1 If(.:c)d _ 1 Mdw 1 (plp
log2J 1+z  log2 J 14z log2 “p(p+2)

p+1
Analogically putting f(z)=loge,(@) in Theorem 3 . we obtain
Corollary 2 (A. KHINTCHINE 7)).
log n

1 g2
for almost all .

fnz-}—é;b
By putting f(z)=ec,(z) 8. HARTMAN obtains

tm o @jono) @ = [ (14

n=1

Corollary 3.
lim 27 ¢y (2) ...+, (@) =oco for almost all .

Corollaries 2 and 3 may be generalized by putting f(z)=Fle,(z)].
Corollary 4. For each generalized mean of the form
Fla)+...+F(a,)]
Mp(ay, asy...,a,)=F" [—Lﬂj"?i(—ﬁ)J ?
where T is a continuous increasing function 8), we have
1

] ’ [ 1 Fley(x)]
M cees Gy ()] =F1
11;11 F[cl(m)a 7G7L(‘r)] ‘l{ {10g20f l_{__m d.’l‘}

for almost all x (where the right-side constant is finite or not).

& Lévy [7], p. 311-313.
") Khintehine [8], p. 376,
%) see e.g. Aczél [1].
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