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Remarquons d’abord que, I étant un intervalle quelconque
(ouvert ou fermé), si
(5) Oi[wy (@) +ul=02:[ws(2)+u] @el b —oo<u<< oo,
alors wy(#)=c+w,(#), ol ¢ est une constante. Autrement dit, si
une fonetion f(x,u) se laisse représenter dans la forme (2), la fone-
tion o est déterminée & une constante additive prés.

En effet, en posant z=2£,(0) et w=cw,(y) dans la formule (5),
on a §=2{w,[Q:(0)]+wi(y)}, Q0% wy(y)=0[2:(0)]+w1(y).

Soit maintenant w(z) une fonction mesurable & période 1, qui
transforme 1’intervalle (0,1] biunivoquement en (—oco, +oo). Soif
£,(u) la fonction inverse de la fonction w(z) réduite & Pintervalle
(n—1,n]. Alors la fonction

fla,u)=2,[w(®)+u] (n—l<a<n; n=0,+1,4-2,...)
satisfait & I’équation (1), mais elle ne peut pas étre représentée par une
seule formule du type (2). En effet, si I’on avait f(m,u):!j [(a)—+u]
pour tous & et u réels, la fonction &(x) admettrait une seule fois,
dans lintervalle (—oo,-foc0), toute valeur réelle. D’autre part, on
aurait &(x)=c+w(®), ce qui est absurde.

Nous avons. traité, dans cet article, I’équation (1) dans le do-
maine xé(a,d); u,pe(—oco,4o0). On peut la traiter aussi dans
d’autres domaines; dans ces cas la discussion serait différente.
Nous laissons de coté ces considérations.

Remarquons enfin que, étant posé f(:v,y):f(w,logy), I’équation
(1) devient

fli(@,9),21=F(@,52);
cette derniére équation a été étudide par S. GOLAB?®) en connexion
avec certains problemes de la théorie des objets géométriques.

%) 8. Golab, Uber eine Funktionalgleichung der Theorie der geometrischen
Obiekte, Wiadomo&ei Matematyczne 45 (1938), p. 97-187.

(Requ par la Rédaction le 5. 6. 1950).
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On the existence of the generalized limit
by

R. SIKORSKI (Warszawa).

This paper contains two theorems which are a generalization
of the well known theorems?!) concerning the existence of the so-
called generalized limit and of the generalized integral of real boun-
ded sequences and functions. .

The method of the proof is topological. It is based on CECH’s
compactifieation of completely regular spaces?).

§ 1. Let A be a directed set, i. e. an abstract set with a transi-
tive relation > having the property: given a, fed, there is a yed
such that y>a and y>$.

Every mapping defined on the directed set 4 will be ecalled an
A-sequence. A-sequences will be denoted by z=lz,}, y=Iy.} ete.

Suppose all terms z, of an A-sequence x belong to a topologieal
space X. The closure of the set of all z, will be denoted by C(x).
A point x,e X is said to be a limit point of x if for every neighbour-
hood U of x, and for every BeA there is an a>p with z,€U. The
set of all limit points of ¥ will be denoted by L(x). Evidently
L (x)C C(x). If C(z) is compact (=bicompact), then L(x)70.

1) 8. Mazur, O metodach sumowalnoéci, Ksiega Pamiatkowa I Polskiego
Zjazdu Matematycznego (Polish), Supplément aux Annales de la Société Polo-
naise de Mathématique (1929), p. 103; S. Banach, Théorie des opérations liné-
aires, Monografie Matematyczne, Warszawa 1932, p. 31-34.

2) E. Ceeh, On bicompact spaces, Annals of Mathematics 38 (1937),
p. 823-844.
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An A-sequence x={x,} is said to be compact if its terms w,
belong to a topological space X and if O(x) is a compact Hausdorft
space.

X x...xX; will denote the Cartesian product of spaces
Xy,...,X;, Lo the set of all sequences [sD,...,a"] (@Pe X, for
i=1,...,7) with the usual topology.

Let z,={z"},...,5;={z} be compact A-sequences. Then the
A-sequence z,=[#l,...,2P]eC(x;) x... X C(x;) is also a compact se-
quence, since O(x) is a closed subset of the compact Hausdorff
space C=C(x;)x...xX (%)

Under the same hypotheses, if y=F[z,...,a?] is a conti-
nuous mapping of ¢ into a Hausdoxff space Y, then the A-sequence
y,=FD,...,s"]e¥ is also a compact sequence, since C(y) is
a closed subset of the compact Hausdorff space F(C).

Theorem I3). Let A be a directed set. With every. compact
A-sequence x=1{z,] one can assoctate an element denoted by Limg,,
in such a way that

(i) Lim x,6L(x); consequently, if x is convergent, then
Limaz,=limz, %);
(i) if z =y, for all a>y (yed), then Limz,=Limy,;
(iii) 3) if A-sequences ¥,=1{21},...,x;={s} are compact and if
y=F[aV,...,a"] is a continuous transformation of C(x;)x... X C (%)
into a Hausdorff space, then

. 1 ; . o
Lim F[xD, ..., 2" = F[Lima{,..., Lima?];
in particular °),
Lim[#Y,...,s]=[Lima{, ..., Lima?].

3) The Qroof of Theorem I was found by an easy analysis of the proof of
Theorem 1%) in Mazur's paper On the generalized limit of bounded sequences,
to appear in Colloquium Mathematicum, 2 (1951), Mazur’s Theorem A) is a
particular case of Theorem I.

The I.uethod similar to that of Mazur was earlier applied to the proof
of the existence of a Haar measure in topological groups, see Halmos,
Measure Theory, New York 1950, p. 254-255. ‘

. %) An 4-sequence {ma} converges to w, (in symbols: x,=limz,) if for every
neighbourhood U of #, there is a fed such that x,eU for all a>p.

5) J'An analogous statement holds also for infinite sets of A-sequences
and tor infinite Cartesian products.

8 Put ¥=2X,x...xX; and F=the identical mapping.
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Consequently, for arbitrary compact A-sequences {z,},{x} of ele-
ments of a space X,

(iv) if X is a topological group (wriiten additively), then

Lim (i, 4+,)=Limx, +Lima;;

(v) if X is a partly ordered?) topological group, and if z,=>0
for every aeA, then Limuax,>>0;

(vi) if X is a topological ring, then

Lim(z,+a,)=Limz,+Lims, and Limz,-a,=Limx, Limz,;

(vil) if X is a lnear topological space and if {a)} and {a}} are
bounded sequences of real mwmbers, then

Idm(aawa—}-a;w;)=Limaa-Limwa—}—Lima;~Lim;r;.

Consider the set 4 as a topological space with the trivial clo-
sure operation: S=§ for every set S A. Let B be the Cech's
compactification®) of 4, i.e. Bis a compact Hausdorff space such
that

(a) 4 is a dense subset of Bj;

(b) every continuous mapping of A into a compact Hausdorff
space (' can be extended to a continuous mapping of B into C.

Take the 4-sequence a=la} of all elements aeACB. Since
B is compact, the set L(a) B is not empty. Choose an element
BoeL(a). .

Every compact A-sequence x={x,} may be considered as a con-
tinuous mapping of A into the compact Hausdorff space C(x)-
By (b) there is a continuons mapping x=x(8) of B into C'(x), such
that 2(a)==, for ced. By (a) this mapping z(8) is uniquely de-
termined by the A-sequence x.

Let

Lima,=x(fo)-

The property (i) follows immediately from the continuity of
2(8). The property (ii) follows from the fact that g, belongs to the
closure of the set of all elements a>y.

7) A topological group is said to be partly ordered if there is defined an
ordering relation zz=y such that: 1° if z>>y, then wtzFrzutytv; 20 the
set of all 23>0 is closed.
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In order to prove (iil) let #®(8) (for i=1,...,j) be the con-
tinuous mapping of B into C(x;), such that £(a)=a for aed.
The mapping y(B)=F[aV(f),...,”(8)] of B into C(xy)X...xO(x;)
is continuous and y(a)=F[a},...,20] for aed. Hence

Lim Fla,..., o 1=y(Bo)=F [ (By) ;... ,a7(Bo)]

=P[Lima, ..., Limz®].

The properties (iv), (vi), and (vii) follow from (iii) and from
the continuity of algebraical operations.

Let P be the set of all 2>0. If x,6P, then L(x)C”C(x)CP.
Hence Lim x,>0 by (i). This proves the property (v).

Notice that the generalized limit Lim x, is not uniquely deter-
mined by the directed set 4, since it depends on the choice of the
element fy,eL(a). Obviously the set L(a) may contain more than
one element.

It should he emphasized that the generalized limit is not de-
fined for every space x separately. It is defined for all spaces si-
multaneously so that the operations Limw, in different spaces
do agree (see Theorem I (iii)).

§ 2. If U and V are subsets of a linear space and a is a real
number, then U +V, U=V, alU denote respectively the sets of all
elements u-+v, u—v, au, where welU and veV.

In the sequel the letter f with indices will exclusively denote
mappings of a fixed abstract set 7' into linear topological spaces.
The symbol K(f) will denote the least closed convex set containing
the image f(T') of T.

Let f;, be a mapping of T into a linear topological space X;
(i=1,...,7). The mapping g(t)=[f.(¢),...,7,(t)] of T into the Car-
tesm.n produet XX x X, Wﬂl be denoted by [fuy--0f;] I K(f;)
is compact for 13=1,...,7', ‘uhen K([f1,...,f]) is also compact. Now
let F be a transformation of. Xy X...x X, into a linear topological
space Y. The mapping h(t)=F[f,(t),...,f;(1)] of T into ¥ will be
denoted by F[fy,...,f;]. If F is continuous and linear, and if all
sets I (f;) are compact (i=1,...,9), then the set K(F[f1y-.f;]) is
also compact. In fact K (P[fy,...,f;])=F(K([f,,...,};])-
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Theorem II. Let T be an absiract set and let G be an abelian
semigroup ®) of tramsformations of T into T which has the property

(a) for every pair t,,t,eT there are transformations ., p,€@ with
®1(t1) =@s(ts).

With every mapping f (of T into any linear topological space)
such that the set K (f) is compact one can associate an element denoted
by D(f), in such a way that

(1)®) D(fe)=2(f) for all ped;
) D(f) belongs to the interseclion of all sets K(fp), ¢eG;
(iii) 2) if F is a continuous linear iransformation of X;X...xXX;
into ¥ (Xy,...,X;, ¥ — Zmear topological spaees and if E(f;) is
a compact subset of X, ( «+s]), then

QS(FUU’-'J,‘]):F[dj fl)""?¢(f7‘)];
in particular ©),

D([f1y- - N=LPf1); ---, P(f)1-

Consequently, for arbitrary mappings f,f on T such that K(f)
and K(f') are compact subsets of a linear topological space X,
(w Dlaf+a'f )=ad(f)+a'P(f") (a, a’ — real numbers);
) iof X ds partly ordered 1y and if f(t)=0 for all teT, then
@m>a
Let A be the set of all ordered pairs (n,H), where n is a posi-
tive integer and H 30 is a finite subset of G. We write

(ny,H,)>(ny,H,) if simultaneously n,>n, and H,(C H,.

Obviously the set 4 with this relation > is a directed set. Let
Lim z(nz) be the generalized limit of all compact .4-sequences
{#(,m)}- The existence of this limit follows from Theorem I.

8) That is, a class @ of transformations such that if ¢;,p.¢@, then the
superposition pugueG and gy(pa(t)) =g (7:(1)-

9} Obviously f@ denotes the superposition f(p(f)). Since K (fo) K (f),
the set K (fg) is compact.

1) An analogous statement holds also for infinite Cartesian produets.
See footnote?).

11) A linear topological space is said to be partly ordered if there is defined
an ordering relation x>y such that: 1° if x>y, then z+uz=y+w; 2° if 220
and a is a positive real number, then ax>>0; 3° the set of all x>0 is closed.
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Let f be a mapping of T' into a linear topological space X such
that K(f) is compact. For every teT and (n,H)ed, H=(@,01--1Pn),
we put?)

1 Y, . .
By (f5 )= et Z felopir. .. @mi(t),
where the sum is extended over all sequences Tgalnyeerylpy O0ip<<n.
The A-sequence &, g(f,t)eE(f) being compact, the equation
gb(f:t):Limx(n,II)(fa{')
defines an element @(f,t)eX. Since @ is abelian, we have

Bin,H) (f,«;v(t)] — L,y (f 5 8)

1/1 A . 1 ) .
= (WZ feoi. .. gm(t)— WZ fol.. -90;',’{’(1))7

where the sums are extended over all sequences 41y...,%,, 0L i<n.
Consequently

1 1
(b) if peH, then m(n,H)(f’(p(t))—m(w,J.{)(fvt)e;I((f)';"ﬁ‘ K(f).

Let U be any neighbourhood of the zero element 0¢X and let
¥ be a neighbourhood of 0¢X such that V4+V-=V+VCU. The
set K(f) being compact, there is an integer mu, such that
wIK(H)CV for n>n, Let Hy=(p). By Theorem I (i) and (iii))
there is an element (n,H)ed such that

(n, HY>(ng,H,), i.€. n>n, and peH;
By, ) —D(F 1) €V and B(f,0(8)) —u,mlf ,0(8) €V
Consequently, on account of (b),
D(f,9(0) —P(f,1)=(® (f,()) — %, m) (f,e(t)
+ @)y P ) — B (F38) + (2, (1) — DS, 1)) €V + V=V £ VU

1) o? iz the superposition @p...p.
i-times
1) See the last formula in I (i), where j=2, X,=X,=X,
ol =a, gy(fs0), @ =z, p(f0H).

Consider the neighbourhood [@(f,t),® (f,e®)]+¥V x (=7) C X x X and
apply I(i).
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The neighbourhood U being arbitrary, we infer

(¢) D(f,p(t))=D(f,i) for every geG.

The conditions (a) and (e¢) imply that
D(f,1,)=D(f,t,) for all i,%¢T.

The functional
¢(f>=¢(fyt)7
is the required one.
In fact, we have oy, m(fe,t)=2, m{f ¢(t)) from the defini-
tion. Consequently ®(fp)=o(fp,t)=0(f,¢(t)) =(f), which proves (i).
Since C({zymif.8)}) CE(f), we have O(f)eK(f). Hence

o(f)=2(fp) e K (fop),

which proves (ii).

The property (iii) follows from Theorem I (iii) and from the
equality

Floeg, my(F1st)s-- '7m(n,H)(fi?t)]=‘T(n,H)(F[fl7 S AR

The property (iv) follows from (iii) and from the continuity
of the linear transformation y=ar-+a'z’.

The property (v) follows from (i) since 20 for every xeK (f).

Corollary. Let T be an abelian semigroup **). With every map-
ping f (of T into any linear topological space) such that K(f) is com-
pact, one can associate an element D(f) in such a way that

(1) B()=B(f,), where f(t)=f(t+7) for ¢,7eT;

(2) D(f) belongs to the intersection of all sets K(f,), veT;

(3) the conditions (iii), (iv) and (v) of Theorem II are satisfied.

Moreover, if T is a group, it may be assumed that D(fy=D(f_),
where f_(t)=f(—t) for teT.

The first part of this corolarry follows immediately from Theo-
rem II, where G is the class of all translations g(f)=t-+7, t,7€eT.

If T is a group, instead of the functional &, the existence of
which follows from Theorem II, let us consider the functional

&'(f)=(D()+B(f.))/2-
Obviously @' satisfies also the conditions (1), (2), (3), and
()= (f.)-

14) i. e., a set with an associative and commutative operation % +f-
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The above Corollary was known') earlier for bounded real
functions f on 7 in the three following cases:

A) T is the semigroup of all positive integers. The functional @
is called then the generalized limit of bounded real sequences;

B) 7T is the semigroup of all positive real numbers. The fune-
tional @ is called then the generalized limit ({— oo) of bounded real
functions on T

C) T is the unit circumference (the abelian group of rotations).
The functional @ is called then the generalized integral of a bounded
real function on 7. )

If T is a topological compact abelian group and X is a linear
topological space, then the vector integral &(f) is defined for all
confinuous funections f of X into 7. Thus the above Corollary
implies the existence of the Haar integral on abelian compact
groups.

The Corollary implies also the existence of the mean of almost
periodic functions on an abstract abelian group 7. In fact, @(f)
is defined for all bounded functions; if f is almost periodic, then
@(f) is the mean of f.

Those facts suggest to call the functional ®@(f) (in the general
case considered in the above Corollary) the generalized limit of f
i T is a semigroup, and the generalized (vector) integral or the gene-
ralized mean of f if T is a group.

PANSTWOWY INSTYTUT MATEMATYCZNY
STATE INSTITUTE OF MATHEMATICS

(Regu par la Rédaction le 21. 11. 1950).
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Remarks on Riemann-integration of vector-valued functions

by
A. ALEXIEWICZ and W. ORLICZ (Poznan).

This paper contains some contributions to the theory of Rie-
mann integration of vector-valued functions, created by GrAVES
([4], see also KERNER [5]).

Let X be a Banach space, z(f) a function from an interval
[a,b] to X. The function «(t) is said to be Riemann-Graves inte-
grable, or, in short, to be (RG)-integrable, if every sequence of
Riemann sums

(1) s(m)=2a(z)| &
1
(where w=(é,,...,6,) is a partition of [a,b] and 7,€4;) tends to a

limit as z runs down & normal sequence of partitions. The limit of
the sums (1) is by definition the integral of #(t) over [a,b] and
b

will be written [a(z)dt.

The following eriterion (criterion of Riemann) is useful in proving
integrability in some concrete cases: the function z(f) is (RG)-inte-
grable if and only if to every > 0 there exists ¢ partition =w=(dy,...,6,)
such that =;,t;€d; implies
2 !?_{5]1 Sile(m) —a(m) | <e.

It shows e. g. that every function of bounded variation?) is (RG)-
integrable. )

1) The function z(t) is said to be of bounded variation if the set of the sums
Z{x(8;)—=z(a;)} is bounded as {(e;,3;)} varies. over all systems of non-
i

overlapping intervals.


GUEST




