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PRAALAEPREA S UE
Now denoting by o the partition of [a,d] into the intervals 6; and d;,
b

and choosing 7} arbitrarily in 6; we get, since f | 7, (8) | 2 (D —a)/m,

a

1]
| 711+ Srale) | 81— [ralt) |

b
> 30 —a)— 3 [ya(w) 11851 [ 17 () dt

>2(b—a)—t(b—a) =L (b—a)>}(b—0)

for sufficiently large .
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Continuity of vector-valued functions of bounded variation

by
A. ALEXIEWICZ (Poznah).

This paper is concerned with guestions of the continuity of
separably-valued vector functions of bounded variation. For this
class of functions two principal instanees of continuity may be
distinguished: the strong (called simply: continuity) and the weak
one. There exist functions of bounded variation to non—separable
spaces which are not weakly continuous everywhere. We show that
for separately-valued functions it is otherwise: the points at which
the function of bounded variation is not weakly continuous form
an at most denumerable set. On the other hand such a function may
be discontinuous everywhere.

1. The principal result of this paper (Theorem B) is & conse-
quence of the following theorem concerning real-valued functions
of two variables:

Theorem 1. Let the function y(¢,u) be defined for a<<t<b and
a<u<p, and let it be continuous for fixed t, and of bounded variation
for fimed w. Then there exists am at most denuwmerable set D such that
the function y(t,u) with fized but arbitrary w is continuous for any
te[a,b]—D.

Proof. The function y(f,4) being of bounded variation for
fixed u, there exist lim y(7,%)=y(t+0,u), and lim ylT,u)=y({t—0,u)

T>{+0 T3{—10
for every w and ¢ Write

o (f)= jugﬁlv(i%—(}yu)—y(tﬂb)l,
aLuUs .

wy(t)= sup 1V(t_07'u’) —y(t,u)l,

aKusp
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and suppose the theorem to be not true. Then ab least one of the
sets N1=]tﬂ{w1(t)>0} and N,=F{w,({)>0] must be non-denume-

12 oo
rable. Suppose it is the first. The formula N, =3 E{w,(t)>1/k}
k=11t

shows that there is a %, such that the set P=F{w,(t)>1/k,} is
non-denumerable; put e=1/k,. i

The function y(t,u) being uniformly continuous in u for fixed ¢,
denote by 6(f) the greatest number & such that |u;—u,|<d implies
[ p(t, %) —y (t, %) | <ef3, and write H¢L=P{ﬂ{5(t)>1/n}. Since the
set P=21Hn, there exists a ¢ such that the set H, is non-denu-
merable. Denote by @ the set of the points which belong to H,
and are points of accumulation at the right of the set H,; this
set is also non-denumerable, and for each fe@ there exists a u,
and p=n(t) such that t<r<t+4n implies

[y(z u)—y(E,u) | >e.

Now reH,, t<r<i+n, |w—wu|<{=1/q imply
Fy(v,u) —y(7,u) | <ef3,
hence [y (t, 1) —y(E, )| <ef3;

&) () —y (6, 0)] Ze— o — o= o

Thus, for every tin @ there exists an interval I, of length not
less than 2{, and points v arbitrarily close to ¢ at the right, such
t}lajt (1) holds for each uel,. The class of the intervals I, bei)iig in-
finite as ¢ runs down over @, there exists an infinite subset B of @

such that 8 =th I,7#0. Let u,e8; thus for every {eR there are points

v arbitrarily near ¢ at the right such that
[7(7,%6) =y (8, o) | > &/3.
Let now m be arbitrary. We first pick out points ¢, <t,<...<t,
of ;?, then points ;,7,,...,7,, such that f,<z<f,<r,<...<t, <7,
an

[ (B %) — (T, %) | >¢/3;
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hence

m
var p(t,ae) 2D | (i %) — ¥ (%5 o) |>mef3,
a<t<h i=1

and this implies var y(f,u,)=co contrarily to hypothesis.

2. Let X be a Banach space. A function x(f) from & real inter-
val [a,b] to X is called of bounded variation if the set of the sums

Z fer(b) —a(a))

taken over any system of non-overlapping intervals [a;,b;] is bounded.

Tt is known (GELFAND, [4], p. 246-248, DUNFORD, [31, p. 312)
that the function @(f) is of bounded variation if and only if for each
functional &, linear over X, the real-valued function Ex(t) is of
bounded variation. This being so, there is a constant 4 such that
(2) var Ex(t)<AE|

a<t<h

for every &.

We will use a criterion for bounded variation of & slightly modi-
fied form.

A set I' of linear functionals will be said to be fundamental if
there exist two positive constants o and k such that xeX implies

3) ) sup |éz[Zaliz].
EeT,181<k
A fundamental set of functionals will be said to be strictly funda-

mental if it satisties the condition: if m, is a sequence of elements
guch that sup|é&w,|<oo for each £el’, then sup llz,||<oo (note that
n n

for certain « and % the last condition alone implies (3)).
Theorem 2. A necessary and sufficient condition for ®(t) to
be of bounded variation is the emistence of a constant B such that

var Ex(t)<B
a<<t<h

for every £ belonging to a fundamental set I' and such that &1Lk
(& being defined in (3)).
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Proof. The necessity follows by (2). To prove that the con-
dition iy sufficient let [a;,b;] be any system of non-overlapping
intervals; then £erl ||§}|<k 1mphes

13 e (v,) —E£a(a,) |< var éo(t) <
i a<<I<<h
whence
|6 3 {z(b,)—2(a,)} < B,
and by (3) '

1.2 te(b;) —a(a,)}| < B/a.

Theorem 3. A necessary and sufficient condition for x(t) to
be of bounded wvariation is that var Ex(f)<oco for every £ in
a strictly fundamental set I asISY

Proof. Necessity follows by (2). Sufficiency is an immediate
consequence of the following

Lemma. If every & belonging to a stricily fundamental set
maps the set Z of the elements of X into a bounded set of reals, then
the set Z is bounded.

Proof. Suppose the contrary. Then there exist elements x,eZ
with ||2,[|=>%. This is however impossible, since by hypothesis
sup| &z, |<oo for every fel.

3. The function #(f) is called continuous at t, if ¢,~>1, implies
J2(t,)—2(t) | > 0. It is said to be weakly continuous if t,—t, im-
plies weak convergence of x(f,) to z(4,).

The following example (DUNFORD, [3], p. 312) shows that any
point of [a,b] may be a point of discontinuity for a function ()
of bounded variation. Taking as X the space M of bounded func-
tions w=y(u) (0<<u<1) it suffices to define w(t)=y(%,-)?) with

[0 for w<t,
11 for u>t.

It is easy to see that the above funetion is not even weakly
confinuous at any point. The space X in this example is however

non-separable. We proceed to diseuss this problem in separable
spaces.

y(t: w)=

!) Any funection y(u) considered as an element of a f
bo demoiod by a unctional space will
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Theorem 4. There exists a function of bounded variation to
a separable Banach space, discontinuous everywhere.

Proof. Let X be the space C of continuous functions z=y(u)
in [0,1]. Denote by I,=[a,,b,] any sequence of non-overlapping
intervals in [0,1], and write

{0 for we[0,1]—(a,,b,),
=11 for we=(a, 40,2,

b
v, (%) being linear in every one of the intervals (an,gn—.i;‘) and

e
2

Let 7, be the sequence composed of the rational numbers of
[a,b], denote by =, the element y,(-), and put

xz, for i=t,,
»(t)= .
0 elsewhere.

The set of the functionals &, of the form &, x=y(u) (with arbi-
trary we [0,1]) is a fundamental set, and we easily verify that

var &,2(t)<2 for every u. Hence by Theorem 2 the function x(f)
e <IKh
is of bounded variation. It is however obviously disconfinuous at

every t.

The above example shows that there are functions of bounded
variation with values in a separable Banach space which are
not of Baire’s first class. From a theorem of ALEXIEWICZ and
Orzicz ([1], p. 108) it follows that every function of bounded va-
riation to a separable space is of class at most 2.

Theorem 5. Any function z(t) of bounded variation to ¢ sepa-
rable Banach space is weakly continuous except ai an at most denu-
merable set of poinis?).

Proof. Since the space C of continuous functions is universal
for separable Banach spaces (BAwacH, [2], p. 185) we can sup-
pose that the values of x(t) belong to C. Then the function admits

2) This theorem has been proved by Sirvint ([7}, p. 91) under a sup-
plementary hypothesis of the set of the sums Z{w(b —u(a;)} being weakly

compact. In general, however, bounded vanatlon does not imply the weak
compactness of the set of the above sums.
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a representation x(t)=y(¢,), where y(t,u) is a real-valued function
continuous for fixed f. Since the functional &,az=y(u) is lnear
in C and |&,]|=1, (2) implies
(4) var y(t,u)<A

a<IKD .
for every u€[0,1]. Weak continuity of #(¢) ab ¢, is in our case equi-
valent to the continuity in ¢ at %, of y(t,u) for any fixed w together
with boundedness of y(t,4). By Theorem 1 there exists an at most
denumerable set D such that ¢,-ie[a,b]—D, #e[0,1] implies

Lim y (8, ) =y (¢, %)-

The function y(e,%) being continuous, (4) implies
[yt %)< max [y(a,u)|+4.
JUS
Hence () is weakly continuous for each te[a,b]—D.

Denote by 4 the class of the functions ®(f) which have the
following property: &#(f) is continuous except at an at most denu-
merable set for any linear functional éx. The functions of bounded
variation belong to 4, on the other hand there are, however, func-
tions in A which are nowhere weakly continuous.

In Theorem 5 we can replace the hypothesis of the space to be
separable by that of the function x(¢) to be separably valued.

Let now. 2(t) be compactly valued and of bounded variation.
The set of values of #(t) being separable, we can suppose that the
gpace X iy go. By Theorem 5 x(f) is weakly continunous except at an
at most denumerable set D. Let te¢[a,b]—D, t,—¢; then x(f,) con-
verges weakly to x(f). The compactness of the set of the values of
z(t) implies that every sequence (t,,) contains a convergent sub-
sequence. The limit of this sequence must be equal to x(t). Hence
x(t,) converges to z(t). Thus we have proved

Theorem 6. Any compactly valued function of bounded wa-
riation is continuous except at an af most denumerable set®).

Applying as an example Theorém 6 to the space C we get:

If the family of functions y(t,u) is equicontinuous in u as t rums

down over the interval [a,b], and i sup var y(t,u)<oco, then
ICusl aISh

*) In the case of the space X being conjugate to a Banach space this
has been proved by Gelfand ([4], p. 251).
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there exists a denumerable set D such that t,—~te[a,b]—D implies
untform convergence of the sequence y(t,,w) to y(ty,u); hence y(t,u)
48 continuous in both variables jointly on each straight line t=const,
teD.

4. Now we will complete the preceding results in some instances.
For any function 2(f) of bounded variation and any linear

functional & there exist mits im éx(z) and lim £&z(v); this does
7=>t+0 T+t—0
not imply the existence of the one-side weak limits. It is easy to

construct a funetion of bounded variation from [a,b] to the space C
which is continuous for any irrational ¢, and such that for any

rational ¢ the weak limits w-lim () and w-lim z(v) do not exist.
T—>+0 T—r{—0
A Banach space X is said to be fundamentally separable?) if

there exists a sequence £, of linear functionals composing a funda-
mental set.

Theorem 7. EBvery function of bounded variation to a weakly
complete and fundamentally separable Bamach space is weakly con-
tinuous except at an at most denumerable set.

Proof. Since for every linear functional &z there exist the li-

mits im éx(r) and lim &x(r), the weak completeness of X implies
7-+t+0 T=>i—0
the existence of weak limits w-lim x(7)=x(i+) and w-lim #(z)=z(i-).
z—=>i+0 z->{—0
Put

Tn=fj{[fnm(t+) —&, w(t) P+ &, o(t—-) —&,2() >0},
O=[a,b]—3 T,.
n=1

The set > T, is at most denumerable. If te@, then &u(i+)=
n=1

=&, 0(t—)=&,2(t) for n=1,2,...; henee x(i+)=a(l—)=2(7).

Any space conjugate to a separable space being fundamentally
separable (DUNFORD, [3], p. 310), we get the following

Corollary. Buvery function of bounded variation to a weakly com-
plete space conjugate to a separable Bamach space is weakly conti-
nuous except at an ot most denwmerable set.

4 This definition differs unessentially from one due to Dunford ([3],
p- 310).


GUEST


140 A. Alexiewicz

This corollary enables us to prove the weak continuity of fune-
tions of bounded variation in some cases when the space X is non-
separable. It can be applied e. g. to the space conjugate to C, i.e.
to the space V., of the functions a=y(t) of bounded variation which
are continnous at the right. As a fundamental set can be chosen
the set of the functionals of the form

5'”:{7(“1)—7(”1)}+{V(’“z)”‘y(”z)}+ . ~‘-+{’V(uk) — (o)}

with non-overlapping intervals [wg,v:], [%9,02] ...y [Ug,0;]. TFor
any function y(t,u) and any parallelogram A :t, <Ehy, Uy KUK Uy,
write Ay(t,u)=p(Ey, %) —y(t1,%s) =y (fe, 1) +y (bay Ya)s and denote by
W,,y(t,u) the supremum of the sums D A(t,u) a8 4; runs down

over the set of all systems of non-overlapping parallelograms con-
tained in [0,1]% [0,1]. If y(¢,%) is continuous at the right in u and is
of bounded variation in every one of the variables separately, and
if W,,y(t,u)<<co, then one can easily prove, using Theorem 1, that
the function #(z)=y(t,+) from [0,1] to the space ¥, is of bounded
variation. Hence:

Suppose that the function y(t,u) defined in [0,11X [0,1] 45 1° of
bounded variation for fiwed u, 2° of bounded variation and continuous
at the right for fimed t, 3° W,y (t,u)<oco. Then there exists a denu-
merable set D such that t,~t€[0,1]1—D, ue[0,1] implies Hmy(t,,u)=
=y(t,u). "

5. In this paragraph we will extend the preceding results to
the case of the B,-spaces. Let X be a By -space (MAzUR and ORLIOZ,
[561), li=|, — the sequence of pseudonorms defining the topology
in it. We can suppose without loss of generality that [|z|, <[zl <. ..
The function (f) from [a,b] to X will be said to be of bounded
variation if the set of the sums

n
2 {w(b)—2(ay)},
i=1
where [a,,b;] runs down over all systems of non-overlapping inter-
vals, iy bounded %). This condition is equivalent to the existence
of constants B, such that

%) A set E is bounded if z,eE, ¢,~»0 (t, veal) implies ¢,z,—>0.
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!
k3

for any system [a;b;] of non-overlapping intervals. MAzUR and
Orricz ([6]) have shown that every linear functional £» satisfies an
inequality |éz|< A4 max(||zlly,...,|#l)=Alal, with % and 4
independent of z; the smallest number & will be termed the order
of &, the smallest A — the norm of &, and this norm will be denoted
by [|£]ly Let I, be the set of those elements @ for which [jz],=0;
this set is linear in X; by [X], we will denote the k-th reduced space,
i.e. the quotient space X/L,; this space is of B*-type (Mazur and
OrnIcz [6]). The set 5, of all linear functionals of order % is identi-
cal with the space conjugate to [X], and is a Banach space.

Let @,(t) denote x() considered as an element of the space [X],-
By (5) «(t) is of bounded variation if and omly if the function x,(?)
is so for k=1,2,... Since &eH, implies &x(t)=E&wxy(t), we may imme-
diately transfer the results of the preceding paragraphs to the case
of the By-spaces.

So we get

Theorem 8. A mnecessary and sufficient condition for =z(f)
to be of bounded variation is that for every linear functional &x the
funetion Ex(t) be so. This condition being satisfied, there exist
constants D, such that var Ex()< D&l for any linear functional
Ex of order k. asish

A set I' of linear functionals will be said to be fundamental or
strictly fundamental respectively if the set I'5; is so relatively to the
space [X1,. Thus from Theorems 2 and 3 we have

Theorem 9. Each of the two following conditions is necessary
and sufficient for x(t) to be of bounded variation:

() there exist constants D; such that Za,i ()< Dyl &l for

a<{i<h

every & of order k in o fundamental set T

(b) var Em(t)<oco for every & in a sirictly fundamental set I

as{i<h

The continuity and the weak continuity are defined similarly
as for Banach spaces. Suppose now X to be separable; by a theorem
of MAzur and ORLICZ ([B], p. 191) the spaces [X ], are also separable.
Hence Theorems 5, 6, and 7 hold also in Bg-spaces.
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Sur les suites et les fonctions également réparties

par

C. RYLL-NARDZEWSKI (Wroctaw).

On dit qu'une suite {&,] & termes réels est également répartie .
mod 1, lorsque la suite {n,} des indices n; tels que R(énj)<a, ala
fréquence o quel que soit « entre 0 et 1; R(x) désigne le reste
de x modl. En abrégé: est ER.

Pareillement, on dit qu’une fonction f(t), réelle et mesurable L,
est également répartie mod 1 dans intervalle (0,o0), lorsque

1
lim | B(R(f(1) <a]-(0,T)|=a,
quel que soit a entre 0 et 1. En abrégé: f(f) est ER dans (0,c0).

Théoréme. Soit f(t) une fonction réelle et mesurable L. St
Pune queleonque des conditions (a), (b) suivanies est remplie, f(?)
est ER dans (0,00):

(a) la suite numerique {f(n+1)} est ER pour presque tout t
positif ;

(b)  la suite numérigue {f(nt)} est BR pour presque tout t positif.

Démonstration. La condition (a) implique, d’aprés le ecri-
tére de WEYL 1),

N—1

o1 .
(1) lim ﬁ 2 62mk}(n+t)=0

N-roo =0

(k=1,2,...)

pour presque tout t positif. En intégrant cette égalité dans (0,1)
et en changeant 'ordre des opérations [ et lim, ce qui est 1égi-
time, car la suite intégrée est uniformément bornée, il vient

. NY_‘I n+1
2 lim = 2D 1t —0 k=1,2,...).
(2) Jm s 2 f (k=1,2,...)

1y H, Weyl, Uber die Gleichverteilung von Zahlen mod. Eins, Mathe-
matische Annalen 77 (1916), p. 313-352, surtout 313-314.
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