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— nT — -
|R|<esm 9/10(—m——|—T}/'nlog"m—[—logi*m]/T'mﬂ logn|.
Choosing
T=nl,  m=[n®2],
we obtain

—1/10 4 4
|B| <egn logtn, 4 On generalized power-series
q. e. d.

by

J. G.-MIKUSINSKI (Wroctaw).

(Begu par la Rédaction le 26. 2. 1951). 1. In this paper we shall consider the generalized power-series

of the form
1 705’7504‘719351‘*‘7293&"“--»7
where the coefficients y, are real and the exponents §, are nonneg-

ative and monotonically inereasing to infinity as n—>oo.
Our chief purpose is to determine a class of series of the form

1—o, 8P4 0,07 —ag 2P+ ... (a,>0),

which converge for each nommegative # to a continuous funetion
which decreases from 1 to 0 monotonically in the inferval 0<{z<<oco.

An example of such a series is
1 1 1
1——'1—!50-]-5—!%2—'5’!%3—{—...

2. Tirst we establish some elementary properties of the series (1).
Lemms 1. If
. logmn
(2) lim &% —o,

n-+oo ﬂ"

then the series
(3) oot afr ...
converges for 0<<a<<l.
Proof. The series may be written in the form
2o s - Qlalog s gRalogz
where k,=p,/logn (n=2,3,...). By hypothesis k,—~--oco and
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logz<0; hence %,loge——oco a8 m—>oo and the convergence of
the series is evident.

Lemma 2. If (2) and if the series (1) converges for some positive
@y, then 1t comverges absolutely and wuniformly in each interval
I<e<<o <.

Proof. By Lemma 1 it suffices to remark that '

i+ e+ < B[V (2],

Ty Zy %y
where M =sup|y, |-

Theorem 1. If (2) and
S
4) 2 =mVinl,
n—>oo

then g is the radius of convergence of the series (1), 1. e. this series con-
verges absolutely and uniformly in every interval 0w, <o and
diverges for every x>p¢. Its sum s an analytical function in (0,p).

Proof. Let 0oy, <q<<p. By (4) there is a number M such
that |y,¢’»|<M for n=0,1,2,... We have |y,an|< M (m,/q)»
and the majorant

(5) u [(%)ﬁ + (‘i;)"# . ]

converges by Lemma 1. This proves the first part of the theorem.
Now, if #>'¢ there is an increasing sequence of positive integers
ky,ky,... such that |y, o |>1 for n=Fk,,%,,..., which proves the
second part of the theorem.

Let 2 be a complex variable. If R(2)<Clogs,, then (5) is
majorant of the series

‘P(z)=9’oeﬂnz+’}’1aﬁ”+---

too. ' '

Thus this series is uniformly convergent in the half- -plane

R (2)<logw, and its sum is an analytical function of # there. But

the sum of (1) may be written in the form p(loga) and conse-
quently must be analytical in the whole interval (0,0).
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amd the limit
= lim 10g | Yni1 |—10g | 4]
n>oo 5n+1 —'an
ewists, then p=e¢"7 is the radius of comvergence of (1).

Corollary 1. If (2)

3. We shall further need the following lemma.
Lemma 3. If Bi,Pey..-; iS any increasing sequence of positive

=]
numbers such that 21/ﬂf<oo, then the imfinite product

(6) Hlﬁ —B° ( g)

converges absolutely for every n=1,2,...%).
Proof. By the well-known inequalities for exponential fune-

tion we have
ﬁv_ﬁn ﬁn ﬂv .
5 <exp( ﬁ,) B 4P

It »>n, then

<3, ﬂﬁnexp(_ g_)< tE-g ﬁzﬂ*’

and by the hypothesis 21//3,<oo the absolute convergence of (6)
follows.

4. Now we shall prove the
Theorem 2. Let fq,Ps,..., be any increasing sequence of po-
sitive numbers such that

9 Shm= W S

If the series
(M @) =1—a o gt — eyl

}.%lf-*

hd . . . =
1) The sign ' atter JI means that the factor with y=n is omitted in
y=1

the product.
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where a, are given by the formula (6), has an infinite radius of conver-
gence, then its sum f(x) decreases in the interval 0<La<<oo monotoni-
cally from 1 to 0. Moreover we have

1 B P
8) P (@) de = — exp (—) ,
( f f@ I__._ll B+ B,
the integral and the infinite product being convergent for every positive p.

Remark. From the hypothesis that #;,8,,... is an increasing
sequence and from (ii) it follows that Lim n/f2=0, and a fortiors
n—ro0
hmlogn/ﬂn_o hence by Lemma 2 and the hypothesis that (7)
converges for every positive 2 we conclude that f(z) is an analyt-
ical function in (0,c0).
Proof. Let & be an arbitrary positive integer. Write
k

9 fu@)= Z:} (—1)ayan,

a
Z frs (@) = pfi—1Fit L. i fri—1()

(1=1,2,...,k),
where f,=0 and the coefficients a,;, will be determined further.

From (9) it follows that each of the sums f (=1,2,...,%) has
one member less then the preceeding ome. It is easy to calculate
their explicite form

13 i—1 '
fra(@)= ng_(—l)"ankwﬁr"ig (Bu—B,)  (i=1,2,....k).

Let @, and y, be any positive numbers. We shall determine
the coefficients a,, to have
(10)  fulm)=0 for i=0,1,..k—1 and fyu(z,)=(—1),
These conditions lead to following equations:
ﬁ(—l)"“nkwli"=07
k

2 (=)ol H —B)=0  (i=1,2,...,k—1),

n=i

akkﬂ (Be—A8.)
v=0
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The solution of these equations is given by the formula
(11) g = 0P H Iﬁ (n=0,1,...,k);

this fact can be verified by substituting (11) into the above equa-
tions and using the algebraic identity

(12) Z‘H_'ﬁ"ﬁ’=0 (i<k).

This identity may be proved by multiplying it by the determinant of
Vandermonde

1 .1

i Be | _

e e e v«;g»gngk(ﬂ”_ﬂ')’
B ... pii

k
then the left member of (12) becomes the sum X4, of minors 4, (taken with

n=1
appropriate sign) corresponding to the element ﬂ’;;’* (n=14,i+1,...,k). Thus

1 e 1
. B, . B,
ZA’:———— e & = % s s e e e =0-
n=i f—i—1 r—i—1
‘Bi_l ﬂk
1 e 1

E
If f,(0)=1, we get oy=1 from (9) and yk=m;;ﬁkﬂl/3,
from (11). Suppose moreover that =

w,c—n exp ( )

=1
then by (i)
(13) lim #,=oc0
k>0
By these hypotheses the formula for a,, takes the form
!_—! |p*, (—%) (n=1,2,...,%; k=1,2,...),

where the product is extended on all »=1,2,...,%k except v=n.
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By elementary inequality for exponential function we have

Okt - Bri1

An; Brr1— Bri1

Thus a,, increases as k—-oo, » being constant and, by Lemma 3,

approaches the limit a,. We have for >0 and k¥ >p

'3

[F(2)—Fro(2) | < Z (0 — ) )wPn Z ap, xPn,

n=0 n=p+1

and for properly chosen p=p(x) and k>p
(@) —fro(@ l<2 (O — gy, m""+—

for, by hypothesis, the series (7) converges and consequently, by
Lemma 2, must do so absolutely. Hence |f(x)—f,,(%)| <& for suffi-
ciently great values of k. Thus we have proved that the sequence
f10(®) s fa0(®),... converges to f(z) for each x>0.

‘We shall show that f(») is positive and decreasing in the inter-
val 0<<o<oo. From (9) and (10) it follows that

(—1)f(®)>0 for O<a< @y

particularly we have f, (%) >0, f,, () <0 and by (9)
%fko($)=mﬂ’_lfm(w)<0 for 0z <a,.

Hence we conclude by (13) that the limit f(z)=lim Fro(®) i
k-
a non—negatlve and non-inereasing function in the interval )(;o Kr<oo.

But f(x) is an analytical and non constant function in (0, oo) and
80 must be positive and decreasing in [0, c0).

Now, consider the series
. Flo)=1—A, 0P+ AgaP+? — A gfrtoy (p>0),

where the coefficients 4, are determined in analoguous manner ag
a, for the series (), i. e.

1 0
n+1_ —
e JJO

(n=0,1,2,...)

R

B,+p

; exp(ﬂ ﬂ")>1 (n=1,2,....k; k=1,2,...).
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It is easy to verify that

An+1 ﬁn‘H’ qu" (n=0,1,2,...),
where
_Prybto (_ 4 )
ey | b e e
and

s-o ) L= )

The convergence of @ follows from

B, P )< B,+p |
B,+ B+p!  B+2p

in fact these inequalities are equivalent to

1< bty exp (—
B,
and by (ii) @ must converge.
The eonvergence of ¢ follows directly from (ii).
By Theorem 1 the convergence of the series f(x) implies the
convergence of the series F(z). For

<ol

p* ,
B,(8,+2p)

P
B +p

<1+

Bp1tD Bn, B
fim I/A =1im ‘/'A'n+1 =q 11111 ]/a =0.
n—rco n—»oo
The function F(z) has analoguous properties as f(z): it is an
analytical funetion, positive and decreasing in (0,o0). So must
also be the function ’

74 i aP gfitp g Pt
to)=L poy= £ L 4 @ o
Q Q@ p  btp Btp
It is easily seen that

P ]

for the series f(z) converges uniformly in each finite interval [0,,].
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Hence for p>0
(14) fm”"lf(m) do = L —G(2).
i Q

But the limit lim G(x) exists, for the function G(#) is bounded

>0
and monotonic; thus the integral

fx P (x)dx

0

is convergent for each p>0. Particularly, the integral [f(x)dw is
0

so. Since f(x) is monotonic, this implies that lim f(x)=0. In the
x>0
same way we obtain Lm F(x)=0 and consequently lim G(z)=
x>0 2—»00

Thus from (14) follows the formula (8). This completes the proof
of Theorem 2.

5. In particular case f,=n we have

_1 = AN ! 1 1
a, 9‘!;111'——-%|exp( T) k]fﬁn—-w'(k——n) exp[ (-i——|—...+~k-)]-

_ (k—mn+-1).. 1 1 1
—n,hm-*k— GXP[ (10g70——1———...—z)]=;0~!a",

® k>0

where —loga=C (Euler’s constant).

We see that in this case f(z) reduces itself to the ordinary ex-
ponential funection

‘ flz)=e2%,
Moreover, we have

o« oo
fxp——lf(m)dm=a-—ppr—le—-mdm’
0 0

and from (8) we obtain the well-known formula for Euler’s Gamma

funetion
- Q +p (v)
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6. The hypothesis of convergence of the series (7) which ap-
pears in Theorem 2 is not convenient in applications. Actually we
shall give some sufficient conditions that the convergence should
hold.

Theorem 3. If f1,Bs,... 8 any sequence of positive numbers
such that

(15) Bor1—B>e  and  |f—pn|<g  (n=12,...),
e, p and g being positive constants, then the series

fo)y=1—a; &%+ ayo® — agz®+

where a, are given by (6), has an infinite radius of convergence. The
function f(z) decreases in the interval 0z < oo monotonically from
1 t0o 0 and moreover the formula (8) holds.

Proof. It iz easy to see that (15) implies (i) and (ii). Thus by
Corollary 1 it suffices to show that
lim loga,,;—loga, o

n—>oo :Bn+1_15ﬂ,
‘Write
B n—1 ﬁv z
=3 (08555 =5

+ Z (Iog

=n+2

(16)

el )

From (16) we take

= 1 1 < ( 1 1) 1 (1 1 \)
()= — |t — =\t
(Pﬂ( ) ,;1’( w—ﬂv ﬁv) ,g&.z ﬁﬂ—w ﬁv [ ﬁn ﬁn-l—l
in the interval B,<@<f,.;, for the last infinite series converges

by (15) uniformly in this interval.
It is easy to verify that

IOg LS | ——IOg Oy == (Pn(ﬂn+l) - (P(ﬂn) .

loga, ., —loge, ,
Hence "-g_ﬂl—'g——ﬂ = ¢n(£n)

ﬁn_;.l—ﬁ,. (5n<§n<ﬂn+1)'
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By (15) there is a positive integer k¥ such that
p(n—k)<p,<p(n+k)
and we may write
a—1 1 2k

1 o 1 1 1
S
7 (5) :-;:gn— ﬂv + ; ﬁn+1+v"‘ é'n y=1 /3'n+2k+1+v—£n ‘67 En,

n—1 2k

P T
..=1ﬁn+1—/3v y=1ﬁn+1+v—ﬂn+1 p=1 ﬁn+2k+1+v'—ﬂn+1 5u

< —

SIS  N
P& (n+1+k)—(—Fk)

v=1

1 &1 1 1 1
SR =
+ sg; y P v;: n+k+1+4+2)— (n+1-+k) »+Fk
1 %y ookt G 1
<—— —tf—t =
p,é,f‘;gv & pgv(ﬂ—k)
From the last inequality we see that lim ¢y (£,)=—occ, which
proves the theorem. ’ nroo

7. Theorem 2 is obviously more general then Theorem 3, but
the last is better adapted to applications: the first of the inequa-
lities (15) means that the points 8, can not be too mnear each to
other and the second one means that these points can not be too
far from the points pn. It would be interesting to look for weaker
conditions on f, which would imply the convergence of the series (7).
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(Regu par la Rédaction 15. 1, 19561).
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A theorem on moments

by
J. G.-MIKUSINSKI (Wroclaw).

‘We shall prove the following
Theorem. Let

By Bay - - and Y15V 2ye--
be two sequences of positive numbers such that
)) Bunn—B>e  and  |B,—pn|<g

where ¢, p and g are positive constants and

(n=1,2,...),

(2) lim y,=occ.

n—yoo

Let f(w) be an integrable function over a given finite interval
O<a<<w<h. If

On="Vm ﬂn

and if given any c>a, there is a number M such that

lfbw"mn;f(m)dw[< Momn (m,m=1,2,...),

then f(z)=0 almost everywhere in (a,b).
Before the proof we shall give some corollaries.
Corollary 1. If B, and vy, satisfy (1) and (2) and all the mo-

b
ments [ alwnf(x)ds are commonly bounded, then f(z)=0 almost eve-
1

rywhere in (1,b).
This is obvious.
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