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et posons Z=&+Ey . Y=T1T%n.e (ol @, est la fonction du
Lemme 2). On a |z, . (£)[<is, done o(é,%)<e, oln,y)<e. Il suf-
fit done de démontrer que [z,y]€G,. i
Posons xy==2, £1717%1; £18m,.=%2; N1 %y, s =%a) mmyemm’,es{,},
done 2=2,+2,+2s+2,. S 0K, o<u<l, t#u, on a, d’apres

le Lemme 1,
3 2, (1)—2, (%)

(24) | 2

1
<2A~A+2A'ia+2A -—7£<4A2.
i=1 t—u 2 2

Soit maintenant 1/n<Lt<1—1/n. Choisissons 7, § comme il
suit. Il existe un nombre entier k& tel que
2k +1 2k+3
<L I
om om
on a k>0, car 3/2m<1/n<t; posons
2k+1 2k+6
= ’ §=——13
2m 2m

done 0< Max(s—t,i—r)<s—r=5/2m< 1/n, dott 0<r<i<Ts<L. Le
Lemme 2 donne
2, (s)—2,(7) 2(210—{-6 2k+]‘).,2,"% 52-—t 2m> me?

@) e 5741 T s

24m 24m

Or, (24), (25), (23) donnent

N — 2
ss)—2)_mE
§—17 30m

ce qui démontre que [#,y]ed,.

(Regu par la Rédaction le 2. 5. 1950).
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On the ergodic theorems (I)

(Generalized ergodic theorems)
by
C. RYLL-NARDZEWSKI (Wroclaw).

1. Introduction.

In this paper ') we understand by space a fixed abstract set X
with a o-finite o-measure x defined in a o-field M of subsets of X.
By sets we always understand sets belonging to M. The letter @
will be used for a transformation of X into itself and we shall assume
g EeM for BeM and u(p—E)=0 if u(E)=0. By functions we
understand only the real-valued functions defined on X, and mea-
surable with respect to M. The letters f and g, with indices if ne-
cessary, will always denote funections. The class of all f integrable
with respect to x will be denoted by L(u). The symbol [ always
denotes the integral over the whole space. The symbol [x] placed
after an equality or an inequality means that it is fulfilled almost
everywhere (with respect to u).

The individual and mean ergodic theorems of BIRKHOFF and
v. NEUMANN (generalized by F. Riesz [6]) state that if ¢ is measure-
preserving (i.e. if p(p~*E)=u(H)), then

(B) for each feL(u) there iz a geL(u) such that

15
lim — Y f(¢*(@))=g(=) (4],
n i=0
and (if w(X)<o0)
(N) for each feL(u) there is a geL(u) such that

=
tim [ Sf(p @) g (o) | au=0.
n Ny
1) Presented to the Polish Mathematical Society, Wroclaw Section, on

=0
March 10, 1950. Cf. [5].
Studia Mathematica, T. XIT. 5
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DuNrFORD and MILLER [4] have formulated the following condi-
tion:
(DM) There is a constant K such that

1 n—1 B
— Y w7 By K u(B)

for each set B and n=1,2,...

DunrorD and MILLER proved that under the assumption
u(X)<oo in the preceding ergodic theorems the preservation of
measure by ¢ may be replaced by (DM). More exactly: the state-
ments (DM) and (N) are equivalent and imply (B).

S. HARTMAN recently formulated the following condition:

(H) There is a constant K such that

n—1
- Y (o™ B)<Epu(B)
n i=0
for each set E.

Obviously (DM) implies (H).

The main result of this paper (Theorem 1) may be formulated
for finite measure as follows: (H) and (B) are equivalent. For o-finite
measures the condition (H) must be replaced by related conditions
(Hy), (Hs) or (H,y).

We shall also prove the result of DUNFORD and MILLER (Theo-
rem 2). The implication (DM)-— (N) will be proved by means of
Theorem 1 and the converse implication by a part of the origi-
nal Dunford-Miller’s proof. ‘

‘Moreover we prove by a counter-example that (H) does not
imply (DM), and that consequently (B) does not imply (N). Our
example is a modification of those of Y. N. Dowker [3].

In the proof of Theorem 1 we use the individual ergodic theo-
rem fomulated above and the construction of the auxiliary inva-
riant measure made in a paper by DOWKER [2].

2. Generalized individual ergodic theorem.
Given a transformation ¢, put for each two sets 4 and ¥

n—1

M M4, 0)= 3 (T )

k=0
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and consider three conditions (where K is a constant number):
(i) for each A and each ¥ with u(¥)<co we have
li;nMn(A,Y)éKﬂ(A);
(ii) for each 4 and each ¥ with u(¥)<<co we have
@) lim 7,(4, Y) < K u(4);

(iii) there is an ascending sequence (¥} of sets such that
X=Y,4+Y,+... and (2) holds for Y=Y, (j=1,2,...) and each
set 4.

We say that ¢ possesses the property (H,), (H,) or (H,) if there
is a constant K such that (i), (ii) or (iii) holds respectively.

Obviously in the ease u(X)<co the condition (H,) is equi-
valent to the condition (H) formulated above in the introduction.

Theorem 1. The statement (B) is equivalent {o each of the
statements (H;) (j=1,2,3).

Since obviously (H,) implies (H,) and (H,) implies (H,), it suf-
fices to prove: 1° (H,) implies (B); 2° (B) implies (H,).

We may suppose that the sequence { YJ-} in (H,) satisfies the
condition u(¥;)<co, since otherwise we may replace the sets
¥, by X,¥;, where LX’,} is an ascending sequence of sets of finite
measure the sum of which is X.

1° Let Limw, be the Mazur-Banach generalized limit2), i.e.
a functional defined for all bounded sequences of real numbers
which satisfies the following conditions:

I. Lim(au,+bv,)=aLlimu,+bLimv,;
n n n

II. Limwu, ,=TLimu,;
n n
IT1.  limu, <Limu, <limu,.
T n n

We define a set function »;(4) putting

r(A)=TLim M, (4,¥,),

!} Banach [1], p. 34.
5*
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which is possible, since the sequence M, (4,X;) is bounded on ac-
count of (H,). The function »; has the following properties:

(@) Oy (4)<Ep(4);

(B)  »(A+B)=n(4)+n(B) if AB=0;

(y) if A=g*d, then v (d)=u(dY,);

(8) g 4)=v;(4).

Property (o) follows directly from (Hj) and IIT. Property
(B;) follows directly from I.

If A=¢~14, then M, (4,Y;)=p(4Y;), whence, in virtue of III,
v(A)=u(AY,). Thus we obtain the property (y)). .

On account of I we have
v,(4)—; (g2 4) =Lim [ M, (4,¥,)— M, (p~'4,7,)]

7

and from the definition of M, we get
2
| Mo (AT — M, (74, X)) | — u(T).

Hence, in virtue of ITI, we obtain (4)).
The sequence {v,-(A)} being non-decreasing for fixed A we
may pub
v(A)=lim »;(4)
(where »(4) is finite or not). '
The properties (a;)—(4;) imply directly the following proper-
ties of »:

(@)  O<v(A)SKEu(4d);
(B)  »(A+B)=v(4)+v(B) if AB=0;
(7) it A=¢7'4, then »(d)=u(4);
(8)  »(ptA)=w(4).
It follows from (a) and (B) that » is a o-finite c-measure.
Since the measure » iy invariant with respect to ¢ (property (4)),
we may apply the individual ergodic theorem (see Introduction).

Thus ¢ satisfies the condition (B) with respect to the measure .
Now we shall prove that (B) is satisfied with respect to u.
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Let feL(u). It follows from (a) that feL(r). Therefore, there
is a funetion geL(») such that

1
(8) Iinm Z[f(m)-kf(q:(w))—]—...—}—f(qa"’l(m))]=g(m) for aeD,

where

»(D)=0, @ D=D,
and
4) g(z)=g(p(x)) for méD

(D denotes the set of all divergence points of the sequence appearing
in the formula (3)).

It follows from (y) that u(D)=0. In virtue of (4) and (y), the
Lebesgue sums which define the integrals of g with respect to x and
» are identical, whence geL(u).

The implication 1° is thus proved.

20 'We first prove the following

Lemma 1. If T is a mapping of L(u) into itself which satis-
fies the following conditions :

(a) if f=g [u], then Tf=Tg [u];

(b)  T(af+Bg)=aTf+BIg [u] for real a and ;
)i 120 [k, then Tf>0 [u;

then T is continuous, i.e. there is a constant K such that
(5) fiTfdp<E[|fldn  for  fel(p).

It is sufficient to consider only 7>>0. If the thesis does not hold,
then there is a sequence f,>>0 such that

[fdu=1, and [(Tf,) du>n.

(e

Therefore, there exists a function feIL{u) such that

o 1
f= 2l -

Consequently, on account of (a)—(c), we have

. N Ny o
[@nau=| T( > n—f) I [GALTES
n=1

n=1
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Thus, the function 77 is non-integrable, which contradicts the
hypothesis. The Lemma is thus proved.

Since the condition (B) is satisfied, we may consider for each
feL(p) a function TfeL(u) such that

1=
Tf=lim - g,:f(w (@)) [w]-

Of course the mapping T satisfies the conditions (a)—(c) of
Lemma 1 (the condition (a) follows from the fact that wu(p—'E)=0
it u(E)=0), and consequently there is a constant X such that the
formula (5) holds.

Let Y be a set with u(Y)<<oo and f, the characteristic func-
tion of a set A. Then the function f,(2)=f,(¢p"(x)) is the charac-
teristic funetion of the set ¢™*™14; hence

1
M (4, D)= [ (ot fateo ) di
;

Since, on account of (5),

- 1 1
W [— Gyttt f) = [ T (et ) da
Y Y

< foldy gKffldu=Ku (4),

we obtain (i). In other words, the implication (B)-»(H,) is proved.
This proof continues to hold, if we replace the convergence
almost everywhere in (B) by the convergence in measure.

3. Generalized mean ergodic theorem.

We suppose in this section u(X)<<oo.

Let @f denote the function f(zp(m)) (defined for all zeX). We
shall write @,f for (f4-Of+...+&"1f)/n.

Obviously if (N), then @feL(n) for feL(y). Therefore, in virtue
of Lemma 1, we get

Lemma 2. If (N), then @ is a continuous linear operator in the
space L(u).

Lemma 3. For the operator @ to fulfil condition (5) (in which
T is replaced by O) for each integrable 1 it is sufficient that & fulfil (5)
for the characteristic function f of each set.
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In fact, then @ also fulfils (5) for each function assuming a finite
number of values and consequently (by passing to the limit) for
each feL(u).

Lemma 4. The transformation ¢ satisfies (DM) if and only
if @ is a continuous linear operator in L(u) and the sequence of the
operators @, is bounded, i.e. there is a constant M such that

(6) 1@ 1< M |1y

for feL(u).

The sufficiency is obvious: if f in (6) is the characteristic funec-
tion of a set E, we obtain (DM).

To prove the necessity, we use (DM) for n=2, whence

pleH(B) < @M —1)p(E),
which shows in view of Lemma 3 that & is a continuous operator
in L(u). The condition (DM) states that the characteristic function f
of each set fulfils (6), whence each finitely-valued and consequently
each integrable f does the same.

Theorem 2. The statements (N) and (DM) are equivalent.

Proof. 1° (DM)-(XN). Obviously the statement (DM) implies
(H). From Theorem 1 we conclude that for each integrable f the
sequence @, f converges almost everywhere to an integrable func-
tion. If f is bounded, then &,f is a uniformly bounded sequence of
functions, and, since u(X)<Coo, this sequence converges in mean.
The set of bounded functions is dénse in the space L(u). In view
of Lemma 4, the sequence of operators @, is bounded. Hence, on
account of a BANACH-STEINHAUS theorem 3) @, f converges in mean for
each feL(u).

20 (N)—(DM). We see by Lemma, 2 that @ is a continuous linear
operator in L(u). The convergence in mean of &,f for each feL(u)
implies (by another BANACH-STEINHAUS theorem*)) that the sequence
of operators @, is bounded. By Lemma 4, we obtain (DM).

n=1,2,...

4. A counter-example.

We shall prove by a counter-example that the statement (H)
does not imply the statement (DM). For this purpose we shall define

3) Banach [1], p. 79, Théoréme 3.
4) Banach {1), p. 80, Théoréme 5.
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a finite measure x in the field of all subsets of a denumerable
space X and a one-one transformation ¢ of X on itself such that
for ECX

(7 Fu(B) K ulp  BY<2pu(E),
(8) hmMn E,X)<A/L E)
(where M, is defined by (1)) and
(9) sup sup 2l ZeX) _

5 wlB)

(where E runs over the class of all sets of positive measure).

Let X,,X,,... be a sequence of finite disjoint sets, such that X,
possesses 28*! points. For simplicity’s sake the points of X, for
a fixed % shall be denoted by 1,2,...,2%*,

We define a measure » in X and a transformation ¢ by putting

l 2= for 1 i<k,
y(j)={ 2% for k <j<<2Fk,
l 1 for 2k<jC2PY,

and
- . ok+l  for j=1,
o= . .
j—1  for 1 <j<2F,
The space X, and the measure » satisfy (7), (8) and
L
(9) xsujp:suplk[(EX)>2 1.

" v(B)Y T &

Formula (7) is obvious. In order to prove (8) it suffices to
consider & one-point set F=(j,) and consequently, since ¢ has
a period 2%+, it is enough to verify the inequality

M2k+1((70)!Xk)<27’((70))1
which is proved as follows:

2lc—l- 1_1

. 1 .
M (o), Kol = gz Y7 vlo )]

=0

»(X,) 1 .
= ok :2/¢+1 (2#*2—2— —2k)< 2% (4,).
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It is easy to prove

(1), X,)

W) k ’
which implies (9).

‘We now define a measure g in the whole space X=X, 4+ X,4...
by putting for each EC X

u(E) 2 517 (BX);

=1
obviously the transformation ¢ of the space X with the measure
n satisfies (7)-(9).
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