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Fréchet algebras and formal power series

by
GRAHAM R. ALLAN (Cambridge)

Abstract. The class of elements of locally finite closed descent in a commutative
Fréchet algebra is introduced. Using this notion, those commutative Fréchet algebras in
which the algebra C[[X]] may be embedded are completely characterized, and some ap-
plications te the theory of automatic continuity are given.

1. Introduction. We write F for the algebra C[[X]] of all formal power
series in a single variable X, with complex coefficients. (An elementary ac-
count of the algebraic theory of F may be found in [7], Chapter 1, §1.) In
1972, the author gave in [1] necessary and sufficient conditions on a commu-
tative Banach algebra A for F to be embeddable in A (in a purely algebraic
sense). This involved the introduction of a new notion, that of an element
of finite closed descent in a Banach algebra (the property being used in (1],
but not given a name until [2]).

We recall this notion: as in [1], Section 2, it is convenient to do this in
a rather general context. A fopological algebre will here be a non-zero com-
plex algebra which is a Hausdorff topological vector space in which the ring
multiplication is separately continuous. An F-algebra will be a complete
metrizable topological algebra (in which case, the multiplication is neces-
sarily jointly continuous [4]). Let 4 be a commutative topological algebra
and let @ € A. Then = is said to have finite closed descent (FOD) if and
only if, for sowe integer m > 0, Azt is dense in A2™. (We adopt the
convention that, when m = 0, Az™ means A4, even when A has no identity
element.) We also write 6(z)} for the least integer m having this property,
and may conventionally write 6(z) = oo to indicate that an element does
not have FCD.
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Notice that always, at one extreme, every invertible element 2 has 6(z) =
0, while also the zero element has FCD, §(0) = 1. The most elementary
properties of elements of FCD are conveniently recalled in a lemma.

LEMMA 1. Let A be a commutative topological algebra and let z,y € A.
Then:

(i) if 8(z) = m < oo, then Az™ is dense in Az™ for alin > m;

(it) if z is nilpotent and if m is the least infeger such that 3™ =0, then
§(z) = m provided A has a 1; if A does not have a 1, then &(x) = m or
m — 1 (and both coses occur);

(i) 8(zy) < max(6(z),d(y));

(iv) if A has a 1 and if the set of invertible elements is open {e.g. if Ais
a unitel Banach algebra) then &§(z) = 0 if and only if & is invertible;

(v) if A does not have a 1 and if Ay is the unitization of A then, for
any x € A, 64, (z) = 84(x) or 64(x) + 1 (and both cases occur).

Proof. See [2], p. 462, remarks (1)—(5). (There the results were proved
for a Banach algebra, but the weaker assumption that A is a topological
algebra makes no essential difference.)

Next, for z € A, we define the mapping L, : A — A by Lo(y) = 2y
(y € A). We also write I(z) = [,»; Az™, so that I(z} is an ideal of 4 {not
in general closed); also, throughout the paper, g, will denote the quotient
homomorphism ¢, : A — A/I{z).

Then we have the following elementary, but crucial, lemmma.

LeMMA 2. Let A be a commutative topological algebra and let . € A have
FCD. Then L, maps I{z) bijectively onto itself.

Proof. See [1], Lemma 1.

In the generality of Lemma 2, it may easily happen that I(z) = 0. The
chief tool for obtaining non-trivial cases with I(z) # 0 (and for much else
in this paper) is the Mittag-Leffler theorem on inverse limits. There is an
interesting survey of the use of Mittag-Leffler methods in [10]. Because of
its great importance for us, we shall recall the basic ideas.

Let (Xn)n>1 be a sequence of sets and, for each n > 1, let dy, : X1 —
X, be a mapping; we say that (X,;dn) is an inverse-limit (or projective-
limit) sequence. The inverse limit of the sequence, denoted by Jm(Xn;dn),
is the set of all elements £ = (Zp)pp1 in the cartesian product [],., Xn
such that z, = d, (z,41) (for all n > 1). We write mp, : J[ o1 X — X, for
the mth coordinate projection. If the X, are Hausdorff topological spaces
and the mappings d, are continuous, then lim(X,;dy) is a closed subset of
the product space [],,; Xn; it is then given the subspace topology.

We have the following consequence of Lemma 2.
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COROLLARY 1. Under the conditions of Lemma 2, the following are equiv-
alent for an element o € A:

(1) a € I(z);
(ii) there is @ sequence (an)n>q in A such that

= dg, G = Ay, 4 = G, vy Op = Gp41®,

Moreover, under the equivalent conditions (1) and (i), the sequence {(an,)
lies in I{z) and is uniquely determined by a. The Mapping a i (GyYn>o 18
an algebra-isomorphism between I{x) and the inverse limit of the sequence

Ade gde g e

Proof. Ifa € I{x) then, by Lemma 2, there is a unique sequence (@n)nz0
in I(z) such that ag = o and a, = tnp12 for all » > 0. But also, given aﬁy
such sequence (a,) in A, we have ap, = @pq. 12" for each n > 0 and k > 1, so0
that in fact a, € I(z) for all n, The final statement of the corollary ;::, then
immediate from the definition of inverse limit.

We now recall the Mittag-Leffler theorem.

THEOREM 1. Let (Xp;dn)nz1 be an inverse-limit sequence in which each
Xy is a complete melric space and each d, is o continuous mapping with
d(Xngr) dense in Xy, (for all n 2 1), Then, for each m, Wm(Lm(Xn; dn))
is dense in Xy, In particular, im(Xy,;dn) # 0, provided that each X, 5 0.

Proof. See e.g. [6], Theorem 2.4, [10], Theorem 2.14.
COROLLARY 2. Let A be an F-olgebra and let © € A have FCD, say

6{z) = m. Then I(z) = Az™. In particular, I(z) = 0 if and only if = is
nilpotent.

Proof. Just consider the inverse limit sequence

L T L
L &5 Iy &% Iy, 5 S

in which each space is I, = Az™ and cach mapping is L, (restricted to
Iin). Then Ly, is a closed subspace of the F.algebra A and s0 is a complete
metric space. Bach Ly | Ly, is continuous and has dense range, since 6(x) = m.
The result is then immediate from Theorem L. If I(x) = 0 then I, = 0, so
2™+ w0, Conversely, it is clear that 1 (@) = 0 if @ ig nilpotent.

A somewhat more elaborate version of the same idea gives:

LemyMa 3. Let A be an F-algebra with 1 and let & € A have FOD,
6(z) = m. Let (an)npo be a given sequence in A and define ay, = 3o Gk ZE
(n > 0). Then there is a dense subset Jy of Az™ 1 such that, for every
B € Jy, we have ctyy, = (e, + B) € Az™ for alln > 0.



274 G. R. Allan

Proof. See[1], Lemma 2. A clearer explanation (of a slightly less general
version) is given by Esterle in [10], Theorem 3.2. (In [1] we, rather perversely,
deduced Corollary 2 from Lemma 3.)

PROPOSITION 1. Let A be a commutative F-algebra with 1 ond letz € A
have FCD, §(z) = m. Then there is a unigue unital homomorphism ¥y -
F — A/I(z) such that ¥, (X) = g5 (z). Moreover, ¥y is injective if and only
if 2™ ¢ Az™tl

Proof. The existence of the unique homomorphism ¥, is [1], Lemma 3.
If ¥, is not injective then, since {FX* : k > 0} are precisely all the non-zero
ideals of F, it follows that z* € I(2) for some k > 0. Then, by Lemma 2,
z* = g%, for a unique 7 € I(z). But also, for any other ¢ € I{z), i = z*i’
for some i € I(z) and then ij = (z*#')j = 2% = ¢. Since I(z) is dense in
Az™ (by Corollary 2), az™j = az™ (a € A) and so Az™ C I(z) C Az™Y;
in particular, z™ € Az™T1,

Conversely, if ™ € Az™*! then, by an easy induction, 2™ € Az™ for all
n > m 4 1; hence z™ € I(z), so ¥,(X™) = 0 and ¥, is not injective.

In the case when A is a Banach algebra, the converse to Proposition 1
also holds. Thus:

PROPOSITION 2. If A is a commutative Banach algebra with 1, z € A
and if there is o unital homomorphism W, : F — A/I(x) such that ¥y(X) =
¢x(x), then = has FCD.

Proof. See [2], Theorem 2 (implication (b)=-(a); the main ingredient in
the proof was Theorem 1 of [1]).

In particular, if there is a homomorphism # : F — A with 6(X) = z,
then, taking ¥, = gy o #, we see that x must have FCD. In fact, the main
result of [1] may be summarized as follows (where rad A is the Jacobson
radical of A):

THECREM 2. Let A be a commutative unital Banach algebra and lel
z € A. Then the following ore equivalent:

(i) there is a unital homomorphism 8 : F — A such that 6(X) = ;
(il ¢ € rad A and = has FCD.

Moreover, if the equivalent conditions (i) and (ii) hold, then 8 is injective
if and only if z is not nilpotent.

Proof. See [1], Theorems 1 and 2 {and [2], Theorem 2).

However, as we shall scon see, afier recalling some definitions, if in Theo-
rem 2 (or in Proposition 2) we require only that A be a commutative Fréchet
algebra, then it is no longer necessary that z should have FCD. (See Ex-
ample 1 below.) Ii turns out that in order to cbtain sharp versions of these
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theorems for Fréchet algebras, with necessary and sufficient conditions, we
must consider elements that satisfy a weak form of the FCD condition, that
we call “locally finite closed descent”. The definition will be given in the
next section.

2. Fréchet algebras. A Fréchet algebra A is an F-algebra whose topol-
ogy may be defined by a sequence {pn)n>1 of submultiplicative seminorms.
Without loss of generality, we may (and shall) take the sequence (p,,) to be
increasing. Recall that a seinorm p on A is continuous if and only if for
some K > 0 and integer n > 1, p(zx) < Kpn(z) (z € A). The basic theory
of Fréchet algebras was introduced in [5] and [11]. The principal tool in the
study of Fréchet algebras is a representation of A as an inverse limit of Ba-
nach algebras. We shall briefly describe this, in order to establish notation.
(We are concerned here with commutative Fréchet algebras, though, for the
most basic elements of the theory, the commutativity is not important.)

Thus, let A be a commutative Fréchet algebra, with its topology de-
fined by the increasing sequence (pn)n>1 of submultiplicative seminorms.
For each n let m, @ A — A/kerp, be the quotient map; then A/kerp, is
naturally a normed algebra, normed by setting ||mn(z)|ln = pn(z) (z € A).
We let (Ani| - ||n) be its completion, so that A, is a commutative Ba-
nach algebra; henceforth we consider 7, as a mapping from A into A,.
(It is important to note that m,(A) is 2 dense subalgebra of A4, but that,
in general, 7,(A) # A,.) Since pn < ppy1, there is a, naturally induced,
norm-decreasing homomorphism d, : Anyy — A, such that dy omery = 7y,
for all n. Since imd, 2 imm,, it follows that d.(Any1) 8 dense in A, for
each n. For an element z € A, ‘we shall usually write z, = m,{2); it is
then evident that, for each @ € A, the sequence (zy)n>1 is an element of
lim(Ap; dy).

The elementary, but fundamental, structure theorem for Fréchet algebras
is:

THEOREM 3 (Arens-Michael isomorphism). Let 4 be o (commutative)
Fréchet algebra with a defining sequence of seminorms (pp). Then, with the
above notation, the mapping @ v (%, )n31 98 a topological-algebra isomor-
phism of A with ](_J':lg(flf,.-,,; ey

Proof. Bee [11], Theorem 5.1 (proved for more general locally multi-
plicatively convex algebras).

The main point of Theorem 3 should be emphasized: given elements
Zy € A, such that @, = d,(2n..1) for all n > 1, there is a unique =z € A
such that ,(z) = @, for all n. (It should be noted that what we write as
Ay, appears as A, in [11].) The inverse-linit representation of A given by

Theorem 3 will be called an Arens-Michael representation of A.
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ExampLES. 1. The algebra F = C[[X]] has a natural Fréchet-algebra
topology. For f = > .qAX"™ € F and each m > 0, define p,,(f) =
S | Akl Tt s readily checked that then (pm) is an increasing sequence
of submultiplicative seminorms on F defining a Fréchet-algebra topology,
say &, on JF. It is called the topology of coefficientwise convergence. In [1],
Lemma 2, Corollary 2, it was shown that & is the unique F-algebra topology
on F. We may refer to x as “the Fréchet topology of F”. We recall that the
non-zero ideals of F are just the principal ideals FX* (k > 0); each of these
is closed in F, so that, in particular, the element X does not have FCD in
(F; ).

Thus, by considering the identity map ¢ : F — (F; &), we see that, for 4
to be a Fréchet algebra for which there exists a monomorphism 8 : F — 4,
it is not necessary that = == 8(X) should have FCD.

2. Let U be any open subset of C* and let O(U) be the algebra of
all complex-valued holomorphic functions on I/, with the usual topology of
local uniform convergence. It is well known that O(U) is a Fréchet algebra
in this topology. Write U = | J,,-.; Kn, where each K, is compact and K,, C
int K41, and set po(f) = sup{|f(2)| : 2 € K»}. Then (py) is an increasing
sequence of submultiplicative seminorms on Q(U) that defines its topology.

3. We may, in the last example, take the algebra C(U) of all contin-
uous complex-valued functions on U, with the rest of the definition being
analogous.

The discussion of these examples will be continued, and other examples
introduced, after Proposition 3 below.

‘We now have the main new definition of the paper. Let A be a commu-
tative Fréchet algebra and let z € A. We say that = has locally finite closed
descent (LFCD) if and only if, for each continuous subrmultiplicative semi-
norm p on A, z has F'CD relative to the p-topology (i.e. there is some integer
N, which may depend on the seminorm p, such that Az™+? is p-dense in
Az™). Bquivalently, if A = lim(Ay;dn) is an Arens-Michael representation
of A as an inverse limit of Banach algebras, then z € A has LFCD if and
only if, for each n, z, = m,{z) has FCD in the Banach algebra A,.

It is clear from Lemma 1{v) that, if A has no identity and z € 4, then
2 has LFCD in A if and only if it has LFCD relative to the unitization A..
of A. Thus, for most purposes, we may, without loss of generality, assume
that A is unital.

If we write &,(x) = &(zn), then the fact that (p,) is an increasing se-
quence implies that §,(2) is a non-decreasing sequence of positive integers.
It is immediate that an element % £ A has FCD if and only if it has LFCD
and the sequence 6,(z) is bounded (i.e. there is an integer N such that
AnzN Tt is dense in Azl for all n).
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In particular, if A is a Banach algebra, then z € A has LFCD if and
only if it has FCD.

There is a special case of LFCD that we single out. An element z (of a
commutative Fréchet algebra A) will be called locally nilpotent if and only
if, for each continuous submultiplicative seminorm p on A, there is a positive
integer N (depending on p) such that p(z™) = 0. Again, it is clear that, if
A= EEE(AHE dn) is an Arens-Michael representation of A, then z is locally
nilpotent if and only if &, is nilpotent for each », Also, a locally nilpotent
element is nilpotent if and only if there is some N such that 2N =0 for all
n. Again, if 4 Is a Banach algebra, then nilpotence and local nilpotence are
equivalent properties.

ProposiTioN 3. Let & be o locally nilpotent element of a commutative
Fréchet algebro A. Then = € rad A.

Proof. Let z be a locally nilpotent element of 4. Then for each n, z,
is nilpotent, s0 Spy, (#n) = {0}. But Spy(z) = U,»; Spy, (zn) (see [11],
Theorem 5.3(a)), 80 Spy(x) = {0} andz € rad 4.

ExaMmpLEs. 1. Let F = C[[X]] with its Fréchet topology x. Then X
is locally nilpotent, for with pm (35 AnX™) = Y7 |Asl, it is clear that
Pm(X™) = 0 for all n > . In particular, therefore, X has LFCD; but, as
remarked in the earlier discussion of this example, it does not have FCD.
Moreover, every element of F has LFCD, since, for any f € F, either f is
invertible (so 6(f) = 0), or f € FX and f is locally nilpotent.

2. Let U be a connected open subset of €, A = O(U) in its standard
Fréchet topology. Then we claim that A has no elements of LFCD, apart
from the trivial cases of zero and the invertible elements, which always have
FCD. (We remark that, if U were not connected, there would be other, more
or less trivial, examples of elements of FCD. For example, we could take a
function f that was identically zero on some components of U7 but nowhere
zero on the remaining components.)

Suppose, then, that f & A, f 5 0 and f not invertible. Then there exists
a=(a,. .., an) € I such that f{a) == 0 but f is not identically zero on any
neighbonthood of 6, Let K he a compact polydise centered at a, K < U,
and 1et p(f) = sup,e e [£(2)]; then pis a continuous submultiplicative norm
on A. Let Ay, be the completion of (4;p); then A, is the algebra of all
those continous Mnctions on K that are holomorphic on int X. Elementary
complex-~variable theory (considering the Taylor serios of f about a) shows
that M, Apf™ =: 0. By Corollary 2 (since f is certainly not nilpotent}, it
follows that f does not have FCD in the Banach algebra A,, and so f does
not have LFCI in A,

3. Let U be an open subset of C*, A = C(U) in its standard Fréchet
topology. Then we claim that every element of A has FCD.
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Indeed, for every compact K C U, C(U)|K = C(K). The closed ideals
of the Banach algebra C(K) (in the uniform norm || - ||x) are well known

to correspond precisely to the closed subsets of K. In particular, for each

f € A and each compact K C U, f|K and f*|K generate the same closed
ideal of C(K). It follows that 6(f) < 1.

4. Let A = Lj, (R*) (see [8], §7), with convolution product and Fréchet
topology defined hy the seminorms (py, ), where for each n > 1 and each f €
A, pu(f) = {5 |£(t)] dt. Then the corresponding quotient Banach algebras
are A, = L'[0,n] & V (the Volterra algebra L'[0,1]). Let 0  f € A and
write a(f) = inf supp £, so that a(f) is the least & > 0 such that f(¢) =0
(a.e.) on [0, ¢]. The standard theory of V shows that Af is dense in A if
and only if a(f) = 0. If a(f) > 0 then, since (again by a standard result)
a(f™) = ma(f), it follows that, though f does not have FCD, f is locally
nilpotent, and so has LFCD. Thus, every element of L] (R™) has LFCD,
(A convenient reference for the relevant properties of V is [8], Example 7.8,
Theorem 7.9.)

5. Let w = (w(’“))kkl be an increasing sequence of radical algebra-
weights on RT. Thus each wy is (for simplicity) a continuous function,
wy : RY — R\ {0} with wi(z 4+ y} < wp(z)wi(y) (z,y € RY) and such
that wg(z)'/* — 0 as @ — oco. Then, with standard notation, L*(R*;w;)
is a radical Banach algebra (under convolution product). We define R =
LYRY;w) = Mysq LHRT;wi). We topologize R by the sequence of norms
(I - %), where [|flx = {g |F()|wk(t) dt. Evidently, R is a radical Fréchet
algebra, and Ry, = LY (R*;wy,).

Each weight is sufficiently rapidly decreasing so that the function wu,
defined by u(t) =1 (¢t = 0), is in each R, and it is well known that Ryu
is norm-dense in Ry. It follows that Bu = R, so that w has FCD in R, If
a(f) > 0 (with the notation of Example 4) then, for each &, (,,5.; Rif™ =0,
so that f does not even have LFCD. For a general f with a(f) =0, we do not
know whether Rf need be dense in R, because this problem is still open (for
general radical weights) for the Banach algebras Ry. For the Fréchet-algebra
case there seems to be the possibility that a given sequence of “bad” weights
could be equivalent (in the sense of giving the same Fréchet topology) to
a sequence of “good” weights. (For a discussion of the Banach algebras
LYRT; w) see e.g. [8], §7.)

6. Let A = C*°(R™"), with convolution product. We may define the stan-
dard Fréchet topology on A by the seminorms

k
pi(f) = sup k> |F()],
r=0

0<t<k

for all f € A and k > 1. (The factor k before the sum ensures that the (px)
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form an increasing sequence of submultiplicative seminorms, relative to the
convolution product.)

Again let u(t) = 1 {# 2 0). Consideration of the order of vanishing of
u* (convolution power: u¥(¢) = t#=1/(k — 1)1} at 0 shows that Au*+! is not
pm-dense in Rub for any m > k- 1; but it is pg_z-dense. Thus » does not
have FCD, but it does have LFCI) (but is clearly not locally nilpotent).

Probably the definition of an element of LFCD looks, at first sight, highly
artificial. We claim that, in fact, it is very natural, citing in evidence The-
orems 4 and 7 below; also Theorem 6, which shows that, contrary to first
appearances, the property of having LFCD is actually an algebraic property.

We conclude this section with some lemmas about seminorms on JF that
will be needed later.

LeMMA 4. Let p be a submultiplicative seminorm on F. Then X has
FCD relative to the p-topology.

Proof. Either p is a norm, in which case the result follows from [1]
Theorem 1.

Or p is & proper seminorm, L.e. kerp # 0, so that kerp = FX™ for some
m 2 0. In particular, p(X™) = 0, 8o FX™* is p-dense in FX™.

¥

Lemma 5. Let A be a commutative Fréchet algebra and let € A.
Suppose that there ewists o homomorphism ¥ : F — A/I(z) such that
V(X)) = qu(z). Then z has LFCD.

Proof. Let A = lim(A,;dy), in standard notation. Then m, : 4 — A,
maps I(x) into [ (:,cnhnd so induces a homomorphism 7, : A/I(z) —
An/I(z,). Then ¥, = 7, o ¥ is a homomorphism from F into A,/1(zn)
such that ¥, (X) = gu(zn) (where g : A, — A,/I{z,) is the quotient
map). By Proposition 2, it follows that z, has FCD in A,. This holds for
all », so that z bas LFCD in A.

Conrovrary 3. If @ F — A is a homomorphism into the commutative
Fréchel algebra A, then &(X) hay LFCD in A.

Proof Lot w = &(X), and note that ¥ = ¢, © @ is a homomorphism
from F to A/T{x) wuch that W(X) = g.(2), and apply the lemma.

Note that by & proper seminorim we mean a seminorm that is not a norm.

PROPOSITION 4. Let (gn)np1 be an incressing sequence of proper sub-

multiplicative seminorms on JF thal separates the points of F. Then the
topology defined by the (gn) is the Fréchet topology . of F.

Proof. By assumption, for each n, kerg, s 0, so there is an integer
m{n) 2 1 such that ker g, = FX m(n) Since (gn) is increasing, the sequence
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of integers m(n) is also increasing; moreover, m(n) — 00 as n — o0, since
the sequence (g,) separates points.

Then, on the finite-dimensional subspace of polynomials with degree
not exceeding m(n) — 1, the restriction of ¢, is a norm that is equivalent,
on this subspace, to the restriction of the standard seminorm pm(n)-1 (see
Example 1 following Theorem 3). But ker ¢n = ker Pm(n)~1 = F Xm(n) 50
that gn and pp(ny—1 are equivalent seminorms on F. Hence the sequence of
seminorms (gn) defines the same topology on F as the sequence (Pm(ny-1)-
But m(n) — oo, so this is just the unique Fréchet topology x of F.

3. Elements of locally finite closed descent. It will be shown that
those properties of elements of FCD in a Banach algebra that were needed
for the proofs of Theorem 2 and Proposition 1, may be extended to elements
of LFCD in a commutative Fréchet algebra. First we must make some further
study of elements of FCD in a Banach algebra.

Let A be a commutative Banach algebra and let z € A have FCD. We
saw in Corollary 1 that I(z) = [, Az" is naturally isomorphic to the
inverse limit of the sequence -

Ad= ade ade

Thus, although I{z) is not, in general, closed in A, it carries a Fréchet
topology, say Ty, as an inverse limit of Banach spaces. Recalling (Lemma 2}
that Lg|I(2) maps I(z) bijectively onto itself, and writing L7* for the inverse
bijection, we may describe . explicitly by saying that, for a sequence (uy)
in 7(z) and element « € I(z), we have u, — u in the topology 7, if and only
if L™ (uy,) — L7"(u) in norm, for every » > 0, as n — oo. In particular, the
topology 7, is stronger than the norm topology restricted to I{z).

LemMMa 6. Let T : A — B be a continuous homomorphism of commuta-
tive Banach algebras. Let z € A have F'CD, and let y = T{x). Then:

(i) y has FCD in B and T(I{x)) € I{y);
(i} T|I(z) : I(z) — I(y) is continuous for the Fréchet topologies Tu, Ty;
(iii) 4f T(A) is norm-dense in B, then T(I(z)) s T -dense in I{y).

Proof. (i} is trivial.

(i) Let r > 0 and let w € I(z). Then Lj(T(L;™u)) = T'(u), so that
T(L; u) = Ly"T(u), from which the continuity statement is clear. (We
remark that this continuity may also be deduced from the closed graph
theorem.)

(iii) Let T(A) be norm-dense in B. We first show that T(I(z)) is norm-
dense in I(y). Suppose that 6(z) = m; then, by Corollary 2, I(x) is dense
in Az™. Then, since T(A) is dense in B, T(I(z)) is dense in By™. But
T(I(z)) € I{y) € By™, so also T'(I(z)) is norm-dense in I{y).
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Burt then, fo_r any v €I(y),r 2 0and e > 0, there is some u € I(z) such
that ||T(u) — Ly"(v)|| < e. Let w = a"u & I(x); then 1 L7 (T(w) ~ )| < &
This proves the density statement,. ¢

Now let A be a commutative Fréchet algebra, with an Arens—Michael rep-
resentation A = lim(A,;d,). Let z € A be an element of LFCD. Then. in the
standard notation (see the beginning of §2), 2, = my(2) has FCD in ’A for
each n. Then, for each n, dy, : A, — A, has dense range and dn(mn:) =
zp; by Lemma 6, dy (I{2n41)) € I(2,,) and dn|I{@np1) : H(zng) — I(z,) is
continuous with dense range for the Fréchet topologies on these ideals. More-
over, dy induces a homomorphism, say d, Ans1/I{eni1) = An/I(2n).
We represent these mappiugs, together with the canonical inclusions Jn ¢
I{z,) — A, and quotient maps g, : A, — A,/I(z,), in a commutative
diagram; we write dy, = dp |1 (2p.1):

0 0 0
¢ l d
dy dy d
Iz} = I{z2) < I(zs) &
L Li 1 gs
T S
lm . L m ) la )
A],/I(Lm) 4££1—- AQ/I(:L'Q) <-d—2- A3/I(CL‘3) <—d—d-
i) ) 1
0 0 0

Each column is a short exact sequence of complex algebras. The middle row
is an inverse-limit sequence giving an Arens—Michael representation of A.
The maps in the top row are continuous, with dense range, for the respective
Fréchet topologies, as explained above. The bottom row is Jjust a sequence
of complex algebras and homomorphisms, with no given topologies,

. The following is the vital technical lemma concerning elements with
FCD.

~ Lemma 7. Let @ be an element of LECD in the commatative Fréchet
qtgebm A. Then the Arens-Michael isomorphism A & lima(An; dn) induces
wsomorphisms:

(1) I(‘%) o M(I(wﬂ);ﬁﬂ);
(i) A/T(x) = Jan(An/I(20); dn).

- Proof (i) It is clear that the Arens-Michael isomorphism 4 =
lim(An; dﬂ)_, U = (Un )1 (where un, = m,(u)), maps I(z) injectively into
Um(I(zn);dp) (where dy = du|I(s41)). The main point to be proved is
that this mapping is onto the inverse limit.
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Thus, let w, € I(zn) (n > 1), with %, = dn(tns1) for each n. Then
the Arens—Michael isomorphism gives & unique u € A such that m,(u) = u,
(n > 1); we must prove that u € I(z).

By Lemma 2, for each k > 1, n > 1, there is a unique vy 3 € I(z,) such
that 8vn 6 = Un. Bub un = dn(ttng1) = dn(mﬁﬂ")nﬂ,k) = 2k dn(Uni1s).
Now drn(Vnt1,k) € dn(I(Zay1)) € I{zn); by the uniqueness, p(Vnp1,e) =
Unk {(n > 1). Hence, by the Arens-Michael isomorphism, there is a unique
element vy € A with 7, (vg) = Unx (n > 1). But then, for all n, o (zhuy) =
X0, & = Un, 50 that 2Py = u. Thus u € AzF for all k > 1, i.e. u € I(z), as
was to be proved. N

(ii) As in (i), there is a homomorphism, say T': A — lim(An/I(@r); dn ),
namely T'(w) = {gn(tn))ns1 (where g, is the quotient map A, — A, /I(z,)).
Then « € ker T if and only if u, € I{z,) for every n, i.e. if and only if u €
I{zx), by part (i). We thus have a naturally induced injective homomorphism,
say T : AJI{z) — @(AH/I(wn);gn); again, the problem is to show that T
maps onto this inverse limit. _

Thus let, say, &, € An/I(zs) with dn(€nt1) = &, for all n = 1. For each
n take an, € A, such that gn(a,) = &.. Then, for each n, gn dn{ans1) =
gn Qn+1(ﬂn+1) = dn(én-—i—l) =&, = QH(a'n): so that a, — dn(an-}-l) S I(wn)
for each n. We now seek to modify the sequence a,, to a sequence b, such
that by, — an, € I{z,) and d;,(b,41) == by, for each n. Thus we want to find,
say zn € I{zy) (n = 1), such that ay, + 2, = dn(Gnr1 + 2nt1). Therefore, for
cach n we define the mapping f, : I{zny1) - I{zn) by setting

fa(2) = dp(2} + dn(tnt1) — 0 (n21).

Note that, since dy(I(Zrnt1)) € I(zn) and a, — dp(ant1) € I{z,) for each
n, the mapping f, does map I{zn4+1) — I(z,). Also, by Lemma 6, f,
is continuous with dense range for the Fréchet topologies on I(zp+1) and
I{z,). Hence, by the Mittag-Leffler theorem (Theorem 1), there is a sequence
(Zn)n>1 such that z, € I(z,) and ap + 2, = dn(@np1 + 2Znp1) for all n > 1.
We then set b, = an + 2p; so, for each n, go{bn) = gn(on) = &, and also
(bn) € li_rrg(An; dy). There is thus a unique b € A such that m,(b) = b, for
all n, and thus T'(b) = (£n)n>1. This completes the proof.

COROLLARY 4. Let A be a commutative Fréchet algebra, and let x € A
have LFCD. Then:

(1) L maps I{z) bijectively onto itself;
(1) I(z) = 0 if and only if z is locally nilpotent.
Proof. (i) Let u € I(x) and suppose that Ly(u) = 0. Then, with our

standard notation, Ly, (un) = 0 (for all n). By Lemma 2, u, = 0 (for all n)
and so u = 0. Thus L,|I(z) is injective.
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Now let v € I(z); 50 vn € I(amn) for all n and, again by Lemma, 2, for
each n, there is a unique element u, € I(x,) such that Lz (Un) = vp. From
the uniqueness statement, it follows that wu, = dn(Unsa) (n 2 1). Hence, by
Lemma. 7(i), there is a unique w € I(x) such that m,(u) = w,, for each n. It
is immediate that L,(u) = v, which completes the proof of ().

(ii) If = is locally nilpotent, then each z, is nilpotent, so I{z,) == 0 for
all m, and thus I(z) = 0, by Lemma 7(i).

Conversely, let I(x) = 0. By the Mittag-Leffler theorem, applied to
I{z) = Jm(I(xn);dn), wo deduce that m,(I{z)) is dense in I (@n) for the
Fréchet topelogy, for each n. So, for each n, I (#,) = 0, and thus =z, is
nilpotent, by Corollary 2. Hence z is locally nilpotent.

THEOREM 4. Let A be o commutative, unital Fréchet algebra and let
7 € 4. The following are equivalent:

(i) there is a unital homomorphism W, : F — A/I(z) such that ¥, (X )=
(%),
(il)  has LFCD.

Moreover, in case (1) and (i) hold, the homomorphism ¥, is uniquely
determined; it is injective if and only if, for all m, ™ & Az™+1,

Proof. (i)=>(ii). This is Lemroa 5.

(ii)=>(i). Let « € A have LFCD. Then, for each n, z, has FCD. By
Proposition 1, there is a unigue unital homomorphism ¥, : F — A, [1(zn)
such that ¥, (X) = gu(2,). The uniqueness property then implies that,
with the notation of Lemma 7, ¥, = cjf” 0¥, (n = 1). There is then a
unique homomorphism %, : F — A/I(z) such that ToW,(f)= (Fn(fNnz1
(f € F), where T : A/I(z) — {i_rng(An/I(mn);cﬂL) is the isomorphism given
by Lemma 7(ii). In particular, TW,(X) = (Wp(X))ny1 = (@n(2n))nz1 =
T{gu(w)), te. Wy (X) = go(z).

Now suppose that ¥, is not injective. Then ker ¥, is a non-zero ideal of
F, so, for some m 2 1, go(a™) == @, (X™) = 0. It follows that 2™ € I(z) C
Ae™H e g™ € Ae™ for some m > 1.

Conversely, suppose that o™ € Az™t! for some m > 1. Then Az™ =
Ar™ o Az e Aw® for all n > moand I(z) = Az™. But then X™ ¢
ker%,, so ¥, is not injoctive.

COROLLARY B, If & € vad A and & has LFCD, then W, is injective if and
only if = is not nilpotent.

Proof. Clearly, if = is nilpotent then ¥, is not injective. Conversely, if
¥, is not injective then, by Theorem 4, 2™ & Az™*H! for some m > 1. Thus
g™ = ax™*! for some a € 4, ie z™(1 - az) =0, so ™ = 0, since 1 ~ az
is invertible in A4, because z € rad A.
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THEOREM 5. Let 1 be a locally nilpotent, non-nilpotent element of a com-
mutative unital Fréchet algebra A. Then there is o unique homomorphism
Oy 1 F — A such that ©,(X) = z. Moreover, O is injective, im O, is a
closed subalgebra of A and @y : F — im Oy is an isomorphism of Fréchet
algebras.

Proof. Since z is locally nilpotent, I{x) = 0 (by Corollary 4(ii}), so
that the mapping ¥, : F — A/I(z) of Theorem 4 becomes a (unique)
homomorphism &, : F — A such that @,(X) = z. Since z is non-nilpotent,
@, is injective.

Let Ag = im @y; if (pn) is an increasing sequence of seminorms defining
the topology of A, let ¢, = pu|Ap (n 2 1). If, for some n, g, were a norm,
then the locally nilpotent element z would be actually nilpotent—which is
not allowed. Thus, each g, is a proper seminorm on Ag and $o, by Proposi-
tion 4, the seminorms (g, 0 ©,) on F define the standard Fréchet topology
& of F. The result follows.

As a corollary, we have the following curious characterization of F as a
Fréchet algebra.

COROLLARY 6. Let A be a unitel Fréchet algebra. Then A is isomorphic
to F if and only if it is generated, as a Fréchet algebra, by some element
that is locally nilpotent bul not nilpotent.

Proof. If the Fréchet algebra A is gencrated by the locally nilpotent,
non-nilpotent element z, then A is commutative and the homomorphism @,
of Theorem 5 has im @, = A.

Theorem 4 has a consequence for the theory of automatic continuity.
(The result is an extension of Theorem 1 of [2].) It has the surprising con-
sequence that, for an element z of a commutative Fréchet algebra to have
LEFCD is, in fact, an algebraic property. This last remark does, of course,
follow at once from Theorem 4, but in fact we have the following:

THEOREM 6. Let A and B be commuative Fréchet algebras and let T

A — B be o homomorphism, not necessorily continuouns. Let @ € A have
LFCD. Then T(z) has LFCD.

Proof. Without loss of generality, we may assume that A and B are
unital. _

Let y = T'(z). Then T'(I(z)) C I{y), so there is a homomorphism T :
A/I(z) — B/I(y)such that T'q, = ¢y T and, in particular, T(qu(2)) = ay().

If z has LFCD then, by Theorem 4, there is a unital homomorphism
¥, : F — AfI(z) such that ¥,(X) = g,(z). But then T%, : 7 — B/I(y}
maps X to g,(y) so, by the reverse implication of Theorem 4, ¢ has LFCD
in B.
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Remark. We note in particular that if ¢ is locally nilpotent in A, then
T'(z) has LFCD in B. If T’ were continuous then T'(z) would, of coursé also
be locally nilpotent, but this stronger consequence does not general]y’ hold
when T is merely a homomorphism. This follows from Theorem 2 of (1], since
there exists, for example, an injective homomorphism, say 8, from F ’—-+ Vi
(the unitization of the Volterra algebra). Then #(X) is not nilpotent, hence
since V.. 18 a Banach algebra, it is not locally nilpotent. But X is a Iocally;
nilpoteut clement of F,

The following proposition may have some interest in relation to the still
unsolved “Michael problem”, which is to determine whether every character
on a (commutative) Fréchet algebra need be continuous.

PROPOSITION 5. Let @ be an element of LECD in o commutative Fréchet
algebra A. Then q.(x) € rad A/I(z). In particular, if ¥ i85 o character on
A, continuous or not, such that ker ¢ 2 I(z), then w(z) = 0.

Proof. By Theorem 4, there is a homomorphism ¥, : F — A/I{z) such
that ¥y (X) = g (z). Since X € rad 7, it follows that g, (z) € rad A/I{z).

If ¢ is a character on A such that ker D I(z), then there is a unique
homomorphism ¢ : A/I{x) -~ C such that ¢ = pgg,. Since gz(z) €
rad 4/I{z), it follows that o(2} = woga(z) = 0.

4. Embedding F in Fréchet algebras. We now turn to the problem
of characterizing those commutative Fréchet algebras in which F may be
embedded. This is to gencralize Theorems 1 and 2 of [1]. In the earlier
paper, it was not initially clear that F could be embedded in any Banach
algebra, whercas even F itself is already a Fréchet algebra. Nevertheless,
the solution to the problem of describing oll those commutative Fréchet
algebras in which 7 may be embedded does include the earlier result as a
special case.

THEOREM 7. Let A be a commutative Préchet algebra and let z € A, The
Jollowing wre equivalent:
(i) there is some undlal, infective homomorphism Oy : F — A such that
@w(X) vt ;j'j;
(ii) @ € rad A, © has LECD, but = is not nilpotent,

Moreover, in case the equivalent conditions (1) and (ii) hold, then ©, is
unique if and only if @ is locally nilpotent (i.e. if and only if I{z) = 0). In
general, for any f € F that is transcendental over C[X], we may define €,
so that @, (f) is any chosen element of the coset g5 (¥ (f)) of I(x).

(Here, W, : F — A/I(x)is the unique homomorphism such that ¥, (X) =
% (z), given by Theorem 4; by Corollary 5, ¥, is injective.)
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Proof. From Theorem 4, we already know that (i) implies (ii) (the de-
duction that & € rad A being immediate). Moreover, towards proving that
(ii) implies (i), Corollary 5 shows that there is a unique injective homo-
morphism ¥, : F — A/I(x) such that %,(X) = ¢,(x). It follows that, if
the homomorphism @, of the present theorem exists, then it must satisfy
=0y = W, ie. it must be a lift of .

Also, the case when z is locally nilpotent (and, by Proposition 3, this is
precisely the case I(z) = 0) is covered by Theorem b, including the statement
that uniqueness of @, follows {rom the local nilpotence of .

It thus remains to prove that, when z has LFCD but is not locally
nilpotent, then the monomorphism ¥, : F — A/I(z) may be lifted to a
homomorphism €, : F — A4 such that ©,(X) = z. (There are also the final
remarks on the extent of non-uniqueness to be proved.) We thus have to
extend to Fréchet algebras the result of [1], Theorem 2, but now with the
assumption that 2 has LFCD, rather than FCD. Fortunately, we are able to
make use of some of the lemmas from the earlier paper.

We start, necessarily, with the homomorphism, say 8g, defined on C[X] C
F such that 8y(X) = z; clearly g.6p = ¥, |C[X].

Now suppose, more generally, that we have a unital homomorphism 6y :
Fo — A, defined on some subalgebra Fy of F, Fy 2 C[X], such that both
00(X) = x and gu8y = ¥5|Fy. Notice that, since ¥, is injective (see above),
8o must also be injective. (This point is important since, although the ideal
structure of F is very simple, that of #5 may be much richer.) The idea now
is to show that, if o # F, then fp has a proper extension, say 6 : F; — A,
where the subalgebra 7y 2 5y and ¢.6; = ¥,|F1. A standard application
of Zorn’s lemma will then complete the proof.

Thus, given fy : Fy — A, as in the last paragraph, with Fy # F, let
feF \ Fo.

Case 1. f is transcendental over Fy, i.e. if, for any polynomial P(Y) €
FolY], with coefficients from Fy, we define P(f) in the natural way, then
the mapping P(Y) — P(f) is an algebra-isomorphism from Fy[Y] onto
alg(Fo, f), the subalgebra of F generated by Fu and f. In this case we
may choose any o € A such that gy(a) = ¥,(f), and it is then elementary
that defining 61(P(f)) = P(a) (for all P(Y) € Fy[Y]) gives an extension
8y : alg(Fo, ) — A of 8y that satisfies 81(f) = o and .0, = .| alg(Fo, F).

Case 2: f is algebraic over Fp, i.e. for some integer N > 1 and elements
go, -+, gy of Fo, with gy # 0, we have P(f) = 0, where P(Y) = go +
@Y + -+ gnYY € Fy[Y]. We now make use of Lemmas 4 and 5 of [1].
For each n > 1 we have the homomorphism, say, 8, = by : Fy — A,
such that 8,(X) = m(z) = 2, and gnbp = ¥,|Fy (where g, : A, —
An/I(z:) is a quotient mapping, and ¥, : F — A4, /I{z,) is the unique
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unital homomorphism such that ¥, (X) = g, (z,)). Then, by Lemmas 4 and
5 of [1], for each n, 6, has a unigue extension, say, 60/, : alg(Fo, f) — An
such that g,8!, = ¥, | alg(Fo, f). The uniqueness statement then means that,
for each n Z 1, we have 0, = d,0, ;. Hence, using the Arens-Michael
isomorphism, there is a unique homomorphism € : alg{Fy, f) — 4 such that
g0 = V| alg{Fu, ), given by 8(g) = (Gh(g))nzl € Li_I.’g(An;dn) & A. This
proves that an algebraic extension step may be carried out uniquely.

A standard application of Zorn's lemma completes the construction.

The remarks on the extent of non-uniqueness are also clear. For, if f
F is transcendental over the polynomial algebra C[X], we may make the
extension of @y from C[XT] to alg(C[X], f) the first step of the construction.
This step then comes under Case 1 above, so that we may choose @, (f) to
be any clement o € A such that gx(a) = W.{f). (Since kerg, = I(z) # 0,
the choice is not unique.) Theorem 7 is proved.

There is a further consequence in automatic continuity, which extends
the theorem of [3].

THEOREM 8, Let A, B be commulative unital Fréchet algebras. Suppose
that:

(1) A has a point derivation of infinite order, (dn)n>o0 (at some contin-
uous character do), with dy # 0, :
(ii) rad B condains an elerment with LFCD that is not locally nilpotent.

Then there is a discontinuous homomorphism from A to B.

Proof. Define 6y : A — F by 0y(z) = 3,50 dn(2)X™ (2 € A). Then 6y
is a homomorphism. -

Since di(1) = 0 and d; # 0, there is some a € A with dg(a) = 0,
di(a) # 0. Then fy(a) is a forinal power series of order 1, so there is a unique
automorphisin v of F with X = (afy)(a). Let 8 = aflp; then § : A — F is a
homomorphism with 8(a) = X,

For any polynomial p, clearly 8(p(a)) = p(X). But also 8{e®) = e
namely, if ¢, (X) == 370 o X¥/k! (n = 0,1,...), then, for each n, e%—en(a)
Aa™t, 5o that §(e") - e, (X) € FX™, and (%) - ¥ € [),5 FX™ =0,
Le. B{c") ne 0¥,

As an elomont of F, the series e 18 transcendental over C[X| (exercise).
S0 if b € rad B, where b is not locally nilpotent but has LFCD, then, by
Theorem 7, there is a homoworphism ¥ : F — B such that ¥(X) = b but
F(eX) 24 b, Then tho homomorphism T = ¥ o 0 : A — B has T'(a) = b but
T(e®) = @ (eX) % e*; in particular, T is discontinuous,

ExampLe. Let A == Q(C), the algebra of entire functions in one variable

(which even has an infinite-order point derivation at every character), gnd
let B be the unitization of any of the algebras in Examples 4, 5, 6 following

X
S
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Proposition 3. Then Theorem 8 gives a discontinuous homomorphism from

A to B.
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Multiplicative functionals and entire functions
by

KRZYSZTOV JARQSZ (Wdwardsville, IIl., and Warszawa)

Abstract. Let A be a complex Banach algebra with a unit e, let T, p be continuous
functionals, where 7" is linear, and let F' be a nonlinear entire function. Y To F = Fop
and T'(e) = 1 then 1" is multiplicative.

1. Introduction. If T is a multiplicative functional on a complex Banach
algebra A with a unit ¢ then T'(e) = 1, and for any invertible element z of
A we have T'(z) # 0. A. M. Gleason [5] and, independently, J. P. Kahane &
W. Zelazko [7] proved that the above property characterizes multiplicative
functionals. In fact, they proved even a stronger result:

TuenowreM 1. If T is a continuous linear functional on a complex unital
Banach algebra A such that T(e) = 1 and T'(expz) # 0 for z € A, then T
is maultiplicodive,

The above staterent can be rephraged in the following equivalent way.

THEOREM 2. If T is a continuous linear functional on a compler unital
Banach algebra A with T'(e) = 1, and there is a compler valued function
on A such thal

(1) T'{expz) = cxp(p(x))
then T ds multiplicative.

forz € A,

R. Arens [1] asked if the exponential function in (1) can be replaced by
any other entire Ponction F, that is, whether

(2) Tol'=Fogp
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