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The above Corollary was known') earlier for bounded real
functions f on 7 in the three following cases:

A) T is the semigroup of all positive integers. The functional @
is called then the generalized limit of bounded real sequences;

B) 7T is the semigroup of all positive real numbers. The fune-
tional @ is called then the generalized limit ({— oo) of bounded real
functions on T

C) T is the unit circumference (the abelian group of rotations).
The functional @ is called then the generalized integral of a bounded
real function on 7. )

If T is a topological compact abelian group and X is a linear
topological space, then the vector integral &(f) is defined for all
confinuous funections f of X into 7. Thus the above Corollary
implies the existence of the Haar integral on abelian compact
groups.

The Corollary implies also the existence of the mean of almost
periodic functions on an abstract abelian group 7. In fact, @(f)
is defined for all bounded functions; if f is almost periodic, then
@(f) is the mean of f.

Those facts suggest to call the functional ®@(f) (in the general
case considered in the above Corollary) the generalized limit of f
i T is a semigroup, and the generalized (vector) integral or the gene-
ralized mean of f if T is a group.
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Remarks on Riemann-integration of vector-valued functions

by
A. ALEXIEWICZ and W. ORLICZ (Poznan).

This paper contains some contributions to the theory of Rie-
mann integration of vector-valued functions, created by GrAVES
([4], see also KERNER [5]).

Let X be a Banach space, z(f) a function from an interval
[a,b] to X. The function «(t) is said to be Riemann-Graves inte-
grable, or, in short, to be (RG)-integrable, if every sequence of
Riemann sums

(1) s(m)=2a(z)| &
1
(where w=(é,,...,6,) is a partition of [a,b] and 7,€4;) tends to a

limit as z runs down & normal sequence of partitions. The limit of
the sums (1) is by definition the integral of #(t) over [a,b] and
b

will be written [a(z)dt.

The following eriterion (criterion of Riemann) is useful in proving
integrability in some concrete cases: the function z(f) is (RG)-inte-
grable if and only if to every > 0 there exists ¢ partition =w=(dy,...,6,)
such that =;,t;€d; implies
2 !?_{5]1 Sile(m) —a(m) | <e.

It shows e. g. that every function of bounded variation?) is (RG)-
integrable. )

1) The function z(t) is said to be of bounded variation if the set of the sums
Z{x(8;)—=z(a;)} is bounded as {(e;,3;)} varies. over all systems of non-
i

overlapping intervals.
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On the other hand GRAVES [4] has noted that the criterion of
Lebesgue furnishes for vector-valued functions only & sufficient
condition for (RG)-integrability: amy fumction which is disconti-
nuous in a set of measure 0 is (RG)-integrable; there exist however
functions discontinuous everywhere and (RG)-integrable. Graves
gives the following example: considering as X the space M of
bounded real-valued funetions z=p(f) with norm defined as
Jzl= sup |y(t)], he puts

0K
1 for wuxzt,

0 for wm<t,

and he defines the function w(t) as #(t)=y(t,-)?) for te[0,1]. This
function iy obviously (RG)-integrable and discontinuous every-
where. The set of values of this function is, however, non separable.
We will give an example of such a function with values in & separ-
able space.

y(t,u):{

Let X be the space C of functions #=1y(t), econtinuous in [0,1].
Put 2,=1/n,
() {0 for 0<u<i,; and Z4,<<u<l,
Vp () = ;
* 1 for 1L=%(ﬂ.n—|— }%H-l)’
and y,(w) linear for 4, <u<<}(A,+4,.1) and (4,44, ) <<u<i,.
Denote by {z,} the sequence of the rationzl numbers of [0,1]
and pubt z,=y,(-), and
o) = {mn for t=m,,
0 elsewhere.
This function is (RG)-integrable;, for if we divide the interval
[0,1] into n equal parts, the sum (2) becomes not greater than 1/n
: 1
(it is easily verified that in this case [w(f)dt=0). On the other
. . 0
hand it is obvious that (¢) is discontinuous everywhere.
A function (f) is said to be weakly continuous at i, if, given
any linear functional &r, the function & (¢) is continuous ab by

%) (-) denotes the funtion y (u) considered as an element of a functional
space.
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The function of Graves may serve as an example of a (RG)-
integrable function which is not even weakly continuous for any ¢?.
Since the space X in this example is non separable, we will prove

Theorem 1. There exists a function x(f) from [0,1] to a separ-
able Banach space, (RG)-integrable, which is not weakly continuous
at any point.

Proof. Choose X=C and let p(t,u) be defined as follows:
t being of the form (2s—1)27* with 1 s <2 we put
(t,) {0 for t—27%<Lu<t,

By 1®Y =

o 1 for 0<<u<<i—2-27% and for t4+27F<u<l,
and let y(¢,%) be linear for 1—2 -2 FCu<t—27* and 1Ku<<t4-27%;
if ¢ is not a diadic number, then y(¢,u)= 0. We shall prove now that
the funection wx(t)=y(f,-) is (RG)-integrable in [0,1]. Choose £>0
treely; then choose & so that 27*+**<e. Enclose the points of the
form 1-27% with 1<I<27%*—1 in the intervals 6;,85,...,0,x_;, each
of length 27%, and denote the remaining intervals by 6j,0;,...,0%.
Then 7},776d; implies

1 2 () =) 0 I Xl () — () ] 6, <2F2~ Hi<e/d.

7 i
Bvery interval of =((j—1)/2%,j/2¥) contains one and only one of
the intervals &;; hence we may arrange the indices j so that &C6};
then 9;,97€d; implies

, =0 if e[0,1]1— (8,46 +&Fey)

PURIRIURUIL S

<1 if tedy 48+,
and this yields
I3 e(97) — (89} 8 ]|< 3 max | §|<3-27F<3e4;

it follows

I ez =} o1+ 3 {e(0) —a(8) } 6| <e.
7 7
Thus we have shown that the criterion of Riemann is satisfied.
Now we shall show that x(f) is nowhere weakly continuous.
For any ¢ and & choose I, such that (27, —1)/2F <t 21, /2% =0, ; then
0>t v(og,t)=1 1. e. Ah'm y{op,t)=1. On the other hand, ¢, being
v P00
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any imrational number in (f,04), ¥(0,1)=0; hence we see that
limy(r,u) does not exist for u=t. The well known condition for

Tt

weak convergence in the space € (BANACH [1], p. 134) shows that
2(t) is not weakly continuous at .

The (RG)-integrability of #(t) does not in general imply the
integrability 3) of ||z(t) .. This has been shown by PETTIS ([6], p. 301),
who constructed an (RG)-integrable function #(¢) from [0,1] to the
space M, for which the function |j2(t)|| is the characteristic function
of a non-measurable set. For separably valued functions this cannot
be the case. In fact, using the theory of integrals of Bochner [2],
one can easily prove that the space X being separable amd x(t)
being (RG)-integrable, the fumction ||x(t)| 4s (L)-integrable and

b b
3) EREINIEIONE

We shall prove here a more general proposition.

An operation U(x) from X to a Banach space Y is said to be
weakly eontinuous if m,—x, implies weak convergence of Uf(x,) to
U(z,); U(z) will be said to be o-bounded if it maps every bounded
set into a bounded set. )

Theorem 2. Let the space X be separable, and let U(x) be a con-
tinuous amd o-bounded operation from X to Y. If the function w(t)
is (RG)-integrable then the function U(w(t)) 18 Bochmer-integrable.

Proof. It is obvious that for any linear funectional &z the func-
tion &xz(f) is integrable, and hence measurable. By a theorem of
PrTTIS ([6], P. 278) 2(¢) is measurable. This means that there exist
measurable finitely valued functions ®,(1) tending to (f) almost
everywhere. Then the finitely valued functions U(wn(i)) tend to
U(x(1)) almost everywhere. Again by a theorem of PrrwIs ([6], p. 279)
the function U(w(t)) is measurable. Theorem results from the fact
that the function Ufx(t)) is bounded.

The following proposition shows that the hypothesis of boun-
dedness cannot be dropped in Theorem 2. We will prove that there
exists & bounded function ®(¢) from [0,1] to the space C, discon-

- 3) Hefre and in the sequel for real-valued functions we mean by integra-
bility the integrability in Riemann sense.
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tinuous at one point, and a continuous functional n# such that
1

f {nu(t)|di=cc. We choose first a sequence of elements {z,} such
0

that ||@,—,|=1 for nstm. Put é,=[1/(n+1),1/n],

T,

0 for ¢=0,

for tedy,.q,

x(t) = {

and let #(t) be linear in every interval &,,. Write y(z)==|8y,,; ™"
for w=w,; there exists a continuous functional 5z such that

1
n@,=y(@,). We have obviously {|na(t)|dt=oo.

0

Besides the notion of (RG)-integrabilify several authors ha-
ve considered another notion of integrals, corresponding to the
weak process of convergence. A function x(f) will be said to be
Riemann-Pettis-integrable or simply to be (RP)-integrable over
[@,b] if, given any linear functional £z, the function &z(¢) is

b
integrable and there exists an element z such that &z= f Ex(t)dt
b

for every £ The element z will be denoted by (w) f z(t)dt. The

(RP)-integrability is equivalent to the weak convergence of the
Riemann sums (1). KrEin4) has shown that any weakly conti-
nuous function s (RP)-integrable. Since the published proofs are
usually based on the theory of Bochner integrals, we will give
here one more elementary based on general ideas of the theory
of operations. Any weakly continuous function being separably
valued, we can suppose that the space X is separable. Let {7}
be any normal sequence of partitions of [a,b]. The convex span
Q of the set R of values of z(t) is weakly compact, since the
set B is so (SmRvINT, [7], p. 81). For any Riemann sum s(w), the
element (b—a)s(n) belongs to @; hence every sequence s(aznl_)
contains a weakly convergent subsequence, and z being its weak
limit, we must have

b
5z=f§w(t)dt,

4 This reference is taken from Dunford’s paper [3].

Studia Mathematica. T. XIL 9
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for any linear functional & Thus the element z is uniquely deter-
mined.

A set I' of linear functionals is said to be fundamental if there
exist two constants K>0 and «>0 such that for every a
(4) sup  |éw|=alz].

AR

A fundamental set I' will be said to be striclly fundamental if any
sequence {z,} such that sgplémn|< oo for every £ in I' is bounded.

Generalizing the result of Krein it is easy to prove (applying,
however, the theory of Bochner integrals)

Theorem 3. Let the space X be separable. Each of the following
conditions 1is mecessary and sufficient for =(t) to be (RP)-integrable:

(@) @(t) is bounded and for every & belonging to a fundamental
set of functionals, &x(t) is integrable,

(b) &x(t) is integrable for every & in smctl y fundamental set
of functionals.

This theorem implies that if X is separable, every function
(RP)-integrable over [a,b] is (RP)-integrable over any subinterval.

Theorem 4. If the function ®(f) is compactly valued and for
any & in a fundamental set I' the function Eu(t) is integrable, then x(t)
salisfies' the criterion of Lebesgue, and hence is (RG)-integrable.

Proof. Since the set of values of »(t) is separable we may sup-
pose that the space X is so. By a theorem of BANACH ([1], p. 124)
there exists @ sequence of functionals {£,} of I" weakly demse in I,
and hence forming also a fundamental set. The set P, of points
of discontj_nuity of the function £;2(¢) is of measure 0; hence the

set Q= ZP is s0 too. Let t,—~te[a,b]—@; the compactness of the

set of values of x(t) implies that every sequence (i, ;) contains
a subsequence convergent to an element y,. Hence &,y,=£&,(t)
for n=1,2,..., and by (4) yo=w(t). Thus z(t,)—>z(). Finally, we
note that #(¢) must be bounded.

The following example proves that neither (RP)-integrability,
nor weak continwity do imply (RG)-integrability.

Let X be the space ¢, of sequences z={y,} converging to 0,
the norm being defined as lzll=sup [y,|. Bvery sequence {y,(t )}
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of continuous functions, uniformly bounded and convergent to 0,
may be considered as a function x(t) from [a,b] to ¢y. It is easy
to prove that x(f) is (RG)-integrable if and only if for every mnor-
mal sequence of partitions 7, =(0},...,0% ) the Riemann sums

ZVL )] 67| tend to fyk t)dt uniformly in % as #—>oco. Now let D

be a closed non-dense set in [a,b] of measure not less than 3(b—a)/4,
and denote by {I,} the sequence of the intervals contiguous to D.

I=[p,q] being an arbitrary interval, put
T 0 for te[a,b]—1I and p+|I|/m<t<Lg—|I|/m,
ST =
wlt; I, m) {1 for t=p+|I|/2m and t=q—|1|/2m,

and ¢ (t;I,m) linear for
p<t<p+|I|/2m, p+|I|2m<t<p+|T|/m,
g— I |/m<t<q—|I|j2m, g—|T|[2m<1<g.

n
Now we put y,()=>e;I;,n) and consider the sequence
#=1

{y.(0} as a function z(t) from [a,b] to ¢,. This is permitted since
y,(t)—0; moreover z(t) is weakly continuous. To show that z(i)
is not (RG)-integrable, it is sufficient to prove, given any &>0,
the existence of a partition n={(dy,...,6,) such that m:_aJx]51-,1<s
and *

s !
Sup | 3yl 81— Jra)dt|>@—a)4,
n i= ¢

the elements z,e6; being suitably chosen.

The set D can be covered by a finite number of non-overlap-
ping intervals éi,...,0, each of length less than &; then we decom-
pose the set F=[a,b]—>'6; into a finite number of intervals

i
87,...,0, of length less than e. Since w=dist (F,D)>0, we see
that (b—a)N'< w and n> N imply
sup|y,(t)|=1 for ¢=1,2...,p;

le 671

hence we can pick out vjed; so that


GUEST


icm

132 A. Alexiewicz and W. Orlicz

i

PRAALAEPREA S UE
Now denoting by o the partition of [a,d] into the intervals 6; and d;,
b

and choosing 7} arbitrarily in 6; we get, since f | 7, (8) | 2 (D —a)/m,

a

1]
| 711+ Srale) | 81— [ralt) |

b
> 30 —a)— 3 [ya(w) 11851 [ 17 () dt

>2(b—a)—t(b—a) =L (b—a)>}(b—0)

for sufficiently large .

Bibliography.

[1] S. Banach, Théorie des opérations linéaires, Monografie Matematyczne,
Warszawa 1932.

[2] 8. Bochner, Integration von Funktionen, deren Werle die Elemente eines
Vektorraumes sind, Fundamenta Mathematicae 20 (1933), p. 262-278.

[3]1 N. Dunford, Uniformity in linear spaces, Transactions of the American
Mathematical Society 44 (1938), p. 305-356.

[4] I. M. Graves, Riemann integration and Taylor's theorem in general ana-
lysis, ibidem, 29 (1927), p. 163-167.

[6] M. Kerner, Gewshnliche Differentialgleichungen der allgemeinen Analysis,
Prace Matematyczno-Fizyczne 40 (1932), p. 47-87.

[6] B. J. Pettis, On integration in vector spaces, Transactions of the Ame-
rican Mathematical Society 44 (1938), p. 277-804.

[7] G. Sirvint, Weak compaciness in Banach spaces, Studia Mathematica
11 (1949), p. 70-94. )

PANSTWOWY INSTYTUT MATEMATYCZNY
STATE INSTITUTE OF MATHEMATICS

(Regu par la Rédaction le 15. §: 1950).

Continuity of vector-valued functions of bounded variation

by
A. ALEXIEWICZ (Poznah).

This paper is concerned with guestions of the continuity of
separably-valued vector functions of bounded variation. For this
class of functions two principal instanees of continuity may be
distinguished: the strong (called simply: continuity) and the weak
one. There exist functions of bounded variation to non—separable
spaces which are not weakly continuous everywhere. We show that
for separately-valued functions it is otherwise: the points at which
the function of bounded variation is not weakly continuous form
an at most denumerable set. On the other hand such a function may
be discontinuous everywhere.

1. The principal result of this paper (Theorem B) is & conse-
quence of the following theorem concerning real-valued functions
of two variables:

Theorem 1. Let the function y(¢,u) be defined for a<<t<b and
a<u<p, and let it be continuous for fixed t, and of bounded variation
for fimed w. Then there exists am at most denuwmerable set D such that
the function y(t,u) with fized but arbitrary w is continuous for any
te[a,b]—D.

Proof. The function y(f,4) being of bounded variation for
fixed u, there exist lim y(7,%)=y(t+0,u), and lim ylT,u)=y({t—0,u)

T>{+0 T3{—10
for every w and ¢ Write

o (f)= jugﬁlv(i%—(}yu)—y(tﬂb)l,
aLuUs .

wy(t)= sup 1V(t_07'u’) —y(t,u)l,

aKusp
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