On an extremum problem concerning trigonometrical
polynomials
by
A. P. CALDERON and G. KLEIN (Chicago, IlL.).

P. Erp0s') has proved the following theorem for trigonome-
trical polynomials:
Of all trigomometrical polynomials of order m, bounded in abso-

lute value by 1, the Tchebycheff polynomial cos (nx-+-a) has mamxi-
mum arc length over the interval [0,2x].

This result can be generalized in the following manner:

Theo rem. Suppose that ¢(x) is a non-negative function defined
for mon-negative = and satisfies the condition that
p(x)—@(0)
@

be a non-decreasing function of x, x>0. Then the mamimum of the
integral

2
[ (18 (@)]) du
0

for all trigonometrical polynomials 8(x) of order n, bounded in absolute
'ualu‘e by 1, is achieved by the Tchebycheff polynomial cos (nw+a).
If in eddition ¢(z) is not a constant function, then the Tohebycheff
polynomial is the only such polynomial achieving this mazimum.

?his theorem .app]ies, for example, to non-decreasing convex
functions. To obtain the theorem of Erdés we set p(@)= (1%,

1) P. Erdos, On an extremum-problem con i i i
mials, Acta Szeged 9 (1939), p. 113-111;. werming {rigonometrical potymo:
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The proof given here depends on the following lemma due to
van der CorRPUT and SCHAAKE ?):

Lemma. Let 8(x) be a trigonometrical polynomial of order m,
bounded in absolute value by 1. Let T(x)=cos (nz-+a). Let ©; and @,
be values of x such that

—1< 8(zy)=T(2,) < 1.
Then
(8 () | < T (@) [

If the sign of equality holds in a single instance, it holds for all z, i. e.
S(z)=T(z+p5).

The proof of this lemma is reproduced by Erdos and need not
be given here.

‘We note first that under the conditions of the theorem ¢ must
be non-negative and non-decreasing. Since subtracting ¢(0) from. @
does not alter the conditions on ¢ nor the conclusion of the theorem,
we may assume without loss of generality that ¢(0)=0.

Consider now an arbitrary trigonometrical polynomial S(z) of
order n, bounded in absolute value by 1, and T(x)==cos (nz+a).
Suppose ¢ and v are monotone arcs of the curves y=8(z) and
y=T(z), respectively, the endpoints of which have the same ordi-
nates y, and y,, say. Let the equations of these arcs be y=o(x)
(@i<w<al) and y=r(z) (si<o<aj), where (#7,2%) and (a,a3)
are the projections of ¢ and v, respectively, on the z-axis. Then
we agsert that

o5 Ty
&Y [elo@hde< [ g7 @)])do.
2] =z
‘We write for convenience
<
®(0)= ¢l|o'(@)]) do
and a
o(v)=[ o7 (@) do
o

2) J. C. van der Corput and G. Schaake, Ungleichungen fiir Polynome
und trigonometrische Polynome, Compositio Mathematica 2 (1936), p. 321-361.
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It is clear that we may assume that o and v are non-negative
and monotone increasing, since if ¢* and v* are the non-decreasing
rearrangements of o(z) and z(z) on the same intervals of definition,
we have ®(c*)=0 (o) and O(v*)=>S(z). Hence we may drop the
signs of absolute value in (1). To establish that ®(c)<<P(v), we
write the equations for ¢ and 7 in inverse form: z=o-'(y) and
o=1"1(y), and note that

% hor

o dm— (P17
{‘P(U (m))dw—yf—a,(m“dy;
$1 1
=3 Yy Pfom1
Jetrente= gy

where the primes indicate differentiation with respect to z. By the
lemma we have

o' (o)) <7 (v (y))
80 that our assumptions on ¢ yield
gl (o)) _ o[ ()]
() T )
Integrating this inequality from y, to Y2, Wo obtain (1).

Now leb o’,0%...,6 Dbe monotone arcs of y=g8(z) in the
interval [0, 2n] which are non-overlapping and whose projections
on the g-axis fill up [0, 2x). Let +,7",...,7™ be arcs of y=T(z)
in [0, 2n] which correspond to the arcs ¢'® in the above sense and
do not overlap. Then by (1)

@(a(k)) <¢(T(k)), 70:1,2,...,’%.

Thus
2w m m 2
@ Jol18'(@)])da= 3 B(e¥) < 500 < [ o1 7'(a) ) da.
0 =1 k=1 0
The lagt inegua]ity here follows from the fact that the projections
of the ©® will not in general fill up all of [0, 2x]. Since & is non-

negative by assumption, if we extend the sum in’cb(r“‘)) to include
LA ’=1
the @’s of the remaining monotone arcs of T(cw), we can only in-

crease that sum. This proves the first part of the theorem.
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Let us assume now that S(z) is not the Tchebycheff polynomial
and that equality holds between the first and last members of (2).
This equality demands that the ares ™ corresponding to the of®
exhaust the interval [0,2n]. We shall show that this is impossible
by proving that the projection of the arc o on the z-axis has
greater length than that of the projection of the arc ¥, i.e.
x5 —a{> x5 —a], again assuming that ¢ and v are non-negative and
non-decreasing. In fact,
VE

1
a:"—a:": —I————dy
2 1 1{6 (aﬁl(y))
and
V.
S |
Ty—T[= | = Y.
Y y{f ()
By the lemma we have _
o'{o7(y)) < (v(w)
in the interval (y,,%,), and hence our assertion is proved. This com-
pletes the proof of the theorem.

(Regu par la Rédaction le 25. 3. 1951).
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